
NCC Group Plc, Manchester Technology Centre, Oxford Road, Manchester M1 7EF www.nccgroup.com

Andy Davis

Research Director
Telephone: +44 (0) 208 401 0070

e-mail: andy.davis@ngssecure.com

Further adventures with USB

13/01/2012

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Phase four – Frisbee Lite

• Security impact

• Conclusion

USB – it’s everywhere!

• PCs

• Tablets

• Cameras

• TVs

• Cable / Satellite set-top-boxes

• Telephones

• Microwave ovens!

USB Primer - Architecture

• The aim of USB was to find a solution to the mixture of connection

methods to the PC

• Currently three speeds of data transfer (USB 2.0):
• Low – 1.5Mbps (keyboard, mouse etc.)
• Full – 12Mbps (originally for all other devices)
• High – 480Mbps (developed in response to FireWire)

• Architecture is a tiered star topology:
• Single host controller and up to 127 slave devices
• A device can be plugged into a hub, and that hub can be plugged into

another hub and so on. The maximum number of tiers permitted is six

 Host is Master - all communications on this bus are initiated by the host

 Devices cannot communicate directly with other devices (except for

USB On-The-Go protocol)

USB Primer - Terminology

• The USB bus
• When the host is transmitting a packet of data, it is sent to every device

connected to an enabled port. It travels downwards via each hub in the
chain which resynchronises the data transitions as it relays it. Only one
device, the addressed one, actually accepts the data

• Endpoints
• Each USB device has a number of endpoints. Each endpoint is a source or

sink of data. A device can have up to 16 OUT and 16 IN endpoints.
• OUT always means from host to device.
• IN always means from device to host.
• Endpoint 0 is a special case which is a combination of endpoint 0 OUT and

endpoint 0 IN, and is used for controlling the device.

• Pipe
• A logical data connection between the host and a particular endpoint, in

which we ignore the lower level mechanisms for actually achieving the data
transfers.

USB Primer – More Terminology

• Configurations, Interfaces, and Endpoints

• The device contains a number of

descriptors (as shown to the right) which
help to define the device’s capabilities

• A device can have more than one
configuration, though only one at a time,

and to change configuration the whole
device would have to stop functioning

• A device can have one or more interfaces.
Each interface can have a number of
endpoints and represents a functional unit

belonging to a particular class

• Each endpoint is a source or sink of data

USB Primer – plugging in a device

• Pull-up resistor on data line – Indicates device was connected (reset device)

• Get Device descriptor – what’s the max packet size? – address 0

• Reset then Set Address - for the rest of the communications use this address

• Get Device descriptor – What are the device basic capabilities?

• Get Configuration descriptor – What are the configuration details?

• Interface descriptors
• Endpoint descriptors
• HID descriptors

• Get String descriptors – Get string language + product name etc.

• Set Configuration – Configuration is chosen – the device can be used

• Class-specific communication - from this point onwards

HCI Driver

USB Bus Driver

USB Device Driver

USB Primer – Example descriptor

A typical Device Descriptor

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Phase four – Frisbee Lite

• Security impact

• Conclusion

Various approaches to interface fuzzing

 Rafael Dominguez Vega used a number of different approaches
including USB over IP, QEMU and a microcontroller to discover Linux-

based USB vulnerabilities in String descriptors

 David Dewey and Darrin Barrall used an SL811 USB controller to discover
a heap overflow in Windows XP

 Moritz Jodeit emulated USB devices in software and with a Netchip
NET2280 peripheral controller

 Tobias Mueller used virtualisation techniques with QEMU to identify USB
vulnerabilities in a number of different operating systems

 Jon Larimer investigated USB drive security and associated file system

vulnerabilities in Windows and Linux

Difficulties in testing USB

• Black box Testing of drivers for interfaces on embedded systems can be

tough:

• No low-level view of the firmware
• Hard to debug
• Hard to hook into firmware

• Testing some interfaces is tough using conventional approaches:

• Getting a PC to pretend to be a USB device requires some serious driver

development – need to turn the root hub into a USB device.

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Phase four – Frisbee Lite

• Security impact

• Conclusion

USB vulnerability classes

• Stack overflows
• String descriptors in Linux and Windows XP

• Solaris 11 Express hub-class descriptor

• Integer and Heap overflows
• Sony PS3 hub-class descriptors
• Apple iPod Touch jailbreak “0xA1,1” USB control message

• Xbox 360 image-class descriptors

• Null-pointer dereference (exploitable)
• Apple iPhone jailbreak “0x21,2” USB control message

• Logic errors
• Windows 7 HID report descriptors

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Phase four – Frisbee Lite

• Security impact

• Conclusion

Phase one - FuzzBox

• Arduino microcontroller

• Fuzzer written in C++

• Only emulates USB HID devices

• Only allows semi-automated fuzzing

• Has found bugs in:

• Windows 7
• Windows XP
• OS X

• Limitations – not really fast enough to emulate most USB devices

FuzzBox details

Simple circuit to interface with an Arduino:

Driver code had already been written to emulate a HID device:

http://code.google.com/p/vusb-for-arduino/

http://code.google.com/p/vusb-for-arduino/
http://code.google.com/p/vusb-for-arduino/
http://code.google.com/p/vusb-for-arduino/
http://code.google.com/p/vusb-for-arduino/
http://code.google.com/p/vusb-for-arduino/
http://code.google.com/p/vusb-for-arduino/
http://www.practicalarduino.com/pics/virtual-usb-keyboard-schematic.jpg

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Phase four – Frisbee Lite

• Security impact

• Conclusion

Packet Master USB500 AG

• Dedicated USB test equipment hardware

• USB capture and playback

• Emulates any USB host or device

• Understands and analyses the different USB device classes

• Uses a scripting language to generate USB traffic

• Costs approx. US$1200 (plus specific class analysis options)

• Limitations – doesn’t currently have a software API to control it

GraphicUSB – Capture and Analysis

GraphicUSB – Generator Scripts

So what can we fuzz?

USB hosts:

• The Device Descriptor (HCI driver)

• String Descriptors (HCI driver / USB device drivers)

• The Configuration Descriptor: Interface Descriptor (USB device driver)

• The Configuration Descriptor: Endpoint Descriptor (USB device driver)

• Class-specific descriptors e.g. HID Report Descriptor (USB device driver)

• Class-specific communication (USB device driver and client software)

USB devices:

• Host -> device USB control messages

Why the new approach is different

Device and Platform Independent:

• Previous approaches have mainly focussed on either testing or

emulating specific devices or hosts

• We don’t care (for the most part) what the host or device is

• If we understand USB and where vulnerabilities may be present then we

can use a black-box fuzzing approach

• It certainly produces results…

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Phase four – Frisbee Lite

• Security impact

• Conclusion

Frisbee – the USB fuzzer

• GraphicUSB currently has no API for controlling it

• Frisbee modifies the GraphicUSB generator script created from a

capture

• The generator script must be loaded, compiled then executed to

generate USB traffic

• Frisbee uses the SendKeys Python library to inject Windows events into

GraphicUSB

• Although this is slow, the HCI driver needs time to identify a device,

which has ostensibly just been plugged in

• The host under test is connected to the same Ethernet network as the

host running Frisbee and is periodically pinged to identify if the host has

crashed

NCC Group Plc, Manchester Technology Centre, Oxford Road, Manchester M1 7EF www.nccgroup.com

Demos

What have we found so far?

• HID class descriptor memory corruption in Windows 7

• Hub class descriptor stack overflow in Solaris 11Express

• Printer class communication memory corruption in Solaris 11Express

• Image class communication memory corruption in Solaris 11Express

• Image class communication integer overflows in Microsoft Xbox 360

• Image class descriptor memory corruption in Apple OS X

Reusing the Arduino approach

Small, portable, programmable USB device to trigger USB vulnerabilities:

Why are USB vulnerabilities still prevalent?

• Some vendors don’t seem to view USB vulnerabilities as a security issue

Quote from vendor x:

“Thank you for sending this to us. This is something that I will definitely pass

on, however since this requires physical access its not something that we

will fix in a security update”

• The knowledge of how to emulate USB devices is not widespread

Quote from vendor y:

“We think we’ve fixed this issue, but we’ll need to get you to test it as we

don’t have the ability to replicate your attack”

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Phase four – Frisbee Lite

• Security impact

• Conclusion

Frisbee Lite – The USB device fuzzer

A bit more USB primer:

 bmRequestType

- This is a bitmapped field that describes the characteristics of the request.

 bRequest

- This is the actual request that is being sent

 wValue

- The contents of this field are request-specific.

 wIndex

- The contents of this field are request-specific. However, it is often used to
specify an endpoint or interface.

 wLength

- This specifies the length of the data transferred during the second phase of
the control transfer. If this field is zero, there is no second (data transfer)
phase.

USB standard requests

Frisbee Lite – The USB device fuzzer

The user interface is simple and

intuitive:

Frisbee Lite – The USB device fuzzer

• Written in wxPython

• Uses LibUSB to provide low level access to USB on Windows

• Uses pyUSB to send raw USB setup request packets

• Download from: http://www.ngssecure.com/research/research-

overview/Public-Tools.aspx

• Send all bugs / feedback / feature requests to me

http://www.ngssecure.com/research/research-overview/Public-Tools.aspx
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx

Bugs discovered by Frisbee Lite

• A memory corruption vulnerability in iOS 5 (iPhone 4) causes a kernel panic –

potentially exploitable

• A memory corruption vulnerability in iOS 5 (iPhone 4) causes the USB stack to stop
responding – exploitability currently being investigated

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Security impact

• Conclusion

The impact of exploiting USB

Typical scenarios of exploiting USB vulnerabilities:

• “Jailbreaking” embedded devices

• Unlocking a locked workstation

• Installing malware in seconds

• Exfiltrating sensitive data in seconds

• What about Endpoint Protection Systems?...

Endpoint Protection software

Endpoint protection software:

• Lumension (formerly Sanctuary) - Device Control

• CoSoSys – Endpoint Protector

• DeviceLock - Endpoint DLP Suite

They work higher up the USB stack than many USB driver vulnerabilities exist

Exploitable USB driver vulnerabilities will often circumvent them

Some of the vulnerabilities we have discovered, when exploited will

circumvent Endpoint Protection Software

Agenda

• USB Primer

• Previous work

• USB vulnerability classes

• Phase one – Fuzzbox

• Phase two – Commercial test equipment

• Phase three – Frisbee

• Security impact

• Conclusion

Conclusion

• There are still plenty of USB vulnerabilities out there – many of which will

be exploitable

• Even though limited physical access is required, USB vulnerabilities still

constitute a serious security risk

• Endpoint Protection software is unlikely to protect you from many of

these attacks

• If you really don’t want people to exploit USB on your PCs, disable USB in

the BIOS

• For ultimate protection, fill the USB sockets with epoxy resin!

NCC Group Plc, Manchester Technology Centre, Oxford Road, Manchester M1 7EF www.nccgroup.com

Questions?

Andy Davis

Research Director
Telephone: +44 (0) 208 401 0070

e-mail: andy.davis@ngssecure.com

