

Version 0.953 (2012) Page 1 of 13

AUDITING ENTERPRISE CLASS APPLICATIONS AND SECURE CONTAINERS ON ANDROID

The Limitations of Mobile Security in the Enterprise

Marc Blanchou of iSEC Partners

December 2012

marc[at]isecpartners[dot]com

https://www.isecpartners.com

Abstract

Today's corporations and governments must secure potentially sensitive information on mobile devices. In response, Mobile Device

Management products claim to help enterprises secure these devices or even act as "secure containers”. There is an increasing need to assess

the security claims of such enterprise-class software vendors, but there is very little information on how their claims hold up to real-world

threats. This paper covers research into those threats, with a focus on mobile devices running Android. By understanding the different attack

vectors and the current mobile security models, this research paper aims to determine what should be protected, when it should be

protected, and how commercial security solutions fit into the mix. The paper also discusses design concerns in popular Android security

products and techniques used to assess them.

Executive Summary

Mobile platforms have risen in popularity and capabilities,

making them a desirable work asset for enterprise networks.

When used within the enterprise, these devices are likely to

process sensitive information; this therefore raises the question

of whether this data is secure with current mobile enterprise

product offerings.

Current mobile security models market two flawed assumptions.

First: they can use the same security model as laptops. Second:

they are protected because compromising mobile platforms

generally requires root privilege. These models are inefficient

since devices are always turned on and there are limitations in

user input that hinder the use of strong passwords. In the hands

of an attacker, a powered-on device is susceptible to information

disclosure via its flash memory (internal/external) and on some

devices the RAM. Additionally, privilege escalation bugs and

public exploits for rooting a phone are commonplace.

Mobile Device Management (MDM) software is the solution for

enterprise policy enforcement. Some MDM products claim to be

"secure containers", enforcing security policies set by the

enterprise on their managed mobile devices, including separate

encryption of corporate data. This paper investigates Good for

Enterprise and Mobile Iron MDM products.

Partly due to the limitations of the Android devices, reviewed

MDM products did not have the ability to properly enforce their

policies. Detecting if a device is rooted, providing remote wipe or

claiming that "corporate data is highly secure" with Federal

Information Processing Standard (FIPS) compliant encryption –

these claims are mostly marketing without any real security.

Encryption provided by the solutions does not hold against real

threats since cryptographic keys are retrievable in most cases.

Remote Wipe can be circumvented and Rooting Detection uses

weak checks that an attacker can easily bypass as well.

The use of MDM products coupled with a strong IT policy,

including enforcement of strong passwords, would mitigate

some attack vectors - especially for the Good for Enterprise

solution - but a sophisticated attacker could still potentially

access data on a compromised or stolen device.

The reviewed products delegate some aspects of their provided

security to the underlying operating system. Prior versions of

Android lack full disk encryption, and an attacker with physical

access to a device protected by an MDM product can retrieve

sensitive information stored on the device.

1. Introduction

Android is currently the fastest growing mobile platform
1
,

operating with thousands of new users every day. In 2011, IDC
2

showed that 69% of employees use mobile devices for business,

implying most devices store sensitive data.

The mobile device security model is erroneously based on the

security model of their technological predecessor: the laptop

computer. Unlike the laptop, mobile devices are rarely shut down

or hibernated. They are always turned on and are almost always

connected, making the laptop security model insufficient. This

connectivity also raises a new set of security risks with new

threats and attack vectors.

1 http://www.asymco.com/2011/11/06/the-us-smartphone-landscape/

2 http://www.unisys.com/unisys/ri/report/detail.jsp?id=1120000970016710178

https://www.isecpartners.com/
http://www.asymco.com/2011/11/06/the-us-smartphone-landscape/
http://www.unisys.com/unisys/ri/report/detail.jsp?id=1120000970016710178

Version 0.953 (2012) Page 2 of 13

“Secure Containers” have been developed to facilitate the

adoption of mobile devices into the enterprise and try to

mitigate the risks inherent to the platform. Some of these

applications claim to provide enterprise-grade security for

Android devices. With the adoption of mobile devices into

enterprises there is an increasing need to assess the security

claims of such software.

This paper discusses the marketing claims made by software

vendors such as Good for Enterprise and Mobile Iron on Android

devices and how they mitigate current threats. It should be noted

that these two products were chosen because they were two of

the most popular MDM products at the time of testing (which

started in 2011 and ended in March 2012), but they do not

represent the current market and have been modified since initial

testing (see “what is the state of these applications today”).

2. Android Security Features

In Android, non-kernel applications are executed in a virtual

environment provided by the Dalvik Virtual Machine. Android

uses the Dalvik Virtual Machine (DVM) with just-in-time (JIT)

compilation to run Dalvik executables translated from Java byte-

code. The DVM is similar to the Java Virtual Machine (JVM) in

concept and as such, many traditional Linux and Java application

testing techniques can be applied to Android.

Android by design provides application sandboxing based on

privilege separation. Each application runs with its own User ID

(UID) and Group ID (GID). Similar to its Linux origins, Android

prevents users from accessing resources of another UID. This

results in having complete application segregation. Additionally,

applications by default do not have permission to perform tasks

that may negatively affect other aspects of the system. Instead,

applications must explicitly request the permissions they need for

additional capabilities not provided by the sandbox. These

permissions include accessing or modifying user data such as

other application’s files, emails, contacts or using network

resources. However, applications support running native code,

which means the Dalvik Virtual Machine is not a security sandbox

in itself. Running native code is usually used for performing time

sensitive operations and this introduces the risk of classic low

level language bugs.

Android version 4.0 (ICS) provides additional security features

such as full disk encryption and the support of Address Space

Layout Randomization (ASLR); however, very few devices have

this version of the OS installed by default at the time of writing.

3. Android in the Enterprise

Android has very limited inherent features that would help keep

it secure in the enterprise. The OS is currently focused toward the

consumer market. It lacks reliable central management features

such as granular application control, security policies, and device

analytics. Additionally, no full disk encryption was provided prior

to the release of Android 3.0. Android currently relies mostly on

ActiveSync for enterprise mobile mail, and features supported on

most common devices are limited
3
.

4. Secure Containers

To address the limitations of the Android OS, enterprise class

applications have been developed. They attempt in multiple ways

to improve the security and manageability of Android devices.

They introduce the ability to do remote analytics, remote wipe,

password management and encryption of corporate data. Many

of these features have been modeled after Blackberry Enterprise

Server (BES), which has been a gold standard of enterprise mail

for a long time.

Secure containers attempt to provide data segregation by

separating personal and enterprise data. To create this

separation, most encrypt enterprise mails, contacts, calendars

and attachments on the device. These containers rely on a PIN to

decrypt the data. This PIN is programmatically distinct from the

Android PIN.

Good for Enterprise and Mobile Iron allow users to manage

company emails, contacts, calendars and events for their end

users. They claim to enforce policies, as well as perform remote

lock and wipe of a device. Mobile Iron does not claim to be a

secure container and relies on the full disk encryption provided

by the device to secure the data. They both work on several

platforms such as iPhone, Android and Windows Mobile and are

both used by Fortune 500 companies and government agencies.

5. Threat Agents

It can be relevant to define the threat agents when assessing

security measures and their associated risk.

One of main threat is the individual attacker. Using obfuscation in

a product can potentially be enough to protect against the casual

attacker but an experienced attacker could have specific skills

dedicated to mobile exploitation such as the expertise to develop

custom tools for application de-obfuscation and decryption of

data using a large GPU cluster.

Another threat is corporate espionage. Several companies made

the news after reporting incidents of industrial espionage
4
.

Corporate spies may not have direct contact with targeted

devices, but they have access to large financial resources and

highly skilled computer experts.

In the same way, governments and law enforcement agencies

may want access to information on mobile devices. They have

frequent physical access to devices when individuals are going

through airport or border security checks. They have access to

many people with highly technical skills and large financial

3 http://en.wikipedia.org/wiki/Comparison_of_Exchange_ActiveSync_clients

4 http://en.wikipedia.org/wiki/Industrial_espionage

http://en.wikipedia.org/wiki/Comparison_of_Exchange_ActiveSync_clients
http://en.wikipedia.org/wiki/Industrial_espionage

Version 0.953 (2012) Page 3 of 13

resources.

According to the Electronic Frontier Foundation (EFF)
5
 6,500

people travelling to and from the US had their devices searched

in about two years - which is about 300 people per month - and

almost half of them were US citizens. Moxie Marlinspike is a good

example of one security researcher, among many, who was

searched at the border
6
. Additionally, some states give no

protection to contents of a phone during a search after a

violation has been committed. In particular, Florida law used to

treat a smartphone as a “container” for the purposes of a search.

In addition, the “search incident to arrest”
7
 would potentially

allow warrantless search in California
8
. All in all, depending on the

circumstances and the local court system, the police may be able

to search a phone without a warrant.

6. How can the data be obtained?

A common way to obtain a phone’s data is to leverage enabled

development features such as USB debugging and PC mode.

Getting root access on a phone using Android Debug Bridge

(ADB) and publicly available exploits such as “rage against the

cage” can be easily performed by an attacker without the need to

reboot the device, in most cases making the internal storage and

RAM accessible. There are numerous ways to access internal

device storage, but it is more difficult to access RAM contents

when the device does not have USB debugging enabled and is

set up with a lock screen.

Some privilege escalation bugs allow for direct access of internal

storage (an example is CVE-2012-0056 for the Linux kernel,

implemented for android with mempodroid
9
). In addition, a

recent study shows that more than more than half of all Android

devices contain known vulnerabilities
10

. Alternatively, companies

have publicly released hardware devices that can read the flash

directly from the device over USB. One of the most popular of

these devices is the UFED. One of the latest versions claims to

support direct bit-by-bit flash copying as well as the ability to

bypass the Android lock screen. They are currently limited to

certain devices, but the list is growing, with Samsung supposedly

next
11

. These devices are known to be used by government

entities. Additionally, physically reading the flash would be

possible, because as opposed to the RAM, there is no gradual

memory degradation after memory chips are pulled. Another way

to retrieve the internal storage and RAM (but after rebooting the

device) is through a JTAG port. Most of the devices do not have a

5 https://www.eff.org/wp/defending-privacy-us-border-guide-travelers-carrying-

digital-devices

6 http://www.net-security.org/secworld.php?id=10187

7 https://www.eff.org/issues/search-incident-arrest

8 https://www.eff.org/deeplinks/2011/11/year-smartphone

9 https://github.com/saurik/mempodroid

10 http://threatpost.com/en_us/blogs/research-shows-half-all-androids-contain-

known-vulnerabilities-091312

11 http://www.cellebrite.com/news-and-events/press-releases/%20246-cellebrite-

ufed-extends-forensic-capabilities-to-android-mobile-devices.html

JTAG port, but some of them, including HTC Dream and HTC

Magic
12

 for instance, support the JTAG interface and can be

retrofitted with one which will allow debug access to RAM.

One other attack vector is to be able to find the lock screen PIN

(or lock screen pattern) on a stolen device. The lock screen being

independent from the application lock, people may tend to have

a weak phone PIN and a stronger PIN for the enterprise

application, since it is used more often. Statistics show that

people almost always chose a common PIN such as 0000 or

1234.
13

 An attacker would then be able to access a device, find

the PIN, activate USB Debugging and potentially find a way to

bypass the “stronger” PIN of the container. In addition, a stolen

device may have smudges on the touch screen surface that could

help an attacker to find the PIN
14

. A recent device used by law

enforcement, which can crack an iPhone’s PIN in a few minutes,

would also be able to crack an Android phone’s passcode.
15

Additionally, some manufacturers made the news due to bypass

issues in the lock screen
16

 that would allow enabling the USB

debugging functionality to be enabled. A cold boot attack would

also allow access to RAM, but would require some very

specialized equipment and skills to de-solder memory chips from

the board and place them into specialized readers.

The proliferation of Android malware is on the rise. For instance,

one of the latest campaigns may have infected 5 million users,
17

often by masquerading as popular applications.
18

 These can be

distinguished as two groups: userland malware and malware with

root access or exploiting OS level vulnerabilities. The former can

use standard application permission vulnerabilities such as

sensitive inter-process communication (IPC) mechanisms

accessible to any application on the device, world readable

shared preferences or use of external data storage. The latter

group of malware could record keystrokes, access any file on the

file system, trick the user into providing sensitive information

and/or send files and encryption keys to a remote server. Even

though a properly configured application can be relatively safe

from userland malware, it is impossible for an enterprise

application alone to properly protect against malware with root

access or exploiting OS level vulnerabilities.

SSL has to be used by applications in order to protect sensitive

data during transit. However, flaws such as improper certificate

authenticity checks or a lack of proper hostname validation could

12 http://wiki.cyanogenmod.com/wiki/HTC_Dream_%26_Magic:_JTAG

13 http://www.net-security.org/secworld.php?id=11167

14 http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

15 http://www.forbes.com/sites/andygreenberg/2012/03/27/heres-how-law-

enforcement-cracks-your-iphones-security-code-video/

16 http://www.bgr.com/2011/09/30/major-security-flaw-lets-anyone-bypass-att-

samsung-galaxy-s-ii-security-video/

17http://www.computerworld.com/s/article/9223777/Massive_Android_malware_

op_may_have_infected_5_million_users

18 http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-

comes-from-one-family-hides-in-fake-versions-of-popular-apps/

https://www.eff.org/wp/defending-privacy-us-border-guide-travelers-carrying-digital-devices
https://www.eff.org/wp/defending-privacy-us-border-guide-travelers-carrying-digital-devices
http://www.net-security.org/secworld.php?id=10187
https://www.eff.org/issues/search-incident-arrest
https://www.eff.org/deeplinks/2011/11/year-smartphone
https://github.com/saurik/mempodroid
http://threatpost.com/en_us/blogs/research-shows-half-all-androids-contain-known-vulnerabilities-091312
http://threatpost.com/en_us/blogs/research-shows-half-all-androids-contain-known-vulnerabilities-091312
http://www.cellebrite.com/news-and-events/press-releases/%20246-cellebrite-ufed-extends-forensic-capabilities-to-android-mobile-devices.html
http://www.cellebrite.com/news-and-events/press-releases/%20246-cellebrite-ufed-extends-forensic-capabilities-to-android-mobile-devices.html
http://wiki.cyanogenmod.com/wiki/HTC_Dream_%26_Magic:_JTAG
http://www.net-security.org/secworld.php?id=11167
http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://www.forbes.com/sites/andygreenberg/2012/03/27/heres-how-law-enforcement-cracks-your-iphones-security-code-video/
http://www.forbes.com/sites/andygreenberg/2012/03/27/heres-how-law-enforcement-cracks-your-iphones-security-code-video/
http://www.bgr.com/2011/09/30/major-security-flaw-lets-anyone-bypass-att-samsung-galaxy-s-ii-security-video/
http://www.bgr.com/2011/09/30/major-security-flaw-lets-anyone-bypass-att-samsung-galaxy-s-ii-security-video/
http://www.computerworld.com/s/article/9223777/Massive_Android_malware_op_may_have_infected_5_million_users
http://www.computerworld.com/s/article/9223777/Massive_Android_malware_op_may_have_infected_5_million_users
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/
http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/

Version 0.953 (2012) Page 4 of 13

lead to Man in the Middle attacks (MITM) and would allow an

active attacker to see all the network traffic including sensitive

emails and credentials. A recent study showed that 8% of 13,500

applications examined contained code that was potentially

vulnerable to MITM attacks.
19

 Additionally, Certificate Authorities

(CAs) have been compromised in the past, and applications on

Android generally use the phone key’s store to validate

certificates; this means an attacker controlling a CA would be

able to potentially get a certificate accepted by the application.

To mitigate this risk, some applications internally store a whitelist

of certificates known to be used by the server; this is called

certificate pinning.
20

7. Claims of the MDM Products

The claims below were found on the product websites. Good

mentions that “Corporate data is highly secure” with Good for

Enterprise, but also that
21

:

“Governments have tested the product and approved it

for their most sensitive deployments”

“Over-the-air transmission and enterprise data at rest

on the devices are secured with industry-leading AES-

192 encryption.”

This indicates that potentially very sensitive information is secure

on these devices. But who is it secured from and when is it

secured? When is a phone’s data really “at rest?” Is it still secured

when the phone is turned ON? How are encryption keys

handled? It is also mentioned that it “Leverages a FIPS 140-2

certified cryptographic module to protect data-at-rest and data-

in-transit” as well as:

“The cryptography employed by Good has been

successfully tested by NIST-approved labs and certified

to be compliant with FIPS 140-2 Level 1”
22

However, the FIPS level 1 specification is the lowest level of the

FIPS “security levels”. How are keys handled by the application

and can they really be self-contained by the module? Zeroed

when not in use? Additionally, in the level 1 specification, no

hardware module is needed to store keys. A module contained

within a cryptographic boundary also means that key information

should not be passed outside of the boundary if implemented

correctly.

Mobile Iron mentions in its literature that it enforces encryption

(likely by leveraging the device’s Full Disk Encryption on

19 http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

20 http://www.thoughtcrime.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha

21 http://www1.good.com/products/good-for-enterprise

22 http://www.comdirect.ch/produkte/datenblaetter/doc_download/441-

whitepaper-security-overview

compatible devices) and password policies but does not really

claim to encrypt the data with the product
23

.

“MobileIron combines traditional mobile device

management capabilities with advanced security, data

visibility, apps management, and access control

powered by the Virtual Smartphone Platform

Architecture. IT administrators can manage and secure

the mobile device, data, and apps, from registration to

retirement, and quickly get smartphone operations

under control.”

However in a “Mobile Device Security Features” section,

“Encryption policy (phone, SD)” is mentioned as well as

“Lockdown security (camera, SD, Bluetooth, Wi-Fi), Password

enforcement, Remote lock and wipe” and “Password

enforcement” as well as the following:

“MobileIron can detect if an iOS or Android device has

been compromised and can block the device from

accessing corporate resources.”

Good for Enterprise also mention the ability to remote wipe:

“Performs remote wipe of enterprise data only”

Pulling the SIM card out of the phone would obviously allow an

attacker to easily circumvent this feature, but the phone must be

turned off in order to do so. Alternatively, if the phone needs to

remain on in order to retrieve the data, an attacker could put the

phone in a Faraday bag which would isolate the phone from any

Radio Frequency (RF).

23 http://www.mobileiron.com/

http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
http://www.thoughtcrime.org/blog/authenticity-is-broken-in-ssl-but-your-app-ha
http://www1.good.com/products/good-for-enterprise
http://www.comdirect.ch/produkte/datenblaetter/doc_download/441-whitepaper-security-overview
http://www.comdirect.ch/produkte/datenblaetter/doc_download/441-whitepaper-security-overview
http://www.mobileiron.com/

Version 0.953 (2012) Page 5 of 13

8. Testing Android Applications

Reverse Engineering – Methodology Used

Dalvik Bytecode was decompiled using Backsmali, Dedexer,

dex2jar and JD. Native code segments were reverse engineered

using IDA Pro 6.0. Content of the RAM at different states of the

phone was analyzed with raw memory dumps and heap profiling

dumps. Structured memory analysis was performed with

VisualVM or JHAT using heap profiling dumps generated by the

Dalvik Virtual Machine. JDB was used to perform dynamic

analysis allowing debugging of the applications. Modifying

applications to bypass obfuscation was performed using apktool

and jarsigner by decompiling, modifying, recompiling and re-

signing the applications.

Dalvik Bytecode and Reverse Engineering

Most of the applications are written primarily in Java and

compiled to Dalvik Bytecode, which makes applications easier to

reverse engineer. Backsmali was used to decompile applications

into Smali code, which is more readable and comprehensive than

Dalvik Bytecode.

Annex 1 - Backsmali was used to convert the application into

Smali code.

Static Analysis

Decompiling a dex file into Smali with the Backsmali tool
24

 will

give one of the most accurate representations of the original

code. The author found it was better to use Backsmali in order to

decompile a dex file; the other option is to use dedexer
25

, which

is a great tool, but does not allow recompiling the dex file

afterward, which is always useful if some debugging is needed.

The syntax
26

 and the Dalvik op-codes
27

 need to be understood.

For instance, p0 to p3 are used for parameters, p0 is usually the

'this' (refers to the object a function is a method of) and v0, v1,

v2, etc. are local variables. The maximum number of variables is

given with .locals at the top of the method body (with --use-

locals option with backsmali). A method return type is given by

the letter at the end of the method name (V means void, I

integer, Z boolean for instance).

Apktool
28

 is a tool facilitating the decompilation. It is an all-in-

one tool which takes the apk of the application, decompresses it,

and uses Backsmali on the dex file. It also retrieves the manifest

and converts it into xml. The apk file can be decompiled with

“apktool decode *.apk”.

24 http://code.google.com/p/smali/

25 http://dedexer.sourceforge.net/

26 http://jasmin.sourceforge.net/guide.html

27 http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

28 http://code.google.com/p/android-apktool

The decompilation to Java using dex2jar
29

 and JD
30

 is not very

reliable and is rather inaccurate (as some methods even fail to

decompile), but can greatly help in order to have a quick

overview of what an Application does.

Smali code can be recompiled using the Smali tool. The Smali

code can be modified in order to help debugging, log some data,

perform detailed traces, dump the memory heap after specific

actions (see android.os.Debug.dumpHprofData()) and strip SSL.

Once modified and recompiled with “apktool build [DIR]”, it

needs to be signed.

Android applications are self-signed and can be modified with

root access. The following steps are needed in order to run

modified applications and resign them (not needed for system

applications):

After installing the Java JDK, the "Java\jdk1.6.0_*\bin" directory

contains two needed tools: jarsigner and keytools. Keytools

allows creating a keystore, and jarsigner uses it to sign the APK

with the private key generated.

Annex 2 - Decompilation issues – Example

Annex 4 - Example of obfuscated code (Mobile Iron)

Dynamic Analysis

DDMS, traceview and dmtracedump can be used to perform

dynamic analysis. Native parts can be debugged with strace and

gdb with remote debugging. JDB can do basic debugging tasks.

It uses the JDWP protocol, but unfortunately not all of the JDWP

requests are implemented by the Dalvik VM (which explains

some crashes).

The Development Tools have to be installed on a rooted phone –

on an emulator, they are installed by default. In the Development

Tools menu, go to "Development Settings" and select the

application that needs to be debugged; "Wait for debugger"

option will also have to be enabled. Also, if the test is performed

on a phone, applications must have the “debuggable” flag in the

Application Manifest (the application can be recompiled if it

needs to be added). Run the application, it should block, waiting

for a debugger to attach. Example:

List JDWP processes:

 adb jdwp

Set up port forwarding to connect to a JDWP process:

 adb forward tcp:4200 jdwp:<pid>

Attach JDB to it – in this example, the emulator is on localhost:

 jdb -attach localhost:4200

Memory Analysis

The goal of memory analysis is to find what is available in

29 http://code.google.com/p/dex2jar/

30 http://java.decompiler.free.fr/?q=jdgui

http://code.google.com/p/smali/
http://dedexer.sourceforge.net/
http://jasmin.sourceforge.net/guide.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://code.google.com/p/android-apktool
http://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/?q=jdgui

Version 0.953 (2012) Page 6 of 13

memory and when. Unstructured memory analysis can be

performed in order to search for strings or specific data that

could have been spotted during the static analysis. Dalvik strings

use UTF-16, which means a character is two (2) bytes, but there

could be other types of strings. If there is a native code part, an

application using a different encoding format can usually be

examined with the Linux command strings –a –e [encoding].

There are several methods to acquire memory dumps – either the

Linux proc filesystem (procfs) with /proc/[PID] or the memfetch

application could be used, both allowing for retrieval of a raw

memory dump.

To perform a more structured analysis, a Java heap profile file

could be dumped by the Dalvik VM itself. This dump file is

stripped off Dalvik specific data and can be read with Java

memory dump analysis tools such as JHAT, Jprofiler or VisualVM.

The Garbage Collector of the Dalvik VM dumps a hprof file when

sending a SIGUSR1 to the process (kill -10 [PID]). The hprof file

can then be retrieved in /data/misc.

Intercepting SSL Traffic

The application can be statically modified and recompiled in

order to accept any certificates; this would allow to proxy the

traffic using a tool such a Burp Suite
31

 for HTTPS traffic and

Canape
32

 or Mallory
33

 if a binary protocol is used. Alternatively,

SSL can be dynamically bypassed for any application on a device

by a tool written by Justine Osborne of iSEC Partners called

android-ssl-bypass.
34

Testing SSL/TLS Client Certificate Validation

The certificate checks can be examined through static analysis,

but using a tool is more convenient, exhaustive and reliable.

TLSPretense
35

 is a tool recently released by William (B.J.) Orvis,

also of iSEC Partners, that allows for testing a number certificate

validation issues. The tool generates a set of certificates

containing specific flaws, and it presents the certificates to an

application (which must be configured to trust a CA used by

TLSPretense).

Testing for Specific Vulnerabilities

Android uses a number of inter-process communication (IPC)

mechanisms that can be overly-permissive if incorrectly

configured. Typically, applications declare IPCs that can be

potentially interacted with by any other application on the device.

These mechanisms include Activities, Services and Broadcast

Receivers (talked to via messages named ‘Intents’). These should

31 http://www.portswigger.net/burp/

32 http://www.contextis.com/research/tools/canape/

33 http://intrepidusgroup.com/insight/mallory/

34 https://github.com/iSECPartners/android-ssl-bypass

35 https://github.com/iSECPartners/tlspretense

be marked as not exportable in the Android Manifest unless

there is a legitimate reason for it. Another IPC mechanism called

Content Providers is used to export data by default.

Implementations of Content Providers should be carefully

reviewed in order to make sure they do not serve sensitive data

and do not introduce security bugs such as SQL injection. More

detailed information can be found in Jesse Burns’ paper
36

 and on

the Android security best practice page
37

.

Applications should avoid exposing sensitive data to other

applications. Shared preferences, databases and files should not

be world readable/writable if not needed; Using MODE_PRIVATE

as the default file creation mode forces an application to create

files with the correct, restrictive permissions.. Additionally, any

data stored on the SD card is accessible to any application (since

Android 4.1 they need the READ_EXTERNAL_STORAGE

permission). Also, the application should never log potentially

sensitive data in logcat (the Android logging system) as it can be

read by other applications (with the READ_LOGS permission) on

Android prior to 4.1.

In addition, application specific vulnerabilities can include

common native language vulnerabilities if the application

interacts with a native library or custom code such as custom

cryptographic functions or any time sensitive functions.

Finally, a great number of applications use a WebKit WebView,

which loads web content in an in-process browser. WebViews can

be vulnerable to common web vulnerabilities such as cross-site

scripting (XSS) and cross site request forgery (CSRF) issues if

JavaScript is enabled. The WebView should be as restricted as

possible,
38

 and file system access, JavaScript and Plugin should be

prohibited if not needed.

9. Good for Enterprise

Design concerns were found in version 1.7.1.157 of the

application but were also present in version 1.6.5.146 and

1.6.3.138 which are the last supported versions for Android 1.6

and 1.5 respectively.

A. Ability to Retrieve Sensitive Data

(when the device is locked and Powered ON)

The application maintains the master database key in memory

even when the application has been locked for a long time.

Being able to access this key on a stolen device compromises the

security of all data stored by the application: email, contacts,

appointments, and identifiers allowing an attacker to

36 https://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf

37 http://developer.android.com/guide/practices/security.html

38 http://labs.mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-

webviews/

http://www.portswigger.net/burp/
http://www.contextis.com/research/tools/canape/
http://intrepidusgroup.com/insight/mallory/
https://github.com/iSECPartners/android-ssl-bypass
https://github.com/iSECPartners/tlspretense
https://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf
http://developer.android.com/guide/practices/security.html
http://labs.mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-webviews/
http://labs.mwrinfosecurity.com/blog/2012/04/23/adventures-with-android-webviews/

Version 0.953 (2012) Page 7 of 13

impersonate the user.

Good for Enterprise is using a native library with functionality

similar to the commercial library SQLite Encryption Extension

(SEE), which itself has several functions very similar to the

SQLCipher library. This was identified by decompiling the Good

for Enterprise libraries with IDA Pro and looking at the

functionality and function names since symbols were present.

Commands specify the cipher and the key used with the

database. Understanding how the library worked helped finding

the key in memory dumps. Structured memory analysis showed

that the master database key resides in a linked list in memory

for use by a connection pool talking to a library that handles the

encryption and calls to the database. This unique 192-bit key

allows decrypting all the database files using AES-CBC.

The Annexes contain examples on how to easily get the master

DB key from a memory dump using VisualVM and structured

memory analysis.

Annex 6 - Master DB key from a memory dump using VisualVM

Annex 7 - It is also possible to retrieve the key in memory by

looking for UTF-16 Strings

Annex 8 - Now the attacker has the ability to decrypt all the

database files including emails

Exploit Scenario

An attacker obtains a device that has USB debugging turned on

(or uses one of the techniques mentioned in section 6 to enable

it). The device is put in a Faraday bag
39

 to avoid remote wipe. The

attacker then uses a publicly available exploit to become root,

pull the master database key out of memory and decrypts the

database files including emails, contacts and appointments.

B. Retrieve the User Password

and Access the Data

The database key derives from the user’s password. Verification

of the password requires computing a symmetric key’s hash

using a Password Base Key Derivation Function (PBKDF2-SHA1

with a number of iterations, see PKCS #5 and PBKDF2 function)

and one SHA1 operation. Good for Enterprise uses the PIN and

an 8 byte salt. The hash and salt are obfuscated with an XOR

between a static string and the hash as well as a great number of

bitwise operations. This is then stored in an XML file located in

/data/data/com.good.android.gfe/shared_prefs/GoodLockPrefs.x

ml. Obfuscation could easily be bypassed - without having to

reproduce de-obfuscation steps - by simply debugging the

application and dumping the hash and salt, or modifying the

application in order to dump the password hash in a log file

when the application accesses them. Brute force analysis of the

hash and salt can be performed relatively easily with a GPU

cluster.

39 http://www.teeltech.com/tt3/phoneshield.asp

Exploit Scenario

An attacker obtains a device and retrieves the flash memory (see

section 6). This data is susceptible to brute force attacks because

passwords on a mobile device are not likely to have more than 6

characters and will probably have fewer special characters than

traditional passwords. Additionally, PBKDF2 functions on mobile

devices use reduced iterations due to the CPU limitations.

Using the GPU outperforms using the CPU to generate hash

values. The use of GPU to break PBKDF2 implementation has

been demonstrated with the brute force of PBKDF2-HMAC-SHA1

256-bit keys with 4096 iterations, which is generally performed to

attack WPA/WPA2 by computing Pairwise Master Keys. More

than a hundred thousand keys per second can be generated

using the already old Radeon HD 5970
40

. An attacker using a GPU

cluster such as a FPGA or Amazon EC2 instances would have

considerable computing power for a relatively cheap price. FIPS

level 1 only requires a minimum of 1000 iterations, which would

lead to hundreds of thousands of keys generated per second

using a mere desktop graphic card.

C. Other

Jailbreak and Root Detection

Root detection is done by regularly verifying if superuser.apk is

installed; the application also tries to run “su –c ls” and expects it

to fail if the phone is not rooted. These verifications are weak and

cannot protect against an attacker running a publicly available

exploit to become root such as “rage against the cage.”

Additionally, just renaming ‘su’ in ‘system/bin/su’ on a rooted

device when running Good would not be detected by the

application. There is even an application called ‘temp root

remover’ on the Android market that is used for this purpose.

No Anti-debugging And Plenty of Logs

No anti-debugging or anti-reverse engineering techniques were

present in either application. Additionally, one of the applications

makes it easy for an attacker to reverse engineer, as symbols and

debug log messages were still present in the application.

An example of an inconsistent decompilation using dex2jar and

jd-gui for the Dalvik Bytecode part and a decompilation of the

native part using IDA Pro can be found in annex. It shows that

symbols are present, and debug logs are filled with copious

amounts of information that helps an attacker understand

detailed functionality of the application.

Annex 3 - Detailed function names and a lot of information in the

decompiled code.

Annex 5 - No obfuscation in the native code parts.

40 http://erratasec.blogspot.com/2011/06/password-cracking-mining-and-

gpus.html

http://www.teeltech.com/tt3/phoneshield.asp
http://erratasec.blogspot.com/2011/06/password-cracking-mining-and-gpus.html
http://erratasec.blogspot.com/2011/06/password-cracking-mining-and-gpus.html

Version 0.953 (2012) Page 8 of 13

10. Mobile Iron

Testing was done on Mobile Iron Version 4.5.2 (March 2012) and

4.1.7 (June 2011) through static analysis only.

Data exposure

In the last version tested, Mobile Iron version 4.5.2, user

credentials can optionally be encrypted in a "config.properties"

file. The application is obfuscated to some extent (e.g., function

names have been stripped out). However, the AES-256

encryption key used is generated using SHA1 PRNG with

android_id (UUID) as seed. The Android UUID is a constant

number for the lifetime of the device and should not be used in

encryption operations; the seed can easily be retrieved by an

attacker or a rogue application (the UUID can be retrieved by any

application) and the key could be generated. An attacker stealing

the device can easily obtain this value, generate the key with the

android_id, and retrieve user credentials and the database

content. Additionally, if the same key were used to encrypt data

on the SD card, any application installed on the device could

potentially decrypt the files. Also, this AES 256-bits key is used in

ECB mode. ECB is widely known to be insecure, and should not

be used.

Unique Device ID is sent to the Mobile Iron server

The application collects the unique identifying Device ID and

sends it to the company’s Mobile Iron server during provision. As

a best practice, the Device ID should not be stored; this identifier

has been used by many applications as an authentication token

in the past, which means that the company installing the Mobile

Iron product would potentially be in possession of credentials for

other applications. This raises the sensitivity of these tokens to a

level not normally expected of a unique identifier. Public scrutiny

has been focused on applications, largely on iPhone devices
41

 but

also on Android to some extent (with a presentation given by

Lookout
42

 at the Black Hat Security Conference in 2010).

This issue may be less significant in an MDM/corporate

environment, as users have less expectation of privacy from their

employer, and MDM products are implicitly expected to “track”

mobile devices to some extent.

Jailbreak and Root Detection

Root detection is done by verifying the existence of

"/system/bin/su" in version 4.1.7 and a few other places in

version 4.5.2 (/system/xbin/su, /system/su and

/system/xbin/sudo) which is not enough for promising root

detection.

41 http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-

Privacy-Issues.pdf

42 https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/

11. Can it be Secure?

It is currently difficult to properly secure application containers

because of the mobile security model. It is also even more

difficult to secure them without hardware modules integrated

with a device for handling cryptographic keys
43

 and a custom OS

that would handle central management features. To this end,

several fundamental security primitives have been defined (still as

a draft) in a document released by NIST
44

 and are intended to

help the industry attempt to make devices more secure for the

enterprise. However, there are a few solutions the products could

implement to help mitigate some of the issues mentioned in this

paper.

The key used to decrypt the data should not be stored on the

device. Instead it should be retrieved from a server when the user

enters the application’s PIN. In addition, the key should be

zeroed from memory after a certain amount of time when the

device is locked, and it should not be possible to retrieve the

user’s encryption key even by brute force. This key should be

retrieved directly from the server with a PIN, and the user’s

account should be locked after a certain number of unsuccessful

attempts.

To be able to read emails offline (when no connection is

available), the user should be able to keep the encryption key in

memory for a certain amount of time, but this should be an

optional ‘unsafe/offline mode’ so that the user would know that

the data could be at risk if the phone was stolen at that point in

time. However, this would obviously impact user experience, as

the user would have to select this option in advance so that the

key could be stored.

Another debatable solution would be to retrieve the key locally

only when no network access is available, with a Password-Based

Key Derivation Function with a very high number of rounds (high

enough so that it takes a noticeable amount of time to retrieve

the key on the phone) and an enforced strong password

(different than the server PIN). The number of rounds would be

enough to allow the user to report the stolen/compromised

phone to IT and block email access before an attacker

bruteforces the key. Doing this would make it more difficult for

an attacker to retrieve the user’s data on a stolen device as long

as the phone is locked or turned off. This could be an acceptable

mitigation without greatly diminishing the user experience.

Solutions for malware detection are primarily performed by

searching for known cases of rootkits or root utilities - a form of

blacklisting. The limitation of blacklisting is that it only is as good

as the provided list of harmful applications. A preferable method

to mitigation against malware gaining root access on a device is

to have application whitelisting on a device; however, this is not

currently available for Android.

43 A few devices now integrate a Secure Element (SE) which is a tamper resistant

smart card chip.

44 http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf

http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf
http://www.pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf
https://blog.lookout.com/blog/2010/07/27/introducing-the-app-genome-project/
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf

Version 0.953 (2012) Page 9 of 13

12. What is the state of these

applications today?

As they were discovered, iSEC disclosed the design concerns to

the respective companies. It should be noted that Good and

Mobile Iron were both responsive upon receiving these issues.

According to MobileIron, the data exposure issue (related to data

persisting on the device) is not present in the default

configuration because this persistence option is disabled by

default. They stated that ECB is no longer used, key generation

routines have been modified and jailbreak detection has been

improved.

Good for Enterprise has released several versions of the product

since the time of testing. Some obfuscation has been added to

the product. According to Good, the key no longer persists in

memory when the phone is locked in version 1.7.3.169. However,

the ability to retrieve a user’s PIN by brute force is still possible.

13. What can users do today?

User awareness is a critical component to mitigation of current

attacks. Users must use caution when installing software and

setting permissions on their phones. Users should disable

unnecessary features that increase the attack surface, such as

USB debugging or Bluetooth, refrain from rooting their phones,

keep applications updated, and use complex PINsfor the lock

screen instead of screen patterns. Users should also use different

credentials for the MDM product than those used for the phone

and the other applications. Users should be aware of the attack

vectors, and understand that the data stored on a stolen device

may be compromised by malicious applications gaining root

access or using OS level exploits. Additionally, full disk encryption

should be enabled on capable devices.

14. Conclusion

Marketing claims may be true in some cases, but are they always

relevant? How can a phone's data be secured at rest if the data is

never at rest? A user cannot rely solely on remote wipe or root

detection in these applications. Strong passwords help - but will

users really be willing to type a complex password each time they

want to unlock their applications? And can it really be enough to

secure the data from a sophisticated attacker? There are ways to

mitigate the risk, but they rely on a network connection when

unlocking the application, thus denying the user a smooth offline

experience. For both the products tested, Good for Enterprise

and Mobile Iron, user data can be retrieved on a stolen device

and a user could potentially be impersonated.

A phone has a very large threat surface compared to most other

devices; users and businesses must take this into account when

storing sensitive data on mobile platforms. Enterprise solutions

such as Good for Enterprise and Mobile Iron could implement

better security practices and mitigate some attack vectors, but

most importantly, companies must understand the implications

of allowing mobile devices access to enterprise resources, even

when using MDM products.

Acknowledgment

Special thanks to Mathew Solnik for the help with the initial

research. Thanks to David Thiel for assisting with the disclosing

process and the review of this paper throughout the writing

process. Thanks to Alex Vidergar, Michael Reisinger, Shawn

Fitzgerald and Aaron Grattafiori for their reviews. Additional

acknowledgement should be given to Justine Osborne, Alex

Stamos, Jesse Burns, Don Bailey, Paul Youn and iSEC Partners for

their support.

Version 0.953 (2012) Page 10 of 13

Annexes

1. Backsmali was used to decompile the application into Smali code

2. Decompilation issues – Example

Version 0.953 (2012) Page 11 of 13

3. Detailed function names and a lot of information in the decompiled code (Good for Enterprise)

4. Example of obfuscated code (Mobile Iron)

Version 0.953 (2012) Page 12 of 13

5. No obfuscation in the native code parts (Good for Enterprise)

6. Master DB key from a memory dump using VisualVM (Good for Enterprise)

Version 0.953 (2012) Page 13 of 13

7. It is also possible to retrieve the key in memory by looking for UTF-16 Strings (Good for Enterprise)

8. This results in being able to decrypt all the database files including emails (Good for Enterprise)

