

VPN by Google One Security

Assessment

Google Inc

Version 1.1 – December 14, 2022

©2022 – NCC Group

Prepared by NCC Group Security Services, Inc. for Google LLC. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Daniel Romero

Laura Garcia

Mario Rivas

Rafael Alfaro March

Shawn Fitzgerald

Prepared For

Google Inc

1 Executive Summary

Synopsis
During the summer of 2022, Google engaged NCC Group to conduct a security assessment

of VPN by Google One. VPN by Google One is a service that increases connection security

and privacy to end users. Google provides several clients covering the most widely used

operating systems; these VPN clients provide both encrypted transit and IP address

dissociation for packets between user’s devices and the VPN servers.

The product’s security and privacy goals, as stated in the product’s whitepaper1, are:

“We focus on three core principles: keeping our users’ information secure, treating it

responsibly, and putting our users in control.”

“With VPN by Google One, we will never use the VPN connection to track, log, or sell

your online activity.”

“A Google-grade VPN that provides additional security and privacy to online

connectivity without undue performance sacrifices.”

Scope
NCC Group’s evaluation included:

Security Design and Architecture Review

VPN Library Code Review

Windows Application Security Assessment

MacOS Application Security Assessment

Android Application Security Assessment

iOS Application Security Assessment

Testing was performed in the production environment, having access to the relevant source

code for the tested platforms.

Key Findings
The technical component analysis and source code review uncovered twenty-four initial

findings in total, comprising:

Three findings rated medium-severity.

Ten findings rated low-severity.

Nine findings rated as informational

observations.

The most notable finding was related to the requirement of the Windows application to be

executed with administrator privileges. While NCC Group did not find any software

vulnerabilities in this application, potential insecure coding practices could result in a

privilege escalation attack. This issue was correctly addressed by Google during the retest,

and now the application is executed with user privileges.

The other two medium risk findings found were in the login process of both Windows and

MacOS applications, which would allow local malicious applications to deny the availability

of the service, or obtain the OAuth token sent after a successful login, by manipulating

local ports temporarily opened by the applications during the login process.

Strategic Recommendations
Although no significant risks were identified in this assessment, it is recommended that the

issues outlined in this report are reviewed in line with a suitably robust defense in depth

approach which continuously monitors the organization’s security posture.

•

•

•

•

•

•

•

•

•

•

•

•

1. https://www.gstatic.com/subscriptions/marketing_page/vpn/white_paper_4f995ab5d7c7edc3d3f14

f2e0593f790.pdf

2 / 52 – Executive Summary

https://www.gstatic.com/subscriptions/marketing_page/vpn/white_paper_4f995ab5d7c7edc3d3f14f2e0593f790.pdf
https://www.gstatic.com/subscriptions/marketing_page/vpn/white_paper_4f995ab5d7c7edc3d3f14f2e0593f790.pdf
https://www.gstatic.com/subscriptions/marketing_page/vpn/white_paper_4f995ab5d7c7edc3d3f14f2e0593f790.pdf
https://www.gstatic.com/subscriptions/marketing_page/vpn/white_paper_4f995ab5d7c7edc3d3f14f2e0593f790.pdf

2 Dashboard

Finding Breakdown

Original Assessment Remaining

Critical issues 0 0

High issues 0 0

Medium issues 3 2

Low issues 10 9

Informational issues 9 8

Category Breakdown

Access Controls 1

Configuration 6

Cryptography 4

Data Exposure 6

Denial of Service 2

Component Breakdown

Android Application 3

Windows Application 7

iOS Application 2

macOS Application 6

vpn-libraries 1

 Critical High Medium Low Informational

3 / 52 – Dashboard

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Android Application

Title Status ID Risk

Lack of Certificate Pinning Reported WWL Low

Missing Permissions on Android Receivers Reported XA6 Info

User Email Address Stored Without Application-Level

Encryption

Reported 3JC Info

Windows Application

Title Status ID Risk

Weaknesses in Authentication Process Reported LXX Medium

Lack of Privilege Separation Fixed 9W7 Medium

Lack of Anti-Exploit Protections Reported MDL Low

Sensitive Data Sent in the URL Using POST Method Reported MWM Low

Lack of Certificate Pinning Reported J2Q Low

Application Vulnerable to DLL Injection Reported DDJ Info

Sensitive Information Written to Debug Logs Fixed BQL Info

Application Binaries Not Obfuscated Reported GUM Info

Binaries Contained Debug Information Reported UEX Info

iOS Application

Title Status ID Risk

Application Disables App Transport Security Reported VPB Low

Mobile Application Data Storage Leaks GAIA ID in

Log Files

Fixed XUH Low

Mobile Application Backgrounding Leaks Sensitive

Info in Screenshots

Reported RPK Info

macOS Application

Title Status ID Risk

Weaknesses in Authentication Process Reported G96 Medium

Sensitive Data Sent in the URL Using POST Method Reported 6NH Low

Application Vulnerable to DYLIB Hijacking Reported GMU Low

Lack of Certificate Pinning Reported KE3 Low

Binaries Contained Debug Information Not Fixed B9L Info

Application Binaries Not Obfuscated Partially Fixed DRA Info

vpn-libraries

Title Status ID Risk

Use of Deprecated and Internal Functions Reported AJK Low

4 / 52 – Table of Findings

4 Architecture Review Analysis

During the first two weeks of the engagement, NCC Group performed an assessment of the

Google PPN VPN service to ensure its design would be able to facilitate the product’s

security and privacy goals. This phase of the engagement was performed independently of

any specific implementation of the design, focusing specifically on the technical concepts

described in the client provided documentation listed in Client Provided Documentation,

and in person interviews. Additionally, NCC Group created architecture diagrams, which

details the components, trust boundaries and communication paths.

Architecture/Platform Description
The VPN by Google One is a product that endeavors to protect users in a way that reduces

opportunities for manipulation, interception or analysis of network traffic by third parties in

privileged positions.

The product whitepaper released by Google illustrates the contrast between a typical

network connection and one protected by a VPN with the diagram shown in figure 1 below.

Figure 1: Typical network connection and using the VPN from the Google whitepaper

Scope and Architecture Diagrams

NCC Group performed an architecture assessment of both the current PPN environment as

well as a future architecture that Google is expecting to begin to deploy in Q3 of 2022.

During this assessment, NCC Group created three architecture diagrams. The first two

diagrams document the current environment, with the first including the client portions and

the second focused on the server-side architecture. The third diagram documents the

future release.

5 / 52 – Architecture Review Analysis

Figure 2: VPN Architecture Overview Diagram in Production

Each component is described below.

Client Components

G1 APP: The application responsible for hosting the VPN service and initializing the PPN

library. It also provides notifications and account management.

PPN Service: Java subclass of Android VPN service that runs in the same memory

space as the host app. Responsible for the actual implementation of the Android VPN

APIs.

Xenon: The PPN network-switching layer. This library talks directly to Android and is

responsible for switching Krypton’s data plane between Wi-Fi and cell networks.

Krypton Service and library: PPN C++ library that implements data plane of the VPN,

talking directly to Datapath session manager Copper.

•

•

•

•

6 / 52 – Architecture Review Analysis

Datapath Client: Open-Source software application and communication protocol that

implements VPN techniques to create secure point-to-point connections in routed or

bridged configurations.

Server Components

Brass Backend: Dataplane manager and key management service. It provides the public

key of the data node. According to the request made from client device, it determines

the specific dataplane node to use, programs the node with the client device’s public

key and receives a new public key the dataplane generates for return to the client

device.

Copper(Session Manager): The exit node responsible for sending and receiving the

packets from the device and the internet.

Zinc Backend: The current authentication server that is responsible for authentication

and authorization of the PPN service where it proxies GAIA authentications to Bronze.

Keyring Bucket: Responsible for serving the public key, signing and verification

requests.

Bridge-Proxy Backend: talks to Bridge server to get valid Bridge token and sends to the

bridge controller.

Bridge-Server: Provides a valid token to the bridge-proxy.

Bridge Controller: Handles requests to program the packet Processor.

Phosphor: New closed source authentication server that will replace Zinc and Bronze in

a future release. It provides access to the public key, authentication, signing and

eligibility remote procedure calls (RPCs).

Bronze: Closed source authentication server that is responsible for GAIA and G1 service

authorizations which Zinc talks to and validates from.

Attestation Service: A service running within the Phosphor instance that handles device

attestation from Android and iOS devices.

DB Spanner: Used to store the nonces that will be signed by the Attestation Service.

G1 Benefits: Tells if the user has a PPN subscription.

Play: Responsible for device attestation (Android).

GAIA: Responsible for service authorization.

Packet Processor: Provides a platform for low-level network packet processing

applications.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

7 / 52 – Architecture Review Analysis

Current Google PPN architecture

Figure 3: VPN Architecture Overview at current date

Components

Brass: Dataplane manager and key management service. It provides the public key of

the data node. According to the request made from client device, it determines the

specific dataplane node to use, programs the node with the client device’s public key

and receives a new public key that the dataplane generates to return to the client

device.

Copper(Session Manager): The exit node responsible for sending/receiving the packets

from the device and the internet. Selects the node of the Session Manager service

based on user preference, service policy and load balancing.

Zinc: Authentication server responsible for authentication and authorization of the PPN

service where it proxies GAIA auth to Bronze. It is also responsible for converting an

OAuth token and blinded session token into a signed blinded session token.

Bridge-Proxy Backend: Talks to Bridge server to get valid Bridge token and sends it to

the bridge controller.

Bridge-Server: Provides a valid token to the bridge-proxy.

Bridge Controller: Handles requests to program the packet Processor.

Bronze: Closed source authentication server that is responsible for GAIA and G1 service

authorizations which the Zinc talks to and validates from.

G1 Benefits: Tells if the user has a PPN subscription.

GAIA: Responsible for service authorization.

Cloud Spanner DB: Stores session tokens to protect Brass from token replay attacks.

Key Rotator: Generates and rotates blind-signing keys periodically using a cron job.

•

•

•

•

•

•

•

•

•

•

•

8 / 52 – Architecture Review Analysis

Q3-2022 Google PPN architecture

Figure 4: VPN Architecture Overview after migration planned at Q3

Components

The migration introduces Phosphor which replaces Zinc and Bronze; simplifying the client

connection calling a public JSON API into Borg. The other components remain the same as

described above.

Phosphor: New closed source authentication server that will replace Zinc and Bronze in

a future release. It provides access to the public key, authentication, signing and

eligibility remote procedure calls (RPCs).

Attestation Service: A service running within Phosphor instance that handles device

attestation from Android and iOS devices. This service will prevent authentication from

clients that have been modified.

General Conclusions
At the end of the review, NCC Group concluded that the PPN design allows Google to

implement user authentication and authorization for the service in a way that isolates the

user’s Google identity (referred to internally as Gaia ID) from the VPN session network

flows. The use of cryptographic blind signing during authorization is the traffic

anonymization strategy, protecting user’s identity from direct association with the VPN

session token. However, as the privacy threat model considers Google itself as an

adversary in a privileged position, this review also identified several techniques that could

be employed to compromise user anonymity should Google choose or be compelled to

actively violate its privacy claims.

It should be noted that none of these techniques were observed to be part of the product’s

strategy or implementation. Furthermore, the migration planned with the induction of

Phosphor server include a specific component known as Attestation Service with the

specific purpose of refusing authentication if the client application has been manipulated.

Privacy Claim Violation Opportunities

The subsections below enumerate the techniques that could be employed to associate the

VPN traffic with subscriber’s identity.

•

•

9 / 52 – Architecture Review Analysis

Manipulation of the client application

In the future, Google could update the client application to facilitate attribution of traffic to

users. This type of compromise could occur at multiple levels within the application, such

as modification of authentication and authorization flow or reporting the IPSec connection

parameters.

Google implemented a new component called Attestation Service which will be added to

the architecture in the upcoming migration planned to begin in Q3 2022. Attestation

Service is designed to reject requests coming from manipulated client applications.

Although this component is a step in the right direction, in order to prevent undesirable

modifications by third parties, it can be assumed that since internal Google employees are

responsible for these updates to the application; the protection given by Attestation

Service can be bypassed as well. As Google operates the distribution platform (Play Store)

and Attestation Service/Phosphor backend servers, an update of the client application

might be performed to facilitate attribution of traffic to users.

Manipulation of cryptographic parameters

During the initial authorization phase, where the client application sends the blinded VPN

authentication token along with the identity-attributable OAuth token, Google may be able

to mark the blinded token in a way it can later identify by using a unique public key for the

signing operation.

Instrumentation of client device traffic

After an IPSec connection is established, Google could reassociate a tunnel with a Google

identity via generating specific, identifiable network traffic. An example of such a situation

is outlined below, similar techniques are likely possible:

A Google application or website requests a resource via a tailored, unique domain name

The target device requests the IP address of the associated server over DNS

This DNS request is sent over the IPSec tunnel, and decrypted on the Copper server

The Copper server analyzes the unique domain name request and reports it to Google

identity backends

Analysis of network metadata and metrics

Google could correlate networking information such as device source IP address and

connection times to establish an association between an identity and tunneled VPN traffic.

The source IP address of the initial authentication request containing the identity-

attributable OAuth token will be the same as the one on tunnel traffic inbound to the

Copper server. As the initial authentication request and tunnel establishment happen within

a very short time frame, this represents a fairly strong associative metric. IPv6 traffic would

add further confidence to the association, as IPv6 addresses are more likely to be unique

and not shared by multiple devices via NAT.

1.

2.

3.

4.

10 / 52 – Architecture Review Analysis

5 Finding Details – Android Application

Lack of Certificate Pinning

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-GOLE021-WWL

Component Android Application

Category Cryptography

Status Reported

Impact
TLS traffic between the application and the server can be intercepted if a trusted

certificate authority is compromised; or if an attacker is able to install a malicious

certificate on the user’s device and has a privileged network position.

Description
The authentication communications with the PPN service did not implement certificate

pinning. This is a security feature which involves hard-coding the expected TLS certificate

of the server (or a particular certificate authority) into the application, rather than relying

on the certificate chain validation function offered by the underlying platform and the PKI

infrastructure. This mitigates the risk from various active attacks which could be performed

against the application’s TLS connection, and lead to attackers being able to intercept the

application’s communications.

In particular, the use of certificate pinning mitigates the risk associated with one of the

device’s trusted certificate authorities becoming compromised. Although this has happened

on several occasions in recent years2,3 , certification authorities are required to follow

strict security standards, so these kind of attacks are usually performed by state

sponsored or highly profile threat actors.

Recommendation
In order to further secure communications and information handled by the application, it is

recommended to implement certificate pinning to mitigate the risk of interception when a

certification authority is compromised.

Since Android 7.0 (SDK 24), applications can use the Network Security Config4 to define a

list of trusted certificate hashes without manual checking being necessary. Information

about this mechanism is available on Android’s developer documentation5.

For applications which need to support older devices, consider using a library with built-in

support for pinning. For example, Square’s OkHttp library enables pinning with a few lines

of code6.

Consider also pinning intermediate or root certification authorities instead of individual host

certificates, since it reduces the risk associated with certificate handling but still provides

a strong protection, as the attack surface is reduced to the specific CA pinned, and not the

whole PKI infrastructure.

Low

2. DigiNotar - Issuance of fraudulent certificates: https://en.wikipedia.org/wiki/DigiNotar#Issuance_of

_fraudulent_certificates

3. Comodo - Certificate hacking: https://en.wikipedia.org/wiki/Comodo_Group#Certificate_hacking

4. Android Developers - Network Security Configuration: https://developer.android.com/training/

articles/security-config

5. Android Developers - CertificatePinning: https://developer.android.com/training/articles/security-

config#CertificatePinning

6. OkHttp library: https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html

11 / 52 – Finding Details – Android Application

https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/Comodo_Group#Certificate_hacking
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config#CertificatePinning
https://developer.android.com/training/articles/security-config#CertificatePinning
https://square.github.io/okhttp/3.x/okhttp/okhttp3/CertificatePinner.html

In addition, it is considered a good practice to pin more than one certificate, especially

when pinning individual host certificates, to reduce the risk of issues associated to a

specific certificate, such as an expired certificate.

Reproduction Steps
Install a custom system CA in the mobile device (for devices with SDK >= 24), or user

CA (for devices with SDK < 24)

Intercept the application’s SSL traffic to pass through an interception proxy

Verify that TLS traffic can be decrypted

Location
Google One for Android, version 1.157.459421718

1.

2.

3.

12 / 52 – Finding Details – Android Application

Missing Permissions on Android Receivers

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-GOLE021-XA6

Component Android Application

Category Access Controls

Status Reported

Impact
Other android applications installed on the device can interact with the exported services.

However, it is not exploitable due to checks inherited from the tiktok libraries.

Description
The PPN package of the G1 Android Application exported two broadcast receivers that

were not protected by Android permissions. In normal conditions, this would allow other

applications installed on the Android device to interact with these receivers, causing

unwanted behavior. However, the receivers expected protected intents that can only be

sent by system services, and inherited methods from the tiktok libraries that ensured that

the action of the intent matched the ones in the filter, avoiding the exploitation of this

issue.

The following two (2) broadcast receivers were exported in the Android manifest file:

The intent filters declared define that the expected actions are MY_PACKAGE_REPLACED

or BOOT_COMPLETED. Both intents are protected and can only be broadcasted by Android

system components, and therefore other applications can’t send these.

The source code of the components called startPpnIfUserEnabled , which received the

action sent as an argument. However, this function only checked that the action was one of

the expected ones to log an event and would continue the execution even with other

actions.

Info

150

151

152

153

154

155

156

157

<receiver

android:exported="true"

android:name=".PackageReplacedPpnStateCheckReceiver_Receiver">

<intent-filter>

<action android:name="android.intent.action.MY_PACKAGE_REPLACED"/>

</intent-filter>

</receiver>

<receiver

android:exported="true"

android:name=".BootCompletedPpnStateCheckReceiver_Receiver">

<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>

</intent-filter>

</receiver>

if (!Strings.isNullOrEmpty(intentAction)) {

switch (intentAction) {

case "android.intent.action.MY_PACKAGE_REPLACED":

clearcutLogger.logEvent(GoogleOneClientEventType.PPN_START_ON_PACKAGE_REPLACED);

break;

case "android.intent.action.BOOT_COMPLETED":

clearcutLogger.logEvent(GoogleOneClientEventType.PPN_START_ON_BOOT_COMPLETED);

break;

13 / 52 – Finding Details – Android Application

https://developer.android.com/reference/android/content/Intent#ACTION_MY_PACKAGE_REPLACED
https://developer.android.com/reference/android/content/Intent#ACTION_BOOT_COMPLETED

This code would have allowed other applications installed in the device to directly interact

with these receivers by sending explicit intents and other arbitrary actions. However, it was

found that the receivers used the IntentFilterAcledReceiver class of the tiktok library,

that checked if the intent action was expected by the intent filters, raising an exception

when the action did not match with the intent filter.

Recommendation
As the tiktok IntentFilterAcledReceiver class is protecting the receivers from receiving

unwanted intent actions, no action is needed. However, consideration should be given to

implement android permissions for these components.

Location
Android application Manifest

158

159

160

161

162

163

164

default:

break;

}

}

return PropagatedFutures.transformAsync(

ppnStateController.getEligiblePpnAccountId(), this::startPpn, directExecutor());

14 / 52 – Finding Details – Android Application

User Email Address Stored Without

Application-Level Encryption

Overall Risk Informational

Impact Low

Exploitability Low

Finding ID NCC-GOLE021-3JC

Component Android Application

Category Data Exposure

Status Reported

Impact
Unencrypted data is at risk of being exposed in rooted devices.

Description
The application did not use any application-level encryption mechanism to store the user

email address on shared preferences files in the application data folder.

In non-rooted devices, as the android backup was not enabled, other applications could

not access the application data folder due to file system permissions. However, the

application could be run on rooted devices and other applications could ask for permission

to run code as root. With this permission, the contents of any file on the device could be

read.

Recommendation
Consider encrypting files and SharedPreferences using the Jetpack Security library7 where

possible. The Jetpack Security library is provided by the Android team to enable secure,

standardized encryption mechanisms based on the Android Keystore system8, and to ease

the transition for developers.

Reproduction Steps
After enabling the VPN on the device, execute the following command on a device’s root

shell:

cat /data/data/com.google.android.apps.subscriptions.red/shared_prefs/

com.google.android.libraries.privacy.ppn.Settings.xml

Location
com.google.android.libraries.privacy.ppn.internal.PpnSettings

Info

•

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

<map>

<string name="AccountName">userEmail@gmail.com</string>

</map>

7. Android Developers - Work with data more securely: https://developer.android.com/topic/security/

data.md

8. Android Developers - Android Keystore system: https://developer.android.com/training/articles/

keystore

15 / 52 – Finding Details – Android Application

https://developer.android.com/topic/security/data.md
https://developer.android.com/topic/security/data.md
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore

6 Finding Details – Windows Application

Weaknesses in Authentication Process

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-GOLE021-LXX

Component Windows Application

Category Denial of Service

Status Reported

Impact
A local attacker could cause a Denial of Service condition by preventing users from

successfully authenticating to the VPN service and may be able to compromise the OAuth

token.

Description
NCC Group identified that by sending a crafted HTTP request to the open local port used

for authentication, the application closes the port. Once this port is closed, an attacker can

open this TCP port and masquerade as this process. This can allow a local attacker to

obtain the OAuth token of the user attempting to authenticate to the VPN. Additionally,

once the port is closed, a VPN user can no longer authenticate to the VPN service.

If the VPN’s user authenticates by clicking the “Get Started” button, a new port is opened

as the following image shows:

Figure 5: Authentication open port

Once the user is authenticated through the web browser, this connects to the localhost

port to send the auth token:

Figure 6: Authentication successfully

Medium

16 / 52 – Finding Details – Windows Application

By looking into the application’s implementation, it was identified that if the port is reached

with an authentication GET request without parameters (e.g. http://localhost:60374/

auth), the application closes the listening port. Therefore, a malicious application with no

administrator privileges could monitor the open ports, send a request to close them

(causing a denial of service by not allowing the authentication to succeed) and open the

same port again to capture the OAuth token.

Recommendation
Ensure that the authentication code can properly handle unexpected user data.

Alternatively, implement the authentication directly in the Google One VPN application,

which would avoid the use of external applications (such as the web browser) and the need

of opening a local port to receive the OAuth token.

Location
g1_windows/app/auth/lib/auth.dart•

17 / 52 – Finding Details – Windows Application

Lack of Privilege Separation

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-GOLE021-9W7

Component Windows Application

Category Access Controls

Status Fixed

Impact
An attacker that manages to compromise the Google One VPN application’s runtime

process would gain administrative privileges within its host environment.

Description
The Google One VPN application process is required to be run with administration

privileges. In systems based on Microsoft Windows, the user administrator has full access

to the whole system without any restriction.

It is acknowledged that elevated privileges could be required by the Google One VPN

software to manage or filter network packets, raw sockets or operating system

functionalities. However, other elements such as configurations, logs, authentication

communications or even parsers that introduce a large attack surface, can and should be

run with limited privileges and within a sandbox (isolated environment). Under this model,

even if an attacker were to find a vulnerability that could be exploited (for example in the

authentication process), they would still need to identify a way to escape from the sandbox

and escalate their privileges in order to obtain full control over the system.

As shown below, the googleone.exe process was running with high integrity level:

Figure 7: Google One VPN application executed with high integrity level

Recommendation
A new design based on separation of privileges could be implemented in order to reduce

the risk outlined above, although due to the nature of the Google One VPN subsystem and

its current state, designing and implementing this may require a significant amount of time.

In principle, the new design should ensure that actions that require high privileges are

handled separately from those that have lesser requirements (such as parsers,

authentication requests or protocol communications).

Medium

18 / 52 – Finding Details – Windows Application

Lack of Anti-Exploit Protections

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-GOLE021-MDL

Component Windows Application

Category Configuration

Status Reported

Impact
The application may be exposed to memory corruption attacks.

Description
Some of the DLL libraries and binaries that are part of the Google One VPN product did not

make use of all anti-exploit protections that are available in modem Windows

environments. Specifically a platform security feature called ControlFlowGuard 9, which

places restrictions on where and how an application can execute code. The omission of this

protection can make the application and related binaries more vulnerable to exploitation.

The following is the list of configured binary protections for each of the binaries:

Main Path: “C:\Program Files\Google\VPN By Google One\1.0.2000.8”

Low

FileName : C:\Program Files\Google\VPN By Google One\1.0.2000.8\crashpad_handler.exe

ASLR : True

DEP : True

ControlFlowGuard : False

HighentropyVA : True

FileName : C:\Program Files\Google\VPN By Google One\1.0.2000.8\flutter_windows.dll

ASLR : True

DEP : True

ControlFlowGuard : False

HighentropyVA : True

FileName : C:\Program Files\Google\VPN By Google One\1.0.2000.8\googleone.exe

ASLR : True

DEP : True

ControlFlowGuard : False

HighentropyVA : True

FileName : C:\Program Files\Google\VPN By Google One\1.0.2000.8\googtun.dll

ASLR : True

DEP : True

ControlFlowGuard : True

HighentropyVA : True

FileName : C:\Program Files\Google\VPN By Google

One\1.0.2000.9\VpnByGoogleOneService.exe

ASLR : True

DEP : True

ControlFlowGuard : False

HighentropyVA : True

9. Control Flow Guard: https://learn.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

19 / 52 – Finding Details – Windows Application

https://learn.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

Recommendation
It is suggested that the Control Flow Guard mechanism is enabled when compiling the main

application binary. CFG is a security feature that was created to combat memory corruption

vulnerabilities, by placing restrictions on where an application can execute code. CFG

extends previous exploit mitigation technologies such as /GS, DEP and ASLR.

Location
crashpad_handler.exe

flutter_windows.dll

googleone.exe

googtun.dll10

VpnByGoogleOneService.exe

•

•

•

•

•

10. It should be noted that the original assessment included the wintun.dll component. During

retesting this had been updated by Google to googtun.dll. Other than retesting of the original finding,

no other testing was performed on googtun.dll or the component that has included that dll.

20 / 52 – Finding Details – Windows Application

Sensitive Data Sent in the URL Using POST

Method

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-GOLE021-MWM

Component Windows Application

Category Data Exposure

Status Reported

Impact
An attacker could intercept the communications between the thick application and the

server, allowing them the ability to retrieve valid OAuth access tokens.

Description
The desktop client application sent requests to the authentication services located in

oauth2.googleapis.com containing sensitive information in the URL. This exposed

parameters such as client_id , client_secret and refresh_token to be stored in

proxies.

The response also contained the current access token, making it possible to retrieve this

information by reusing the same request while the refresh token is valid:

Low

POST /token?

client_id=874847826917-0rfhjap59nhp8fpun56mm51sshkfjd2f.apps.googleusercontent.com&client_sec

ret=2ndJjPpvzenW2pGSRy-KYddM&grant_type=refresh_token&refresh_token=1%2F%2F032SarWRZ702eCgYIA

RAAGAMSNwF-L9Irklhy1lRgUARdbJdD2xbgHK3R0gVLrvD1kz98Jyrcb5Mf6bdnN2FE0fwHUd6KEs-fwPA HTTP/1.1

Connection: close

Content-Type: application/json; charset=utf-8

Accept: application/json

User-Agent: PPN HttpFetcher

Content-Length: 0

Host: oauth2.googleapis.com

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Expires: Mon, 01 Jan 1990 00:00:00 GMT

Pragma: no-cache

Date: Wed, 31 Aug 2022 13:00:58 GMT

Content-Type: application/json; charset=utf-8

Vary: X-Origin

Vary: Referer

Server: scaffolding on HTTPServer2

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000,h3-Q050=":443"; ma=2592000,h3-Q046=":

443"; ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443"; ma=2592000; v="46,43"

Accept-Ranges: none

Vary: Origin,Accept-Encoding

Connection: close

Content-Length: 487

{

21 / 52 – Finding Details – Windows Application

This information should have been sent using the HTTP POST body. Note that the use of

HTTPS is not an effective mitigation of this risk.

This issue has been rated to a low severity because a blinded_token is needed in order to

perform the next request to the Zinc API.

Recommendation
While the application currently uses a POST request to send data, sensitive information

(such as the client_secret and refresh_token parameters) should only be sent within the

message body of the POST requests and not within the URL. Likewise, on the server-side,

ensure that sensitive data is only accepted within the message body and never from the

URL.

Reproduction Steps
Download and install Burp Suite/MitMProxy

Set the proxy up on 127.0.0.1:8080

Install the Burp/MitMProxy CA as Trusted Root Certification Authority on the local

Windows machine.

Use a third-party application such as ProxyCap to force network traffic through the

proxy.

Run the G1 application and select “Use VPN”.

Intercept HTTPS traffic using the proxy.

Check that the POST request sent the parameters client_secret and refresh_token

in the URL to oauth2.googleapis.com API.

Location
Krypton library: DesktopOAuth::RefreshAccessToken()

[krypton\desktop\desktop_oauth.cc - line 159]

1.

2.

3.

4.

5.

6.

7.

•

"access_token": "ya29.a0AVA9y1sTR9jfAFrFP8__t9lwxVxPwlXg0F99WYy-p-

OZqcZ1P2HiJLQGaxGx1swwWkI59gW37Ekgy6JNrTfIGlJR-

ZsJHj789EcxvuPFKrkVJgdJlsKA4D7z3iiUqvcdlUNfsB2oYqBLPQPZHMZdgl64CdzplQaCgYKATASAQASFQE65dr8K

gfay1CYnCGItkoFmjk5hQ0165",

"expires_in": 3599,

"scope": "https://www.googleapis.com/auth/subscriptions https://www.googleapis.com/auth/

experimentsandconfigs https://www.googleapis.com/auth/peopleapi.readonly https://

www.googleapis.com/auth/cclog",

"token_type": "Bearer"

}

22 / 52 – Finding Details – Windows Application

Lack of Certificate Pinning

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-GOLE021-J2Q

Component Windows Application

Category Cryptography

Status Reported

Impact
TLS traffic between the application and the server can be intercepted if a trusted

certificate authority is compromised; or if an attacker is able to install a malicious

certificate on the user’s laptop and has a privileged network position.

Description
The authentication communications with the PPN service did not implement certificate

pinning. This is a security feature which involves hard-coding the expected TLS certificate

of the server (or a particular certificate authority) into the application, rather than relying

on the certificate chain validation function offered by the underlying platform and the PKI

infrastructure. This mitigates the risk from various active attacks which could be performed

against the application’s TLS connection, and lead to attackers being able to intercept the

application’s communications.

Figure 8: Lack of certificate pinning

In particular, the use of certificate pinning mitigates the risk associated with one of the

device’s trusted certificate authorities becoming compromised. Although this has happened

on several occasions in recent years11,12, certification authorities are required to follow

strict security standards, so these kind of attacks are usually performed by state

sponsored or highly profile threat actors.

Recommendation
In order to further secure communications and information handled by the application, it is

recommended to implement certificate pinning to mitigate the risk of interception when a

certification authority is compromised.

Consider also pinning intermediate or root certification authorities instead of individual host

certificates, since it reduces the risk associated with certificate handling but still provides

strong protection, as the attack surface is reduced to the specific CA pinned, and not the

whole PKI infrastructure.

Low

11. DigiNotar - Issuance of fraudulent certificates: https://en.wikipedia.org/wiki/DigiNotar#Issuance_o

f_fraudulent_certificates

12. Comodo - Certificate hacking: https://en.wikipedia.org/wiki/Comodo_Group#Certificate_hacking

23 / 52 – Finding Details – Windows Application

https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/Comodo_Group#Certificate_hacking

In addition, it is considered a good practice to pin more than one certificate, especially

when pinning individual host certificates, to reduce the risk of issues associated to a

specific certificate, such as an expired certificate.

Reproduction Steps
Install the Burp Proxy CA in the Keychain.

Intercept the application’s SSL traffic to pass through an interception proxy such as Burp

Proxy.

Verify that TLS traffic can be decrypted.

1.

2.

3.

24 / 52 – Finding Details – Windows Application

Application Vulnerable to DLL Injection

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-GOLE021-DDJ

Component Windows Application

Category Configuration

Status Reported

Impact
Under specific circumstances the application could load and process malicious DLL files.

Description
The main executable named googleone.exe was traced and analysed as part of the

assessment, and was found potentially vulnerable to DLL injection as DLLs were loaded in

a default, insecure manner.

When DLLs are loaded without a fully-qualified path name being specified, Windows will

search through a known set of directories. Should an attacker place a file with the same

name as the DLL in one of these directories, and the system finds it before the correct

version, it will be loaded; providing a vector for possible privilege escalation or other

attacks.

It should be noted that when an application needs to load a DLL it will go through the

following order:

The directory from which the application is loaded

C:\Windows\System32

C:\Windows\System

C:\Windows

The current working directory

Directories in the system PATH environment variable

Directories in the user PATH environment variable

The following picture from Process Monitor software shows the analysis of the application

where a number of DLLs being loaded without success by the application when executed:

Info

•

•

•

•

•

•

•

25 / 52 – Finding Details – Windows Application

Figure 9: DLLs loaded upon execution of the main executable

It can be observed that the installer was looking for a number of DLLs placed in the

location where the installer is run with NAME NOT FOUND results, which means that if an

attacker is able to place a malicious file named as IPHLPAPI.DLL (as highlighted in the

above evidence) within the same folder (such as C:\Program Files\Google\VPN By Google

One\1.0.2000.8 in this case) an attacker could perform malicious activities; such as

remotely obtain control over the user’s computer.13 14 15 16

All DLL files were obtained from C:\Windows\System32 , as none of them were missing

(which may cause the file to be obtained from non-privileged folders) it would require

administrator privileges to perform this attack and therefore this finding was rated as

informational.

Recommendation
Several methods exist for ensuring that only the correct DLL is loaded. When using

LoadLibrary , LoadLibraryEx , CreateProcess , or ShellExecute , specify fully-qualified

paths:

Use the LOAD_LIBRARY_SEARCH flag with LoadLibraryEx .•

13. Dynamic-Link Library Security - http://msdn.microsoft.com/en-us/library/windows/desktop/

ff919712(v=vs.85).aspx

14. Dynamic-Link Library Search Order - http://msdn.microsoft.com/en-us/library/windows/desktop/

ms682586(v=vs.85).aspx

15. Dynamic-Link Library Redirection (Windows) - http://msdn.microsoft.com/en-us/library/windows/

desktop/ms682600(v=vs.85).aspx

16. Microsoft Sysinternals Suite - https://docs.microsoft.com/en-us/sysinternals/downloads/

sysinternals-suite

26 / 52 – Finding Details – Windows Application

http://msdn.microsoft.com/en-us/library/windows/desktop/ff919712(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff919712(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682586(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682600(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682600(v=vs.85).aspx
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite
https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

Use the LOAD_LIBRARY_SEARCH flag SetDefaultDllDirectories . This will allow you to

establish the order in which the process will search for DLLs. AddDllDirectory or

SetDllDirectory can be used to alter this list.

Use DLL redirection. This involves creating an empty file called «appname».local, which

should be placed in the application directory, as should the DLLs to be used.

•

•

27 / 52 – Finding Details – Windows Application

Sensitive Information Written to Debug Logs

Overall Risk Informational

Impact Undetermined

Exploitability None

Finding ID NCC-GOLE021-BQL

Component Windows Application

Category Data Exposure

Status Fixed

Impact
An attacker who obtains access to the application’s log files would be able to view service

access information such as authentication and authorization tokens, and sensitive

parameters such as client_secret, client_id, and PKCE codes.

This information could be used to authorize another application to use the VPN service

while the OAuth token remains valid.

Description
Authentication (OAuth) and authorization (blinded) tokens, as well as other sensitive

information were written to debug log files. A suitably-placed attacker or malicious user

would have access to those files, gaining access to the service for an undetermined

amount of time.

An example of sensitive data being written to log files can be seen below, where the

OAuth-related requests are registered:

There are other instances where client information is also stored in debug logs:

Info

I0902 07:52:52.686767 9868 http_fetcher.cc:92] Requesting WinHttpConnect for url: https://

prod.zinc.cloud.cupronickel.goog/auth

I0902 07:52:52.686955 9868 http_fetcher.cc:103] WinHttpConnect successful

I0902 07:52:52.687215 9868 http_fetcher.cc:119] WinHttpOpenRequest successful

I0902 07:52:52.687399 9868 http_fetcher.cc:143] WinHttpAddRequestHeaders successful

I0902 07:52:52.687615 9868 http_fetcher.cc:148] Json_body: {"blinded_token":

["gM6gBYrXF4wZPh0owyfbGLY+qEOaxHK/U5kQPWECQ+IhQIFPL0gl/

UleSD7mNslEmzWvINvWg8udRKfwr5jnU9FDXJRElZhQhHUQu/

TWXzrl5ENHoKxMFMNKwI7bxH6KlGcx6Z2JIlrGcfbNQSMn8ydrJssiA85hv1C+H7Zn2fq4bRMWqLSvA9WBUdSgPqYdz+0

QtKPr4sZL4pYEAViTzEVmUS6B3lQs6/hXRoVU3cAGRb11JNkEIkQQaeVHzB0h0Ndy+Hv/ml/

p7YIL02g8EWVia2Zeh6HBI9O1eb6aMOfUpGActtzgAtuPUIRHKF5kDTsxVOdFVIjPRCABtXSzZQ=="],"oauth_token"

:"ya29.a0AVA9y1tTVcH_lsjZo4kRB79M6nrsZqVf2sYPlgFna19RSkYnK1egb0BmRZkhPwgMzQ87tZYhmbsz2vsd2xxG

_O-REdOEs12gMB6tvLK3-_L-1eKxSc3DnWhJb6xKLL4bXtgu1vNHI7-

U91yw5qS7RdG39cAuwwaCgYKATASAQASFQE65dr8qmcgRYsGHNgUyI8ipRNEXQ0165","public_key_hash":"xy0GxT

H9BnDrPD/OEIG3+UErjPFBlSe4q5Rr5Dbx5bw=","service_type":"g1"}

Length:681

I0902 07:52:52.887660 9868 http_fetcher.cc:157] WinHttpSendRequest successful

I0902 07:53:09.709673 1816 network_monitor.cc:493] The best network interface has not

changed.

I0902 07:56:55.740545 1508 http_fetcher.cc:51] Calling HttpFetcher postJson Windows method

to https://oauth2.googleapis.com/token?

client_id=874847826917-0rfhjap59nhp8fpun56mm51sshkfjd2f.apps.googleusercontent.com&client_sec

ret=2ndJjPpvzenW2pGSRy-

KYddM&grant_type=refresh_token&refresh_token=1%2F%2F032SarWRZ702eCgYIARAAGAMSNwF-

L9Irklhy1lRgUARdbJdD2xbgHK3R0gVLrvD1kz98Jyrcb5Mf6bdnN2FE0fwHUd6KEs-fwPA

I0902 07:56:55.741139 1508 http_fetcher.cc:77] WinHttpCrackUrl successful

28 / 52 – Finding Details – Windows Application

The severity for this issue was set to informational because this was only observed in

debug logs.

Recommendation
Review the discovered instances and ensure that sensitive information is suitably stripped

before being committed to log files.

Investigate whether static analysis could be utilized to identify new instances of this class

of issue during development.

Reproduction Steps
Install and run the Google One application normally (including the VPN service).

Navigate to the debug log folder:

(C:\Users\<USER>\AppData\Local\Google\GoogleOne\debug\).

Search sensitive information, such as “oAuth” or “token” in all files.

Location
C:\Users\<USER>\AppData\Local\Google\GoogleOne\debug\ppn_debug_20220902_075251.

9400897.txt

1.

2.

•

3.

29 / 52 – Finding Details – Windows Application

Application Binaries Not Obfuscated

Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-GOLE021-GUM

Component Windows Application

Category Configuration

Status Reported

Impact
The lack of code obfuscation means that it is relatively easy to determine the structure and

functionality of the application, and to analyse the binary for suitable locations to modify

the application behavior.

Description
Application binaries and libraries were not obfuscated by using an executable binary

obfuscator, as shown in the image below.

Figure 10: Application binaries are not obfuscated

Recommendation
Consider using a binary or source-level obfuscation system to obfuscate the application.

Additionally, commercially available binary obfuscation systems may also provide runtime

protection of memory contents.

However, it is worth noting that all binary obfuscation can be defeated, and only serves to

deter casual attackers and slow down skilled and motivated attackers. Additionally, due to

the way binary executable obfuscation works, using it may remove platform-level

mitigations and thus weaken the authentication system’s security posture in other ways. It

is worth noting that code signing will typically be mutually exclusive with binary

obfuscation, requiring a business decision to be made as to whether to make the

authentication system more difficult to reverse engineer or more difficult to modify.

Info

30 / 52 – Finding Details – Windows Application

Binaries Contained Debug Information

Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-GOLE021-UEX

Component Windows Application

Category Data Exposure

Status Reported

Impact
While not a direct security issue, the presence of this information in the binaries makes

reverse engineering efforts much simpler. Reverse engineering all or part of a binary is

often a key step in producing a reliable exploit.

Description
Application binaries and DLLs contained debug information. Evidence of the issue can be

seen in the screenshot below:

Figure 11: Binaries contained debug information

Recommendation
Software build rules should be modified to remove debug symbols in production releases.

Debug strings should be out of the production code. If this is a concern for diagnosing field

returns, then consider replacing them with macros that revert to simple file and line number

prints (for example using FILE and LINE macros). Post-processing of the now obfuscated

logs can then be used to recover the original print statements for debugging purposes.

Failure messages should be simplified so as not to reveal the detailed operation of the

program. Avoid using function names and consider simple error numbers.

Location
Windows Application

Info

31 / 52 – Finding Details – Windows Application

7 Finding Details – iOS Application

Application Disables App Transport Security

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-GOLE021-VPB

Component iOS Application

Category Cryptography

Status Reported

Impact
When ATS is disabled by the application, an attacker is more easily able to intercept HTTP

traffic between the mobile application and back-end services.

Description
As of iOS version 9, a new App Transport Security (ATS) feature was added that can

enhance the security afforded to data in transit. When ATS is fully enabled, a mobile

application’s HTTP connections must use HTTPS and meet certain minimum certificate,

protocol, and cipher suite criteria. In iOS this feature is enabled by default, but was found

to be explicitly disabled for the Google One application.

This is demonstrated by observing that within the application’s plist file, the NSAllowsArb

itraryLoads flag was set to true , as shown below:

<prod.app/Info.plist>

Recommendation
The NSAllowsArbitraryLoads flag should be explicitly set to false .17

Reproduction Steps
Run objection framework18:

$ objection -g com.google.one explore

com.google.one on (iPhone: 14.7.1) [usb] # ios plist cat Info.plist

Search for NSAppTransportSecurity, check that NSAllowsArbitraryLoads is set to = 1.

Location
ios/Info.plist

Low

1.

2.

3.

<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>

</dict>

17. App Transport Security: https://developer.apple.com/library/archive/documentation/General/

Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-

SW33,https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyRef

erence/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW34

18. Objection https://github.com/sensepost/objection.

32 / 52 – Finding Details – iOS Application

https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW33
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW34
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW34
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW34
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW34
https://github.com/sensepost/objection

Mobile Application Data Storage Leaks GAIA ID

in Log Files

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-GOLE021-XUH

Component iOS Application

Category Data Exposure

Status Fixed

Impact
By knowing a user’s GAIA ID, an attacker can search it in other Google services, and find

out more details about the user.

Description
Potentially sensitive data such as the GAIA ID was observed being logged by the

application. Please note that on modern devices, sandboxing prevents apps from reading

the logs of other apps on the device, limiting the exploitability of this issue.

Historically, mobile operating systems provided relatively weak protections against attacks

across different mobile applications, and attacks that assume physical access to a locked

device. All recent versions of iOS now guarantee strong sandboxing and device-level

encryption which, in most cases, completely eliminates the impact of those attack vectors

under a typical threat model. For most applications, no additional protections are needed

beyond making use of the recommended data storage functionality provided by the

operating system. If an attacker gains access to a user’s unlocked mobile device, they may

be able to read sensitive application data that would not otherwise be accessible.

The iOS application stored the user’s GAIA ID in log files in the device, as shown below:

Figure 12: iOS current logs

Recommendation
On iOS, all application data can generally be stored using the built-in Data Protection

classes19 which the OS provides for automatic file-based encryption. Critically-sensitive

data such as passwords can be stored in the Keychain20 using Keychain Item Attributes21

to restrict access to the secret.

Low

33 / 52 – Finding Details – iOS Application

Reproduction Steps
$ sftp root@IP_jailbreak_device

$ cd /var/mobile/Containers/Data/Application/APP_ID/Caches/

com.google.one.logsReport/

Download current.log file stored locally in the device

Location
/var/mobile/Containers/Data/Application/APP_ID/Caches/com.google.one.logsReport/

current.log

1.

2.

3.

19. Apple Platform Security - Data Protection classes: https://support.apple.com/guide/security/data-

protection-classes-secb010e978a/1/web/1

20. Apple Developer Documentation - Keychain Services: https://developer.apple.com/

documentation/security/keychain_services

21. Apple Developer Documentation - Item Attribute Keys and Values: https://developer.apple.com/

documentation/security/keychain_services/keychain_items/item_attribute_keys_and_values

34 / 52 – Finding Details – iOS Application

https://support.apple.com/guide/security/data-protection-classes-secb010e978a/1/web/1
https://support.apple.com/guide/security/data-protection-classes-secb010e978a/1/web/1
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/keychain_services/keychain_items/item_attribute_keys_and_values
https://developer.apple.com/documentation/security/keychain_services/keychain_items/item_attribute_keys_and_values
https://developer.apple.com/documentation/security/keychain_services/keychain_items/item_attribute_keys_and_values

Mobile Application Backgrounding Leaks

Sensitive Info in Screenshots

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-GOLE021-RPK

Component iOS Application

Category Data Exposure

Status Reported

Impact
The application did not hide screenshots shown in the list of recent applications. With

physical access to an unlocked device, an attacker may be able to see information in these

screenshots.

Description
When an iOS application is closed (or backgrounded), iOS takes a snapshot of the current

screen content and stores it in an encrypted, sandboxed file on the device. Information on

the screen at the time of closing is therefore disclosed through this screenshot and can be

read by an attacker who has physical access to the unlocked device.

Some snapshots of the current screen were stored locally in the file path /Library/

SplashBoard/Snapshot/sceneID/com.google.one-default/ on the device, as shown below:

Figure 13: Mobile Application Backgrounding Leaks Info in Screenshots

Recommendation
On iOS, there are three unique events that need to be handled (in iOS 10+):

func applicationWillResignActive(UIApplication) – Triggered when the app is about

to become inactive (for example, on a double-tap of the home button to bring up the

task switcher)

func applicationDidEnterBackground(UIApplication) – Triggered when the app

enters the background state (for example, when the home button is pressed)

Info

1.

2.

35 / 52 – Finding Details – iOS Application

func applicationProtectedDataWillBecomeUnavailable(UIApplication) – Triggered

when protected files become unavailable (for example, when the screen lock button is

pressed)

Event handlers should be used for all three events in order to hide sensitive information

from being captured in screenshots when the application makes various state transitions.

More information can be found on these events in Apple’s documentation on the UIApplica

tionDelegate 22 object.

Reproduction Steps
$ sftp root@IP_jailbreak_device

$ cd /var/mobile/Containers/Data/Application/APP_ID/Library/SplashBoard/Snapshot/

sceneID/com.google.one-default/

Download the snapshots stored locally in the device

Location
/var/mobile/Containers/Data/Application/APP_ID/Library/SplashBoard/Snapshot/

sceneID/com.google.one-default/

3.

1.

2.

3.

22. Apple Developer Documentation - UIApplicationDelegate: https://developer.apple.com/

documentation/uikit/uiapplicationdelegate

36 / 52 – Finding Details – iOS Application

https://developer.apple.com/documentation/uikit/uiapplicationdelegate
https://developer.apple.com/documentation/uikit/uiapplicationdelegate
https://developer.apple.com/documentation/uikit/uiapplicationdelegate

8 Finding Details – macOS Application

Weaknesses in Authentication Process

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-GOLE021-G96

Component macOS Application

Category Denial of Service

Status Reported

Impact
A local attacker could cause a Denial of Service condition by preventing users from

successfully authenticating to the VPN service and may be able to compromise the OAuth

token.

Description
NCC Group identified that by sending a crafted HTTP request to the open local port used

for authentication, the application closes the port. Once this port is closed, an attacker can

open this TCP port and masquerade as this process. This can allow a local attacker to

obtain the OAuth token of the user attempting to authenticate to the VPN. Additionally,

once the port is closed, a VPN user can no longer authenticate to the VPN service.

The following image shows a new port being opened after a user authenticates to the VPN

service.

Figure 14: Authentication open port

Once the user is authenticated through the web browser, it connects to the localhost port

to send the authentication token:

Medium

37 / 52 – Finding Details – macOS Application

Figure 15: Authentication successfully

By looking into the application’s implementation, NCC Group identified that if the port is

reached with an authentication GET request without parameters (e.g. http://localhost:

58233/auth), the application closes the listening port. Therefore, a malicious application

without administrator privileges could monitor the open ports, send a request to close

them (causing a denial of service by not allowing the authentication to succeed) and then

open the same port again to capture the OAuth token.

Recommendation
Ensure that the authentication code can properly handle unexpected user data.

Alternatively, implement the authentication directly in the Google One VPN application,

which would avoid the use of external applications (such as the web browser) and the need

of opening a local port to receive the OAuth token.

Location
g1_macos/app/auth/lib/auth.dart•

38 / 52 – Finding Details – macOS Application

Sensitive Data Sent in the URL Using POST

Method

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-GOLE021-6NH

Component macOS Application

Category Data Exposure

Status Reported

Impact
An attacker could intercept the communications between the thick application and the

server, allowing them the ability to retrieve valid OAuth access tokens.

Description
Authentication requests to the OAuth2 API oauth2.googleapis.com were submitted in the

URL using the HTTP POST method. This resulted in secrets such as client_secret and

refresh_token being sent as plaintext in the URL. These secrets should be sent in the

body of the POST request instead of the URL.

This meant that secrets could be stored on any proxy servers between the thick application

and the server.

Note that the use of HTTPS is not an effective mitigation of this risk.

This issue has been rated to a low severity because a blinded_token is needed in order to

perform the next request to the Zinc API.

Recommendation
While the application currently uses a POST request to send data, sensitive information

(such as the client_secret and refresh_token parameters) should only be sent within the

message body of the POST requests and not within the URL. Likewise, on the server-side,

ensure that sensitive data is only accepted within the message body and never from the

URL.

Reproduction Steps
Download and install Burp Suite

Set the proxy up on 127.0.0.1:8080

Install the Burp CA as Trusted Root on the Keychain

Go to: to macOS System Preferences -> Network -> Proxies and configured HTTP

HTTPS to proxy through 127.0.0.1:8080

Run the G1 application and “Use VPN”

Intercept HTTPS traffic using Burp Proxy

Check that the POST request sent the parameters client_secret and refresh_token

in the URL to oauth2.googleapis.com API.

Request:

Low

1.

2.

3.

4.

5.

6.

7.

8.

POST /token?

client_id=874847826917-0rfhjap59nhp8fpun56mm51sshkfjd2f.apps.googleusercontent.com&client_sec

39 / 52 – Finding Details – macOS Application

Response:

Location
macOS Application•

ret=2ndS...YddM&grant_type=refresh_token&refresh_token=1%2F%2F03eNeAznG2d..XOKuZmF51No956DVFH

w-ciY5WfHZRGDK_Ug0HfoyC4enPrC9J8 HTTP/1.1

Host: oauth2.googleapis.com

Accept: */*

Content-Type: application/json

Content-Length: 0

User-Agent: com.google.one.NetworkExtension/1.0.081013.0 MacOSX/12.5.1

Accept-Language: en-GB,en;q=0.9

Accept-Encoding: gzip, deflate

Connection: close

HTTP/2 200 OK

Date: Mon, 29 Aug 2022 10:24:32 GMT

Pragma: no-cache

Expires: Mon, 01 Jan 1990 00:00:00 GMT

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Content-Type: application/json; charset=utf-8

Vary: Origin

Vary: X-Origin

Vary: Referer

Server: scaffolding on HTTPServer2

Content-Length: 487

X-Xss-Protection: 0

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000,h3-Q050=":443"; ma=2592000,h3-Q046=":

443"; ma=2592000,h3-Q043=":443"; ma=2592000,quic=":443"; ma=2592000; v="46,43"

{

"access_token": "ya29.a0AVA9y1v-cGns6vS0jaOaPTS3CxbfI9...npez0-

bStpQ3vkewaCgYKATASAQASFQE65dr8GVGwnu4qDJj8a8jiVHFy1g0165",

"expires_in": 3599,

"scope": "https://www.googleapis.com/auth/experimentsandconfigs https://www.googleapis.com/

auth/peopleapi.readonly https://www.googleapis.com/auth/cclog https://www.googleapis.com/

auth/subscriptions",

"token_type": "Bearer"

}

40 / 52 – Finding Details – macOS Application

Application Vulnerable to DYLIB Hijacking

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-GOLE021-GMU

Component macOS Application

Category Configuration

Status Reported

Impact
Under specific circumstances the application could load and process malicious DYLIB files.

Description
The main executable named VPN_by_Google_One was traced and analyzed as part of the

assessment, and was found potentially vulnerable to DYLIB injection as the DYLIB files

were loaded in a default, insecure manner.

The following scenarios could be a vector for possible privilege escalation or other attacks:

LC_LOAD_WEAK_DYLIB that reference a non-existent DYLIB.

LC_LOAD*_DYLIB with @rpath’d import and multiple LC_RPATHs with the run-path

dependent library not found in a primary run-path search path.

The following command shows all the DYLIBs being loaded by the application when

executed:23

A file search shows that the DYLIB was not found in the system:

If weak linking is used, such as the LC_LOAD_WEAK_DYLIB function, an application will still

execute even if an expected DYLIB is not present. Weak linking enables developers to run

an application on multiple macOS versions as new APIs are added.24

The following picture from TaskExplorer 25 software shows the analysis of the application

where a number of DYLIBs being loaded without success by the application when

executed:

Low

•

•

$ otool -l /Applications/VPN_by_Google_One.app/Contents/MacOS/VPN_by_Google_One

...

Load command 20

cmd LC_LOAD_WEAK_DYLIB

cmdsize 112

name /System/Library/Frameworks/SystemExtensions.framework/Versions/A/

SystemExtensions (offset 24)

time stamp 2 Thu Jan 1 01:00:02 1970

current version 1.0.0

compatibility version 1.0.0

...

$ ls /System/Library/Frameworks/SystemExtensions.framework/Versions/A/SystemExtensions

ls: /System/Library/Frameworks/SystemExtensions.framework/Versions/A/SystemExtensions: No such

file or directory

23. Dylib-hijacking-os-x

24. MITRE Dylib Hijacking

25. TaskExplorer

41 / 52 – Finding Details – macOS Application

https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x
https://attack.mitre.org/techniques/T1574/004/
https://objective-see.org/products/taskexplorer.html

Figure 16: TaskExplorer

Recommendation
Set directory access controls to prevent file writes to the search paths for applications,

both in the folders where applications are run from and the standard DYLIB folders.26

Monitor for dynamic libraries being loaded. Run path dependent libraries can include

LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, and LC_RPATH. Other special keywords

recognized by the macOS loader are @rpath, @loader_path, and @executable_path.27

These loader instructions can be examined for individual binaries or frameworks using the

otool -l command. Objective-See’s Dylib Hijacking Scanner can be used to identify

applications vulnerable to DYLIB hijacking

Location
VPN_by_Google_One.app•

26. MITTRE Dylib Hijacking

27. Run-Path Dependent Libraries

42 / 52 – Finding Details – macOS Application

https://attack.mitre.org/techniques/T1574/004/
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/RunpathDependentLibraries.html

Lack of Certificate Pinning

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-GOLE021-KE3

Component macOS Application

Category Cryptography

Status Reported

Impact
TLS traffic between the application and the server can be intercepted if a trusted

certificate authority is compromised; or if an attacker is able to install a malicious

certificate on the user’s laptop and has a privileged network position.

Description
The authentication communications with the PPN service did not implement certificate

pinning. This is a security feature which involves hard-coding the expected TLS certificate

of the server (or a particular certificate authority) into the application, rather than relying

on the certificate chain validation function offered by the underlying platform and the PKI

infrastructure. This mitigates the risk from various active attacks which could be performed

against the application’s TLS connection, and lead to attackers being able to intercept the

application’s communications.

In particular, the use of certificate pinning mitigates the risk associated with one of the

device’s trusted certificate authorities becoming compromised. Although this has happened

on several occasions in recent years28,29 , certification authorities are required to follow

strict security standards, so these kind of attacks are usually performed by state

sponsored or highly profile threat actors.

Recommendation
In order to further secure communications and information handled by the application, it is

recommended to implement certificate pinning to mitigate the risk of interception when a

certification authority is compromised.

Consider also pinning intermediate or root certification authorities instead of individual host

certificates, since it reduces the risk associated with certificate handling but still provides

strong protection, as the attack surface is reduced to the specific CA pinned, and not the

whole PKI infrastructure.

In addition, it is considered a good practice to pin more than one certificate, especially

when pinning individual host certificates, to reduce the risk of issues associated to a

specific certificate, such as an expired certificate.

Reproduction Steps
Install the Burp Proxy CA in the Keychain

Intercept the application’s SSL traffic to pass through an interception proxy such as Burp

Proxy

Verify that TLS traffic can be decrypted

Low

1.

2.

3.

28. DigiNotar - Issuance of fraudulent certificates: https://en.wikipedia.org/wiki/DigiNotar#Issuance_

of_fraudulent_certificates

29. Comodo - Certificate hacking: https://en.wikipedia.org/wiki/Comodo_Group#Certificate_hacking

43 / 52 – Finding Details – macOS Application

https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/Comodo_Group#Certificate_hacking

Location
VPN_by_Google_One.app•

44 / 52 – Finding Details – macOS Application

Binaries Contained Debug Information

Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-GOLE021-B9L

Component macOS Application

Category Data Exposure

Status Not Fixed

Impact
While not a direct security issue, the presence of this information in the binaries makes

reverse engineering efforts much simpler. Reverse engineering all or part of a binary is

often a key step in producing a reliable exploit.

Description
Application binaries and DLLs contained debug information. Evidence of the issue can be

seen in the screenshot below:

Figure 17: Binary contained debug information

Recommendation
Software build rules should be modified to remove debug symbols in production releases.

Debug strings should be out of the production code. Post-processing of the now

obfuscated logs can then be used to recover the original print statements for debugging

purposes. Failure messages should be simplified so as not to reveal the detailed operation

of the program. Avoid using function names and consider simple error numbers.

Reproduction Steps
Open VPN_by_Google_One binary using a Reverse Engineering framework

Analyse the VPN_by_Google_One binary

Search for strings like “.cc”

Info

1.

2.

3.

45 / 52 – Finding Details – macOS Application

Location
VPN_by_Google_One.app/Contents/MacOS/VPN_by_Google_One

Retest Results
2022-10-21 – Not Fixed

No changes were seen in the new binaries tested, all the information shown in the evidence

above was still present.

•

46 / 52 – Finding Details – macOS Application

Application Binaries Not Obfuscated

Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-GOLE021-DRA

Component macOS Application

Category Configuration

Status Partially Fixed

Impact
The lack of code obfuscation means that it is relatively easy to determine the structure and

functionality of the application, and to analyse the binary for suitable locations to modify

the application behavior.

Description
Application binaries and libraries were not obfuscated by using an executable binary

obfuscator, as shown in the image below.

Figure 18: No obfuscation

Recommendation
Consider using a binary or source-level obfuscation system to obfuscate the application.

Additionally, commercially available binary obfuscation systems may also provide runtime

protection of memory contents.

However, it is worth noting that all binary obfuscation can be defeated, and only serves to

deter casual attackers and slow down skilled and motivated attackers. Additionally, due to

the way binary executable obfuscation works, using it may remove platform-level

mitigations and thus weaken the authentication system’s security posture in other ways. It

is worth noting that code signing will typically be mutually exclusive with binary

obfuscation, requiring a business decision to be made as to whether to make the

authentication system more difficult to reverse engineer or more difficult to modify.

Info

47 / 52 – Finding Details – macOS Application

Location
VPN_by_Google_One.app/Contents/MacOS/VPN_by_Google_One

Retest Results
2022-10-21 – Partially Fixed

The VPN by Google One binary shown that some of the function names were obfuscated,

but a number of them were still visible:

•

+[NSFileHandle(GTMFileHandleLogWriter)_fileHandleForLoggingAtPath:mode:]

+[NSURL(AppGroupContainer)_applicationSupportFileDirectory]

+[NSURL(AppGroupContainer)_googleOneAppGroupContainer]

+[NSURL(AppGroupContainer)_googleOneAppGroupName]

+[NSURL(AppGroupContainer)_googleOneCrashpadDirectoryPath]

+[NSURL(AppGroupContainer)_googleOneNetworkExtensionDataDirectory]

+[NSURL(AppGroupContainer)_googleOnePPNEnabledDatesFilePath]

+[NSURL(AppGroupContainer)_googleOnePPNLogDirectory]

+[NSURL(AppGroupContainer)_googleOnePPNLogPath]

+[NSURL(AppGroupContainer)_googleOnePPNMacOSLogPath]

+[NSURL(AppGroupContainer)_googleOnePPNSessionFilePath]

+[NSURL(AppGroupContainer)_googleOnePPNStatusDataFilePath]

+[NSURL(AppGroupContainer)_googleOnePPNToggleStatusFilePath]

+[NSURL(AppGroupContainer)_googleOnePPNVPNSettingsFilePath]

48 / 52 – Finding Details – macOS Application

9 Finding Details – vpn-libraries

Use of Deprecated and Internal Functions

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-GOLE021-AJK

Component vpn-libraries

Category Configuration

Status Reported

Impact
Use of internal library functions could result in security checks being modified or rendered

ineffective if the library is modified over time.

Description
The SetBlindingPublicKey function uses Tink functions such as ValidateRsaModulusSize ,

ValidateRsaPublicExponent and BoringSslRsaFromRsaPublicKey to validate and set

public key properties. While the validation is correct, these functions are intended to be

internal to the Tink library and are not for external consumption. As an example ValidateRs

aPublicExponent contains the following comments in subtle_util_boringssl.h :

Using internal functions should be avoided since such functions may disappear at any time,

leading to application crashes or public key validation being rendered ineffective.

Recommendation
These Tink functions should not be called directly and it is recommended to transition to

publicly maintained validation or, include these checks in the VPN library code directly.

Location
/VPN Library Code/krypton/crypto/session_crypto.cc

Low

ABSL_DEPRECATED("Use of this function is dicouraged outside Tink.")

static inline crypto::tink::util::Status ValidateRsaPublicExponent(

absl::string_view exponent) {

return internal::ValidateRsaPublicExponent(exponent);

}

49 / 52 – Finding Details – vpn-libraries

https://github.com/google/tink/blob/master/cc/subtle/subtle_util_boringssl.h
https://github.com/google/tink/blob/master/cc/subtle/subtle_util_boringssl.h

10 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium

50 / 52 – Finding Field Definitions

Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

51 / 52 – Finding Field Definitions

11 Client Provided Documentation

The following design documentation was provided to NCC Group by Google sharing

documents with a Partner Google account set for this project:

Debug logs details and monitoring procedures: Debug and Production_Monitoring

Guide to instance deployment and rollback in production and locally: Deployment and

Rollback

Krypton and Xenon in depth architecture: Krypton and Xenon Details

Migration plan to a new authentication infrastructure: Phosphor Migration Plan.docx

Phosphor in depth architecture: Phosphor_ PPN ServiceType mux.docx

Design definition for the authentication in the Borg internal network: PPN Auth on Borg_

Detailed Design.docx

Authentication design and integration with Google One services: PPN Authentication

and G1 Integration.docx

Key rotation procedure in depth: PPN Key Rotation - Markdown Export.docx

Attestation Service definition and expectations: PPN Mithril.docx

Resources for newcomers and general architecture: PPN Onboarding Resources and

Architecture.docx

Key rotation overview and glossary: PPN Signing Key Rotation, Glossary, DNS and

APN Sections.docx

Local setup for Windows and MacOS tests: PPN Windows and MacOS Setup and Marconi

Process.docx

Proposal to implement a new authentication method: Proposal_ PPN Borg

Authentication.docx

Public Google PPN VPN whitepaper:

white_paper_4f995ab5d7c7edc3d3f14f2e0593f790.pdf

How is enforced the quota during PPN authentication to prevent service abuse: PPN

per-user Quota.docx

The following documents were used as working documents for writing questions and

answers:

NCC Questions-27-7-2022

NCC Questions-28-7-2022

NCC Questions-29-7-2022

NCC Questions-2-8-2022

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

52 / 52 – Client Provided Documentation

	Title Page
	Executive Summary
	Synopsis
	Scope
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Android Application
	Windows Application
	iOS Application
	macOS Application
	vpn-libraries

	Architecture Review Analysis
	Architecture/Platform Description
	General Conclusions

	Finding Details – Android Application
	Lack of Certificate Pinning
	Missing Permissions on Android Receivers
	User Email Address Stored Without Application-Level Encryption

	Finding Details – Windows Application
	Weaknesses in Authentication Process
	Lack of Privilege Separation
	Lack of Anti-Exploit Protections
	Sensitive Data Sent in the URL Using POST Method
	Lack of Certificate Pinning
	Application Vulnerable to DLL Injection
	Sensitive Information Written to Debug Logs
	Application Binaries Not Obfuscated
	Binaries Contained Debug Information

	Finding Details – iOS Application
	Application Disables App Transport Security
	Mobile Application Data Storage Leaks GAIA ID in Log Files
	Mobile Application Backgrounding Leaks Sensitive Info in Screenshots

	Finding Details – macOS Application
	Weaknesses in Authentication Process
	Sensitive Data Sent in the URL Using POST Method
	Application Vulnerable to DYLIB Hijacking
	Lack of Certificate Pinning
	Binaries Contained Debug Information
	Application Binaries Not Obfuscated

	Finding Details – vpn-libraries
	Use of Deprecated and Internal Functions

	Finding Field Definitions
	Risk Scale
	Category

	Client Provided Documentation

