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1 Executive Summary
Synopsis
In May 2024, Meta engaged NCC Group’s Cryptography Services practice to perform a
cryptography security assessment of selected aspects of the WhatsApp Identity Proof
Linked Storage (IPLS) protocol implementation. IPLS underpins the WhatsApp Contacts
solution, which aims to store a WhatsApp user’s in-app contacts on WhatsApp servers in a
privacy-friendly way. WhatsApp servers do not have visibility into the content of a user’s
contact metadata. The user can later retrieve these contacts from WhatsApp servers to a
new device where they re-register their WhatsApp account using the same phone number.
The IPLS protocol makes use of Hardware Security Modules (HSMs) and an Auditable Key
Directory (AKD).

This program of work consisted of two main phases:

Phase 1: 20 person-days dedicated to protocol design review.

Phase 2: implementation security assessment, further broken down into three stages: 
Stage 1: 30 person-days focusing on HSM Secure Execution Environment (SEE) code,
iOS client code, HSM scripts, usage of HSM administration cards, and retesting of
Phase 1 design review fixes.

Stage 2: 15 person-days focusing on Android client code review, gap areas from the
HSM SEE code review, HSM scripts, and usage of HSM administration cards.

Stage 3: 5 person-days dedicated to retesting implementation fixes, and public report
creation and review.

Phase 1 was delivered in May, and Phase 2 in September. The program was delivered
remotely by five consultants, with a total effort of 70 person-days.

Scope
NCC Group’s evaluation included a review of the protocol specification from a security and
privacy perspective, and an implementation review of the following Identity Proof Linked
Storage components:

Secure Execution Engine implementation of IPLS for the Marvell and Entrust HSMs.

iOS and Android clients IPLS implementation.

HSM Configuration and Deployment (Marvell).

Middle-tier protocol implementation.

The WhatsApp team provided design documentation, threat model, and code pointers for all
the above components.

Limitations
IPLS uses WhatsApp’s Key Transparency system, based on an Auditable Key Directory, for
authentication of users via their WhatsApp identity keys. Any transparency system has
inherent limitations due to its reliance on trust. The aim of a transparency system is not to
make all attacks infeasible, but to make them sufficiently visible to users and auditors and,
where possible, to minimize the amount of trust necessary.

For example, account take-over (ATO) through, e.g., SIM card theft, SIM swapping, or social
engineering to obtain an SMS OTP, presents a risk to the WhatsApp Contacts solution during
(re-)registration with the Auditable Key Directory. Evidence of such an attack would be
visible in the AKD. Further, it is understood that WhatsApp is aware of this risk, and has
controls in place to mitigate it. These controls were not in scope for this review, therefore
NCC Group did not attempt to identify issues related to these types of threats.
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WhatsApp Identity Proof Linked Storage has a critical dependency on an attestation service
provided by Cloudflare. This service was not in scope for this program, and thus was not
reviewed. Nevertheless, NCC Group provided some analysis of this dependency as
exercised by the HSM implementation in section Protocol Specification Review.

Key Findings
During the assessment, NCC Group uncovered several issues. The most notable findings
were:

HSM-Stored Keys Remain Accessible to the Host for Cryptographic Operations Despite
Locking: a compromised infrastructure could impersonate Marvell HSMs, decrypt users’
secret key material, and from that obtain their private contact metadata.

HSM Backup Files Require Secure Deletion: the backup files employed for deployment of
a Marvell HSM fleet may be used later on to extract the fleet secret keys and
compromise all operations, if they are not securely deleted.

Rogue Namespaces Allow Split-View Attack: clients’ secrets could be retrieved by a
compromised WhatsApp infrastructure (by malicious or compelled insiders, or other
parties), with less observability.

Potential Mirror Attacks on Symmetric Encryption: a hostile server could send back the
client payload to the client instead of the actual response payload from the HSM.

Potential Nonce Reuse in Encryption of HSM Session and Client Secret Data: This could
allow an attacker to subvert the WhatsApp Contacts security protocol to ultimately
obtain contact information.

Clients Can Provide Valid Signature Without Knowledge of HSM Challenge Value:
Attackers may be able to impersonate legitimate clients, force the re-use of HSM
ephemeral key material and bypass some steps of the protocol.

Retest Status
The WhatsApp team implemented a number of changes to address NCC Group’s findings.
NCC Group retested these changes at the end of September 2024. Upon completion of the
assessment, 13 findings were reported to WhatsApp, along with recommendations. After
retesting, and before the solution was rolled out to users, all 13 findings were found to be
fully fixed.

Other Remarks
All findings are listed in the Table of Findings alongside with their retest status. NCC Group
provides a diagram illustrating its understanding of the architecture of WhatsApp Contacts in
the WhatsApp Contacts Cryptographic Architecture section. NCC Group also included
section Protocol Specification Review, which details Phase 1’s notes and recommendations
regarding the Identity Proof Linked Storage (IPLS) protocol as is described in the ipls.md
document at commit 56f456e  (version 1.1). The consultants also captured notes and
observations that did not warrant security findings in section Implementation Review
Engagement Notes, including the aforementioned considerations around the external third-
party attestation service.
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2 Dashboard
Target Data Engagement Data
Name WhatsApp Contacts Type Security Protocol Design

And Implementation Review

Type Protocol Specification,
Software Service
Implementation

Method Code-assisted inspection

Platforms C, Erlang, Java, Kotlin,
Objective-C, Rust, Swift

Dates 2024-05-13 to 2024-09-25

Environment Local Consultants 5

Level of Effort 70 person-days, including
retesting

Targets
Protocol specification Design documents, including an outline of the IPLS protocol

and a threat model.

Secure Execution Engine
(SEE) program

Runs on Entrust and Marvell HSM backends.

HSM configuration and
deployment

WhatsApp Contacts design documents, and management
scripts for Entrust and Marvell HSMs.

Chatd module Middle-layer. WhatsApp Contacts service integration only.

WhatsApp iOS and Android
clients

WhatsApp Contacts service integration only.

Finding Breakdown
Critical issues 1

High issues 0

Medium issues 5

Low issues 5

Informational issues 2

Total issues 13

Category Breakdown
Cryptography 12

Data Exposure 1
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Component Breakdown
Android Client 1

Attestation 1

Marvell HSM 2

Protocol Design 3

Secure Execution Environment (SEE) 4

iOS Client 2

 Critical  High  Medium  Low  Informational
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3 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Android Client
Title Status ID Risk

Protocol May Execute with Weaker Forward Secrecy
Assurance

Fixed LL3 Low

Attestation
Title Status ID Risk

Rogue Namespaces Allow Split-View Attack,
Unauthorized Client Secret Retrieval

Fixed 2W7 Medium

Marvell HSM
Title Status ID Risk

HSM-Stored Keys Remain Accessible to the Host for
Cryptographic Operations Despite Locking

Fixed MWE Critical

HSM Backup Files Require Secure Deletion Fixed RV9 Medium

Protocol Design
Title Status ID Risk

Potential Mirror Attacks on Symmetric Encryption Fixed 46P Medium

Contact Metadata Ciphertext Length Side-Channel Fixed V2H Low

AKD Verification Occurs Too Late Fixed 922 Low

Secure Execution Environment (SEE)
Title Status ID Risk

Potential Nonce Reuse in Encryption of HSM Session
and Client Secret Data

Fixed P24 Medium

Clients Can Provide Valid Signature Without
Knowledge of HSM Challenge Value

Fixed WHT Medium

AES-GCM Encryption in the SEE Application is not
Constant-Time

Fixed 6RL Low

Use of the Same Encryption Key for Session and
Client Secret Data May Weaken Protocol

Fixed ML2 Info

iOS Client
Title Status ID Risk

Protocol May Execute with Weaker Forward Secrecy
Assurance

Fixed CN2 Low

Non Constant-Time AES-GCM Implementation For
ARM Platforms

Fixed GHL Info
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4 Finding Details – Android Client

Protocol May Execute with Weaker Forward
Secrecy Assurance
Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E015746P-LL3

Component Android Client

Category Cryptography

Status Fixed

Impact
An attacker in a privileged network position may be able to decrypt past client secret
information if HSM long term keys are compromised in the future.

Description
The HSM SEE system and client engage in a X3DH key agreement protocol to establish a
shared secret key. This shared secret is employed by clients to recover and store their own
key material which is used to protect client contact information. The X3DH protocol provides
forward secrecy; that is, future compromise of long term keys will not result in a compromise
of past session keys.

NCC Group identified an issue in the Android client that may allow active adversaries to
weaken forward secrecy, so that client secret data could be recovered in the event of a
compromise of the long term HSM keys. The consultant team previously identified the exact
same finding "Protocol May Execute with Weaker Forward Secrecy Assurance" in the iOS
client, as part of Phase 2 Stage 2 of the program of work.

In its Server Hello message, the HSM SEE sends its long term public key hk , its ephemeral
public key hek , and a signature for each of these values to the client. Both keys are signed
with the HSM fleet key, which is the private counterpart of hk . A new hek  is generated for
each interaction with a client.

The client validates that both hk  and hek  are signed by the HSM fleet key using a
hardcoded value for the fleet key. The client does not attempt to determine whether hk  and
hek  correspond to respectively the long term and ephemeral/session public keys. An
attacker may therefore intercept a Server Hello message, and replace the ( hk , hek ) fields to
contain ( hk , hk ), or ( hek , hek ), or ( hek , hk ) instead. Tampering with the fields this way will
force the client to derive a different session key than what was expected by the HSM server.
Therefore, the protocol will abort (but may restart automatically, and this time without
requiring adverse intervention, if the resulting error is a retryable event).

However, the client will have sent encrypted information that may be decryptable if the HSM
long term keys are leaked later, in contradiction with the forward secrecy guarantees of
X3DH.

The issue is illustrated in the assertIplsHsmIdentity()  function in the ClientIplsHandshakeU
tils.kt source file, where the implementation limits itself to checking the signatures of hk ,
and hek , identified as hkPub , and hekPub  respectively in the Kotlin implementation below :

Low 

fun assertIplsHsmIdentity(

iplsServerHelloPayload: Ipls.IplsServerHelloPayload,

hsmfleetKey: CurvePublicKey

): HSMAssertionResult {

val hekPub: ByteArray = iplsServerHelloPayload.hekPub.toByteArray()
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Recommendation
Consider validating that hk , and hek  are at least different and that they are in their correct
fields. Evaluate whether sending hk  is actually required, as the client already has this key
hardcoded as the fleet key.

Location
Function verifyIplsIdentityOnServerHelloPayload() , in file ClientIplsHandshakeUtils.kt

Retest Results
2024-09-24 – Fixed 
NCC Group reviewed the changes WhatsApp made in code changes D62240490  and 
DD63463920  to address this issue. The client implementation now validates that the hk  and 
hek  fields have different values and that the hk  public key equals the hard-coded HSM fleet
key. These changes fully mitigate this issue.

val hkPub: ByteArray = iplsServerHelloPayload.hkPub.toByteArray()

val hkPubSig: ByteArray = iplsServerHelloPayload.hkKeySignature.toByteArray()

val hekPubSig: ByteArray = iplsServerHelloPayload.hekKeySignature.toByteArray()

val isHkPubSigValid: Boolean = CryptoUtils.verifySignature(hsmfleetKey, hkPub, hkPubSig)

if (!isHkPubSigValid) {

// SNIP

return HSMAssertionResult.Failure(

SERVER_HELLO_PAYLOAD_ASSERTION_ERROR.INVALID_HSM_HK_PUB_SIGNATURE_ERROR)

}

}

val isHekPubSigValid: Boolean = CryptoUtils.verifySignature(hsmfleetKey, hekPub, hekPubSig)

if (!isHekPubSigValid) {

// SNIP

return HSMAssertionResult.Failure(

SERVER_HELLO_PAYLOAD_ASSERTION_ERROR.INVALID_HSM_HEK_PUB_SIGNATURE_ERROR)

}

}

return HSMAssertionResult.Success

}
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5 Finding Details – Attestation

Rogue Namespaces Allow Split-View Attack,
Unauthorized Client Secret Retrieval
Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-E015746P-2W7

Component Attestation

Category Cryptography

Status Fixed

Impact
A client’s secret could be retrieved by a malicious or compromised WhatsApp insider, or by
WhatsApp in response to demands from government or law enforcement, thus allowing
retrieval of their contact metadata. This event may go unnoticed by clients who do not
intentionally look at audit information.

Description
Cloudflare runs a service that provides a signed attestation that WhatsApp invoked
Cloudflare’s “Create a new epoch” API, with a given epoch number and digest value. This
endpoint does not actually create an epoch despite its name, but actually just registers a
new epoch claim from WhatsApp, and provides a signature from Cloudflare over the claim.
Below is an example of request/response to the API.

Request (to API for a given namespace):

Response:

There are documented API restrictions, including (but not limited to) that request epochs
must be increasing, and must have a unique digest. According to the WhatsApp team, these
restrictions are meant to ensure that WhatsApp is not attempting a split-view attack; there is
no attempt to publish an epoch more than once with different root digests.

When a client sends a secret management request to the WhatsApp HSM, the request is
augmented with the latest Cloudflare attestation, and a transparency proof that the client’s
public key is adequately included in the Auditable Key Directory. The HSM validates the
signature of the attestation, and ensures that the proof epoch and digest value (i.e., root
hash) match the attestation data and the transparency proof data (in effect, that the
attestation data corresponds to the transparency proof data, and is timely), before servicing
the client request.

Medium 

Copy

{

"digest": "1111111111111111111111111111111111111111111111111111111111111111",

"epoch": 1

}

{

"digest": "1111111111111111111111111111111111111111111111111111111111111111",

"epoch": 1,

"namespace": "log1.example.com",

"signature": "f6a51443bb6703813b330959d9d97471bc06464142165e59733fa102a18b052782a5307d59c31b8b1

3c1af7dfff6f6e7bf44e880d44e26e96c50a72f72a30c07",

"timestamp": 1717084639921

}
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The Cloudflare attestation signature is over the concatenation of the epoch, digest,
Cloudflare timestamp, and Cloudflare namespace fields. The namespace appears to be a
management feature, used by Cloudflare to differentiate tenants. According to the
WhatsApp team, different namespaces are intended to allow recovery from corruption in the
AKD Merkle tree: WhatsApp could reset the tree in the event of a bug or corruption. When
validating the attestation, the HSM checks that the namespace consists of a hard-coded
prefix, and one-byte integer, in function check_cloudflare_namespace_format()  in file auditor_
signature_verifier.rs:

WhatsApp can request the creation of different namespaces using the “Create namespace”
Cloudflare API. The resulting namespaces share the same Cloudflare public key. A
compromised or coerced WhatsApp infrastructure could theoretically create a new
namespace name that would pass HSM validation. Such a namespace could be backed by a
concurrent rogue AKD infrastructure, allowing to potentially target some users in order to
obtain their secret contact metadata information.

There do not appear to be preventative controls. However, users can monitor the list of
namespaces, and changes to it, using the Cloudflare API.

Further note that currently, there is a TODO  comment for WhatsApp to remove non-
production namespaces from the hardcoded list of allowed namespaces.

Recommendation
Consider augmenting the DecryptedKeyVault  structure to include the Cloudflare
namespace along with the user secret in the HSM database. Then, when handling client
requests, have the HSM verify that the stored namespace matches the namespace from
the signed attestation. Note, however, that if the AKD tree is ever reset and there is a
transition to a new namespace for a legitimate reason, then users would not be able to
retrieve their secrets from the previous namespace; they would need to re-register in the
new namespace.

Encourage users and auditors to monitor the list of namespaces. Create an expectation
that new namespaces are exceptional events, and must be accompanied by an
announcement.

Location
Cloudflare “Create namespace” and “Create a new epoch” APIs

• 

• 

• 

pub fn check_cloudflare_namespace_format(namespace: &str) -> bool {

// TODO(T195729761): Remove checks for non-prod namespaces before launch.

// Check namespace starts with expected base for staging, prod (test namespaces), or 

prod.

let formats = [

CLOUDFLARE_NAMESPACE_BASE_FORMAT,

CLOUDFLARE_TEST_NAMESPACE_BASE_FORMAT,

CLOUDFLARE_STAGING_NAMESPACE_BASE_FORMAT,

];

formats.into_iter().any(|format| {

namespace

.strip_prefix(format)

.is_some_and(|v| u8::from_str(v).is_ok())

})

}
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Function check_cloudflare_auditor_signature_params()  in SEE code, file auditor_signatur
e_verifier.rs

Retest Results
2024-09-26 – Fixed 
While WhatsApp did not implement the recommended mitigation of storing namespace with
user records (because it would prevent the use of namespaces for disaster recovery),
WhatsApp emphasized that all namespaces are publicly visible (https://akd-
auditor.cloudflare.com/namespaces) and permanently stored on Cloudflare’s infrastructure.
WhatsApp will leverage this public visibility as the primary deterrent to the creation of rogue
namespaces.

WhatsApp also documented a draft of the internal protocol to follow in the event of a tree
reset, when a new namespace must be provisioned. This protocol involves alerting
Cloudflare, sharing a public post explaining the event, disabling the previous namespace
using the Cloudflare “Patch namespace” API, and creating a new namespace, numbered
sequentially relative to the previous one. Any namespace change outside of this protocol
can be viewed as suspicious.

NCC Group also reviewed the changes WhatsApp made in code diff D62551671 , which
removed the non-production namespace formats in check_cloudflare_namespace_format() .

These changes partially address the finding, since the proposed mitigation to prevent the
attack was not implemented. However, the presented draft protocol would make the attack
sufficiently visible, in line with WhatsApp’s threat model for WhatsApp Contacts, where split-
view attacks are not necessarily prevented, but are detectable.

• 

11 / 54 – Finding Details – Attestation

https://akd-auditor.cloudflare.com/namespaces
https://akd-auditor.cloudflare.com/namespaces


6 Finding Details – Marvell HSM

HSM-Stored Keys Remain Accessible to the
Host for Cryptographic Operations Despite
Locking
Overall Risk Critical

Impact High

Exploitability High

Finding ID NCC-E015746P-MWE

Component Marvell HSM

Category Cryptography

Status Fixed

Impact
The fleet shared keys (AES and X25519) remain usable for cryptographic operations by the
host, despite the locking policy. This permits a compromised infrastructure to impersonate
HSMs, decrypt users’ secret key material, and from that obtain their private contact
metadata.

Description
The deployment procedure for the Marvell HSMs entails generating the fleet keys (AES and
X25519) on an initial HSM, then taking a backup and restoring the backup files on all other
HSMs in the fleet. When all HSMs have been configured with the intended SecureMachine
application (SM-App), they are locked by enabling their HSM_POLICY_HSM_LOCK  policy. The 
Marvell LiquidSecurity HSM Adapter SDK User Guide 2.09-0702 specifies that once the
policy is enabled, a number of operations are no longer feasible on the HSM from the host,
including modifying or exporting keys, cloning, creating backups, or creating/deleting/
modifying SM-Apps. All such operations can still be performed by the SM-App itself. The
goal of locking down the HSM is to ensure that only the installed SM-App will ever be able
to access the keys.

However, the HSM_POLICY_HSM_LOCK  policy, when enabled, still allows the host to “[perform]
all crypto operations”. The policy prevents the host from exporting keys, but operations such
as AES/GCM encryption and decryption with that key are still possible. All the host needs to
do is to authenticate as the crypto_user  user, using the relevant password, which the host
necessarily knows since it provides it to the SM-App upon startup. This is in direct violation
of the security properties that were expected from the HSM (and the only reason why HSMs
are used).

Recommendation
Meta pointed out the existence of a key attribute that can be optionally set on cryptographic
keys, called OBJ_ATTR_SECURE_MACHINE_ONLY . The exact meaning of that attribute is not
documented (the “modifiable key attributes” section of the Marvell guide states that its ID is
268435957 and that its value is a Boolean, but the “description” field is empty). Inquiries
with Marvell are ongoing to obtain more information. If that attribute, when set, prevents any
use of a cryptographic key by the host, limiting access to the SM-App, then that attribute,
combined with the locking policy, would provide an effective mitigation for the issue
described here.

A potential alternative mitigation would be to enforce a systematic key derivation step.
Given the shared “AES key”, the SM-App would systematically, upon startup, export that key
into raw bytes, and derive from these bytes the actual fleet key with a cryptographically
secure key derivation function. The IND-CCA2 security of AES intuitively means that even an

Critical 
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attacker able to perform arbitrary encryption and decryption operations with a key still
obtains no usable information on the key itself; the derived key would then be inaccessible
to the host, but still easily obtained by the SM-App. The key derivation would have only to
be performed at startup time, hence with negligible overhead for overall performance. Note
that cryptographic operations performed by the HSM include not only encryption and
decryption, but also key derivation (with Cfm2DeriveKey()  and similar functions), so this
mitigation would be successful only by using a key derivation process which is
“cryptographically different” from the ones supported by the HSM; this notion of “difference”
is hard to qualify formally, but the HKDF key derivation used with a hash function that the
HSM hardware does not support (e.g. BLAKE2) would informally be enough.

If a mitigation is found for AES keys, then it can also be used for the X25519 private key. In
the current deployment procedure, the X25519 key is generated under that type; however,
since the X25519 and similar operations (X3DH, XEdDSA) are performed in the SM-App with
pure Rust implementations, not leveraging the HSM’s accelerated hardware, then it is not
really needed that the HSM recognizes that X25519 key as being an X25519 key; any
mechanism that can generate and store 32 random bytes would be enough. Thus, the
X25519 key could be stored in the HSM as an “AES-256 key”; the actual X25519 private key
could then be obtained by applying some key derivation (as described above) and then the
“clamping” process that clears four specific bits and sets another one (see RFC 7748,
section 5, function decodeScalar25519() ).

Location
Marvell Fleet Commission Process, step 2.i

Retest Results
2024-09-24 – Fixed 
WhatsApp indicated that they will not use Marvell HSMs in production, until the vendor can
support mitigation via firmware update. This avoids the risk highlighted in this finding, and
therefore fixes the issue.
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HSM Backup Files Require Secure Deletion
Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-E015746P-RV9

Component Marvell HSM

Category Data Exposure

Status Fixed

Impact
If the backup files used for deployment of a Marvell HSM fleet are not securely deleted,
then they may be used later on to extract the fleet secret keys and compromise all
operations.

Description
The Marvell Fleet Commission Process describes the deployment process envisioned by
Meta for HSM fleets using the Marvell LiquidSecurity HSMs. In summary, an initial HSM is
configured with the relevant SM-App and generates the fleet keys; then a backup is created
from that HSM, and the backup files are transported (with scp  or a similar mechanism) to
the hosts for all other HSMs in the fleet, where the backup is restored. In that way, the fleet
keys are transported to all HSMs. At the end of the ceremony, all HSMs are locked
( HSM_POLICY_HSM_LOCK  is enabled) and the backup files are deleted. No specific deletion
process is specified; presumably, a simple rm  command is used.

It is imperative for security that no attacker gets hold of these backup files; indeed, the
attacker could restore the backup files on another Marvell HSM, and not perform the locking
process; instead, the attacker could just export the fleet keys from their non-locked HSM.
Simple file deletion is not enough, since it does not actually destroy the file data; it only
ceases to reference that data, and marks the relevant disk space as reusable.

Recommendation
Modern hard disk hardware, especially SSDs, makes it difficult to securely delete a file.
Instead, the deployment procedure should make it so that the files are never stored to a
physical storage device. This is doable in the following way:

Ensure that all host machines are physical systems (not virtual machines).

Disable virtual memory (swap) support. On Linux system, this can be done with some 
swapoff  commands; the free  command should report a total swap space size of zero.

Create some RAM-based filesystem, i.e. some “disk” space which is really backed by
RAM. On Linux, the tmpfs  filesystem type can be used.

Verify that no automatic system-wide backup system is in place and would cover the
directory on which the RAM-based filesystem is mounted.

All operations on HSM backup files (creation, copy, restoration) should write the files only
in the RAM-based filesystem, on all the HSM host machines.

At the end of the ceremony, all host machines should be rebooted. A restart ensures the
destruction of the contents of all the RAM-based filesystems; moreover, the boot-time
memory wiping normally performed by the BIOS ensures that the old RAM contents are
properly overwritten.

Location
Marvell Fleet Commission Process, step 2.g

Medium 

• 

• 

• 

• 

• 

• 
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Retest Results
2024-09-24 – Fixed 
WhatsApp indicated that they will not use Marvell HSMs in production, until the vendor can
support mitigation via firmware update. This avoids the risk highlighted in this finding, and
therefore fixes the issue.
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7 Finding Details – Protocol Design

Potential Mirror Attacks on Symmetric
Encryption
Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E015746P-46P

Component Protocol Design

Category Cryptography

Status Fixed

Impact
Since the same symmetric key (session key) is used to encrypt payloads from both the client
and the HSM, a hostile server may send back the client payload to the client instead of the
actual response payload from the HSM.

Description
In the protocol specification (ipls.md version 1.1), the X3DH key exchange (optionally
augmented with the Kyber768-based post-quantum KEM) results in a session key SK . That
key is used to encrypt the client opaque payload ( IplsClientRequestOpaquePayload  protobuf
message) but also the server’s response ( IplsClientSecretData  protobuf message), in both
cases with an IV chosen randomly by the server. Since the same key is used and the IV is
arbitrary, a malicious intermediate (the host server) could replace the server’s response with
a copy of the client’s payload, and the decryption would still work.

In the messages as currently defined in ipls.proto, an IplsClientSecretData  object has a
single field of tag value 1 and type “map”:

However, in the client payload ( IplsClientRequestOpaquePayload ) the field of tag 1 has type 
IPLSRequestType , which is an enumeration. As described in the protobuf documentation,
enumerations are serialized into a VARINT, while maps use a (repeated) sub-message for
each map entry, the latter using LEN objects. Therefore, when the client is faced with a copy
of its own payload and tries to decode it as an IplsClientSecretData , it should report an
error, thereby preventing the substitution from having any deleterious consequence beyond
a reported failure. However, this relies on details of the payloads in both directions, and on
the behavior of the protobuf decoders when faced with abnormal data. Protobuf decoders
are encouraged to be tolerant of encoding deviations, if only to smoothly support protocol
upgrades. Thus, appropriate error detection when the client’s payload is mirrored is never
guaranteed and is fragile with regard to ulterior protocol enhancements.

Recommendation
Since the session key SK  is derived using HKDF, which has a variable-size output, that
HKDF call could be used to produce not one session key, but two session keys SK_client
and SK_server , to be used for encrypting payloads from, respectively, the client and the
server.

Another possible method, applicable here since AES/GCM is used for the encryption, is to
enforce specific IV values, e.g. 0 for the client payload and 1 for the server answer. Fixed IV
values can be used securely because the session key is freshly generated; the X3DH key
exchange, coupled with ephemeral public keys, ensures that every handshake results in its

Medium 

message IplsClientSecretData {

map<string, IplsClientSecretKeyList> client_secret_map = 1;

}
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own session key, and no two different messages will be encrypted with the same key+IV
pair. This scheme can naturally extend into a multi-message protocol, with the client using
even numbers in sequence (0, 2, 4, 6…) while the server uses odd numbers for its responses
(1, 3, 5, 7…).

Some inspiration can be taken from TLS, which uses both methods: two separate symmetric
keys are derived from the handshake material, for the two traffic directions, and within each
direction, each record payload uses a nonce built on the record sequence number. The use
of an explicit sequence number is needed in multi-message protocols to avoid attacks
based on replay or reordering of messages.

Location
ipls.md IPLS specification document

Retest Results
2024-08-28 – Fixed 
NCC Group reviewed design changes made in response to this finding during phase 2 of the
WhatsApp Contacts security assessment project. The HKDF primitive is used to produce 64
bytes of key material. The first 32 bytes are used for the client session key, while the last 32
bytes are used for the server session key. These design changes fully mitigate this issue.
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Contact Metadata Ciphertext Length Side-
Channel
Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-E015746P-V2H

Component Protocol Design

Category Cryptography

Status Fixed

Impact
An attacker who can observe the resulting encryption of contact metadata may be able to
infer the length of the plaintext prior to encryption, and/or what metadata fields were
actually populated. This may assist in turn in mounting further attacks, including guessing
correct plaintext values.

Description
WhatsApp Contacts adds a metadata  attribute to the Usync Contact Protocol for each user
contact. The attribute value is encrypted using the AES-GCM cipher block mode of
operation, using the client secret key. According to the Multi Device Native Contacts
Management document, the plaintext value before encryption consists of the following
fields:

Contact Name: This is the name that is stored on the user’s address book. This field
will be in two parts : first_name and last_name.

Business Name: Business name associated with this contact.

Version: Internal representation of which version this definition belongs to.

Sync Policy: This tells us whether this contact is synced back to the user’s address
book or not.

Apart from the length of the tag, and IV (if serialized, the most likely case), the AES-GCM
ciphertext length is identical to the plaintext length. Attackers may therefore infer some
information about the plaintext, based on the size of the ciphertext. Contacts information,
including encrypted metadata, is stored on a server outside of the HSM SEE environment; it
is therefore accessible to attackers with a presence on these servers, and possibly other
systems such as backup hosts.

There does not appear to be any formal description of the serialization of the plaintext value
before encryption. The serialization format may facilitate or reduce the effectiveness of
inferring information about the plaintext. For instance, it is unknown whether the lack of a
populated field, e.g., Business Name, would result in an empty plaintext field (“ <FieldName/
> ”, or “ <FieldName></FieldName> ”) or no field at all (“”); a ciphertext length with a populated
Business Name could increase by at least twice the tag name length + 5 (the size of all
delimiters) in the worst case scenario, and may help attackers in deriving information about
the plaintext metadata. It is assumed that the last two fields, Version and Sync Policy, are
relatively static in size, and their lengths can probably be subtracted when attempting to
guess the sizes of other fields.

Note that the use of AES-GCM encryption does not appear to be documented; the
WhatsApp team communicated this information over Workplace chat.

Low 
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Recommendation
Consider formally describing the serialized metadata format prior to encryption. Consider
padding all plaintext fields to their maximum allowed size, even when not populated by the
user, prior to encryption.

Consider documenting what cipher and block mode of operation are used to encrypt
contact metadata, and any other relevant details.

Location
Multi Device Native Contacts Management document

Retest Results
2024-08-28 – Fixed 
NCC Group reviewed design changes made in response to this finding during phase 2 of the
WhatsApp Contacts security assessment project. Limits on the first name, last name, and
business name sizes were introduced, as well as padding to ensure each contact’s metadata
has a fixed size when encoded. These design changes fully mitigate this issue.
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AKD Verification Occurs Too Late
Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E015746P-922

Component Protocol Design

Category Cryptography

Status Fixed

Impact
When the protocol is implemented, the data required at steps 11-17 will not be available and
the protocol specification will need to be modified.

Description
In the protocol specification ( ipls.md  version 1.1), the initial client message ( xwa2_ipls_clien
t_init ) contains the randomly chosen session ID; the server complements that message
with a fresh AKD lookup proof (and associated data) that contains the current active public
keys for the user. However, that proof is not verified immediately. The server responds with 
XWA2IplsClientInitResponse , which contains the encoded IplsServerHelloPayload  from the
HSM. Since the transmission of the response to the client, and reception of the next
message, may take some time, the HSM stores the current session data in the “HSM session
table” which is described in step 3. That table contains the user identifier ( account_jid ), the
session ID, the ephemeral key pairs created by the HSM for this session (both Curve25519
and Kyber768), and a time stamp. The AKD lookup proof is not apparently stored in that
table. However, after the client sends the next message ( xwa2_ipls_client_hello , containing
in particular the client handshake material and the client request payload), the HSM
completes the handshake, and only then verifies the AKD lookup proof and associated
elements:

cloudflare_signature  is verified in step 11;

presence of the purported client public key cik_pub  in the proof is checked in step 15;

the proof itself is verified in step 16;

cloudflare_timestamp , as received, is compared to the value associated with the stored
record in step 17.

Since the cloudflare_signature , cloudflare_timestamp  and AKD lookup proof were not
saved in the HSM session table, they are not available to the HSM at this point, making
these steps unimplementable.

Recommendation
The issue can be fixed by either augmenting the HSM session table with the relevant
elements, so that they are available when performing steps 11-17, or by making the
corresponding verifications earlier. From a perspective of resilience against denial-of-service
attacks, an earlier verification is advisable: for all normal requests, the proof will have to be
verified anyway; for flawed requests, an AKD proof verification failure, if detected earlier,
would avoid the costs of generating ephemeral key pairs in the HSM. Moreover, the extra
storage space required in the HSM session table is lower if the AKD proof verification is
performed earlier, as follows:

The client may send cik_pub  in the xwa2_ipls_client_init  message.

When receiving the client initial message, augmented with the AKD proof and other data
by the server, the HSM can verify the proof right away, including checking 

Low 

• 

• 

• 

• 

• 

• 
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cloudflare_signature  and validating that the provided cik_pub  is indeed part of the
proof.

The session data should then be augmented with a copy of cik_pub  (which the HSM has
now verified to be correct) and of cloudflare_timestamp .

In the client handshake material, cik_pub  does not need to be sent again, since the
server already has it.

cik_pub  and cloudflare_timestamp  are only a few dozen bytes in length; this should not
prevent the possibility of keeping the HSM session data in HSM RAM only, which is
advisable for both performance reasons (RAM access is cheaper than using an external
database) and also for security (rollback attacks do not apply the the HSM internal RAM).

Yet another possible strategy is to delay the fetching of the AKD proof and inclusion in the
client message by the server until the client sends its handshake material and the payload.
In that case, lookup_proof , epoch , root_hash , account_jid , cloudflare_namespace , 
cloudflare_timestamp  and cloudflare_signature  are to be added as extra fields in the IplsC
lientHelloPayload  message, and not in the IplsClientInit  message.

Location
ipls.md IPLS specification document

Retest Results
2024-08-28 – Fixed 
NCC Group reviewed design changes made in response to this finding during phase 2 of the
WhatsApp Contacts security assessment project. As explained by the WhatsApp team, the
AKD proof fetch step was misplaced in the design specification (whereas the
implementation had the correct sequence of steps). The AKD proof fetch step was placed in
the correct location, and specifically after client sends its handshake material and the
payload. These design changes fully mitigate this issue.

• 

• 
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8 Finding Details – Secure Execution
Environment (SEE)

Potential Nonce Reuse in Encryption of HSM
Session and Client Secret Data
Overall Risk Medium

Impact High

Exploitability Medium

Finding ID NCC-E015746P-P24

Component Secure Execution Environment
(SEE)

Category Cryptography

Status Fixed

Impact
An attacker may be able to recover the GHASH authentication key allowing them to forge
encrypted sessions and client secret data which will pass authentication. This may allow an
attacker to subvert the WhatsApp Contacts security protocol to ultimately obtain contact
information.

An attacker may also be able to recover information about the encrypted session and user
data; if the nonce repeats under the same key, then the result of the XOR  operation on the
affected ciphertexts is equal to the result of the XOR  operation on the matching session
plaintexts. If an attacker already knows any part of either plaintext, then they can recover
the corresponding part of the other plaintext, up to and including the full message.

Additionally, the implementation does not comply with some of the NIST SP 800-38D
standard requirements.

Description
The HSM SEE system sets up session information, including HSM challenge and ephemeral
keys, when receiving an InitClientRequest  message in its InitHandler  component. This
information is encrypted using the HSM fleet AES key for storage and later use. The
encryption routine observes certain limits, such as how large the plaintext can be. It
however does not place an apparent limit on how many times the encryption function can be
invoked using the same AES key.

The fleet_aes_encrypt()  function in the hsm_context.rs source file is responsible for
encrypting session information. It does not, nor do its callers, track the number of
encryptions per key:

The encrypt()  function in the aes.rs source file performs the actual encryption. The 12-byte
nonce structure is fully populated with a newly generated random value.

Medium 

pub fn fleet_aes_encrypt(&self, plaintext: &[u8]) -> Result<AesGcmEncryptedData> {

#[cfg(profilite)]

let _p = profilite::start_guard("HsmContext::fleet_aes_encrypt");

crate::hsm::aes::encrypt(self, plaintext, self.fleet_aes_key.as_slice())

}

// Encrypt plaintext using AES-GCM-256.

pub fn encrypt(

hsm_context: &HsmContext,

plaintext: &[u8],
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NCC Group further discovered that the AES key used to protect HSM session information
with clients is also used to protect HSM client secret data records (see finding "Use of the
Same Encryption Key for Session and Client Secret Data May Weaken Protocol").
Specifically, the KeyVault  structure to_xdb()  function calls the same fleet_aes_encrypt()
function described above, thus reusing the same AES key.

As this key is used for two different functions, there is an increased risk that the
implementation will generate and use the same nonce/IV, especially with WhatsApp’s large
(2 billion) user population. For AES in the GCM mode of operation, re-using the same nonce
with a given key is catastrophic. It allows the recovery of information about the plaintext
values for the two corresponding ciphertexts encrypted with the same nonce and key. More
importantly, one can derive the GMAC key and forge authentication tags for arbitrary
encrypted information, which in turn adversely impacts the security guarantees of the
WhatsApp Contacts protocol. This is also a deviation from the NIST SP 800-38D standard,
“Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC”, which states the following in section 8.3:

key: &[u8],

) -> Result<AesGcmEncryptedData> {

#[cfg(profilite)]

let _p = profilite::start_guard("aes::encrypt_to_components");

ensure!(

plaintext.len() <= AES_256_GCM_MAX_ENCRYPTION_SIZE_BYTES,

"Overlimit 128 AES-GCM plaintext"

);

let cipher = Cipher::aes_256_gcm();

assert_eq!(cipher.key_len(), key.len());

// AES IV.

let iv_len = cipher.iv_len().unwrap();

debug_assert_eq!(iv_len, AES_256_GCM_IV_SIZE_BYTES);

let mut iv = [0u8; AES_256_GCM_IV_SIZE_BYTES];

hsm_context.rng_try_fill_bytes(&mut iv)?;

// AES ciphertext.

let mut encrypter = Crypter::new(cipher, Mode::Encrypt, key, Some(&iv))?;

let mut ciphertext = vec![0u8; plaintext.len() + cipher.block_size()];

let mut ciphertext_len = encrypter.update(plaintext, &mut ciphertext)?;

ciphertext_len += encrypter.finalize(&mut ciphertext[ciphertext_len..])?;

ciphertext.truncate(ciphertext_len);

// AES tag.

let mut tag = [0u8; AES_256_GCM_TAG_SIZE_BYTES];

// Output tag is sized to fill entire passed array.

// 16 bytes recommended by documentation for AES-GCM.

encrypter.get_tag(&mut tag)?;

Ok(AesGcmEncryptedData {

ciphertext,

iv,

tag,

})

}
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The total number of invocations of the authenticated encryption function shall not
exceed , including all IV lengths and all instances of the authenticated
encryption function with the given key.

From a standards compliance perspective, assuming 2 billion users, this invocation limit (
divided by 2 billion ≈ 2.15 invocations) will be nearly reached if each user performs one
secret data store operation – that is, one (1) session, plus one (1) user secret data
encryption equals two (2) invocations. From a security perspective, it would take
approximately 165,705 invocations per user to have a 50% chance of collision.

Note that an attacker in a privileged position (i.e. with a direct connection to the HSM fleet,
thus bypassing rate-limiting controls) may increase the likelihood of IV collisions, for
instance by generating a large number of arbitrary sessions. Given this scenario, the number
of users, and the threat model including WhatsApp as a malicious party (possibly by being
compelled to act maliciously), the overall risk rating was raised from low to medium.

Recommendation
At the very least, do not encrypt more than  plaintexts under a given key across any
number of HSMs, as required by NIST. A new key should be generated before reaching this
limit, and used for subsequent encryption operations. This will likely require maintaining
multiple key versions, to be able to decrypt records encrypted with previous versions of the
HSM fleet key.

Location
Function fleet_aes_encrypt()  in file hsm_context.rs

Retest Results
2024-09-25 – Fixed 
2024-09-24: NCC Group reviewed the changes WhatsApp made in code change D62047580
in response to this finding. The implementation of the fleet_aes_encrypt()  function now
derives a per-user key using HMAC; the key is derived as HMAC(AES fleet key, user phone
number). This derived key is used to encrypt both client secret data and client session data,
with a freshly generated IV at each invocation, thus greatly reducing the probability of nonce
reuse. While it is unlikely that any user will perform  (about 4.3 billion) operations, there
are no counters keeping track of how many times each key is used. The possibility of an
insider attack artificially generating new sessions to increase the risk of IV collision exists.
Therefore, this finding is considered “partially fixed”.

2024-09-25 update: WhatsApp decided to replace AES-GCM with AES-GCM-SIV, a nonce-
misuse-resistant scheme, following NCC Group retest feedback. The HMAC solution,
augmented with AES-GCM-SIV fully addresses the original issue, without introducing further
weaknesses.
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Clients Can Provide Valid Signature Without
Knowledge of HSM Challenge Value
Overall Risk Medium

Impact Low

Exploitability High

Finding ID NCC-E015746P-WHT

Component Secure Execution Environment
(SEE)

Category Cryptography

Status Fixed

Impact
An attacker may demonstrate knowledge of the HSM challenge string without access to it,
in order to mount further attacks against the protocol. Specifically, they may be able to
impersonate legitimate clients, force the re-use of HSM ephemeral key material and bypass
some steps of the protocol.

Description
When receiving an initClientRequest  client message, the HSM SEE system generates a
random challenge string and provides it to the client in its response. Upon reception of the
response, the client generates an ephemeral key as part of its X3DH key agreement protocol
with the HSM SEE and signs this HSM challenge with this key. The client then submits its
HSM challenge signature (along with other information, including its ephemeral public key)
in its next message ( FinishClientRequest ) to the HSM SEE. When processing this message,
the HSM SEE retrieves the HSM session information, which includes the challenge string for
the client, and verifies the client signature with the client ephemeral key and challenge
string. If the signature is not valid, the security protocol is aborted.

The HSM challenge appears to be designed to provide several security properties to the
protocol, including retrieving the correct server X3DH key material, ensuring freshness of
client requests and authentication of clients.

The HSM does not authenticate the client ephemeral key. Furthermore, when the HSM
verifies that the signature of the client is correct, it does not validate that the ephemeral
public key used to sign the challenge is not an elliptic curve point of low order. As a result,
an attacker can submit signatures that will validate for any HSM challenge string without
knowledge of them. Using this weakness, an attacker may attempt to bypass the security
properties envisaged by the protocol designers for the use of HSM challenge.

The HSM SEE system validate client signature of HSM challenge data in function 
validate_challenge_response()  in file session_data.rs:

Medium 

pub fn validate_challenge_response(

&self,

cek_pub: PublicKey,

challenge_response: &[u8],

) -> Result<(), ClientResponseError> {

let signature: [u8; super::SESSION_CHALLENGE_RESPONSE_LEN_BYTES] =

challenge_response.try_into().map_err(|err| {

// TODO(T197786561): Remove value returning in response.

ClientResponseError::InvalidRequest(FieldInfo::PayloadProtobuf(format!(

"cek_pub: {cek_pub:?}, challenge_response: {challenge_response:?}, error: 

{err:?}"

)))
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Signature verification is delegated to the Rust xeddsa  library. As illustrated above, the HSM
SEE implementation does not validate that the client public key is a low order point, before
passing it to xeddsa .

Recommendation
Validate that the HSM challenge signature public key is not a point of low order and abort
the protocol otherwise.

The xeddsa  library uses the Rust 25519-dalek  crate. The latter has implemented function 
is_weak() , to check whether a point is a low order point, or not. The Meta WhatsApp team
has vendored crate xeddsa . They could add a call to is_weak()  as follows, to reject low
order points:

Location
Function validate_challenge_response()  in file session_data.rs

})?;

let xed_verifying_key = XedVerifyingKey::from(&cek_pub);

xed_verifying_key

.verify(&self.challenge, &signature)

.map_err(|err| {

// TODO(T197786561): Remove value returning in response.

ClientResponseError::InvalidRequest(FieldInfo::PayloadProtobuf(format!(

"cek_pub: {cek_pub:?}, signature: {signature:?}, error: {err:?}"

)))

})

}

impl Verify<Signature, [u8; PUBLIC_KEY_LENGTH]> for PublicKey

where

PublicKey: ConvertMont<[u8; PUBLIC_KEY_LENGTH]>,

{

// Get EdDSA public key and verify using standard Ed25519 implementation

fn verify(&self, message: &[u8], signature: &Signature) -> Result<(), Error> {

// Extract sign from signature.

let mut signature_bytes = signature.to_bytes();

let sign = (signature_bytes[SIGNATURE_LENGTH - 1] & 0b1000_0000_u8) >> 7;

// Clear sign bit from signature.

signature_bytes[SIGNATURE_LENGTH - 1] &= 0b0111_1111_u8;

let final_signature = Signature::from_bytes(&signature_bytes);

// Use the sign to convert.

let public_key = self.convert_mont(sign)?;

let verifying_key =

VerifyingKey::from_bytes(&public_key).or(Err(Error::UnusablePublicKey))?;

if public_key.is_weak() {

return Err(Error::WeakPublicKey);

}

verifying_key

.verify(message, &final_signature)

.or(Err(Error::InvalidSignature))

}

}
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Retest Results
2024-09-26 – Fixed 
NCC Group reviewed the changes WhatsApp made in code change D622320422  in response
to this finding. The WhatsApp team implemented NCC Group recommendation to reject low
order points. These changes fully mitigate this issue.
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AES-GCM Encryption in the SEE Application is
not Constant-Time
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E015746P-6RL

Component Secure Execution Environment
(SEE)

Category Cryptography

Status Fixed

Impact
Non constant-time AES encryption and decryption can be leveraged in cache attacks, a
sub-class of timing attacks, to reveal the secret key. An attacker in control of the systems
that directly connect to the HSM may use such an attack to extract the AES fleet key, and
then compromise the entire fleet.

Description
In the SEE application, when running in an Entrust HSM (nFast API), AES encryption and
decryption operations are performed through the nfast/aes.rs source file. The key and
plaintext are provided as byte array slices, and the operation uses an openssl::ssym::Crypte
r  object, which is a wrapper for the OpenSSL library. The HSM hardware provides an
hardware-accelerated (and presumably hardened) AES implementation, but it must be
invoked explicitly through the nFast core API; it will not be used by the OpenSSL library,
which will rely on its software implementations.

The HSM hardware uses an NXP QorIQ T1042 CPU, which relies on four Freescale e5500
cores. Each core implements the PowerPC v2.06 ISA, both in 32-bit and 64-bit modes. On
PowerPC systems, OpenSSL may use a number of implementations for AES, GHASH, or the
combination of AES and GHASH in AES-GCM, leveraging the relevant optional instruction
sets. Unfortunately, the e5500 does not support such instructions, making it impossible to
use the optimized implementations that use the hardware opcodes vcipher  and vpmsumd
(added in PowerPC v2.07); it does not support either the “AltiVec” SIMD instructions, for
which OpenSSL has some specific code. Instead, the used implementations will be classic
table-based code; the AES implementation is assembly-optimized while the GHASH code is
in plain C. Both implementations perform dynamic memory lookups at addresses that
depend on secret data, which makes them susceptible to cache attacks.

Cache attacks are a subclass of timing attacks, in which the attacker extracts information
from a side channel based ultimately on timing measurements; in a cache attack, timing
differences come from differing latencies when accessing memory, depending on whether
the target value is in cache memory or not. Cache attacks were indeed first demonstrated
on table-based AES implementations, and the timing measurement was made over a local
ethernet network. The SEE application runs in a similar situation: the application runs in a
dedicated hardware system (the HSM) and responds to requests sent by the potential
attacker (the non-HSM host) over a local low-latency connection (either a very fast Ethernet
link, or a PCI bus, depending on the specific HSM model). While cache attacks are
notoriously difficult to set up and require some substantial tuning, they must still be deemed

Low 
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to apply to this case. In particular, the following features of the WhatsApp Contacts
application tend to help the attacker:

In a server-side attack context, the attacker can be very close (network-wise) to the
target hardware system (the HSM), allowing low-noise precise timing measurements.

HSMs respond to requests but do not have any network ability that is not controlled by
the host; this allows the attacker to run experiments discreetly, without triggering
external alerts. An HSM may furthermore be “rewinded”, i.e. restarted with a previous
state, since it has no real internal permanent storage1, allowing an attacker to repeat
each experiment for more precise measurements.

The HSM runs only the SEE application, which is furthermore mono-threaded, thus with a
predictable memory access pattern, which allows a precise setup of the cache state
before the actual measurement.

Recommendation
The recommended mitigation is to use the nFast core API, instead of OpenSSL, to perform
all AES-GCM operations in the SEE application. This API invokes the hardware accelerator
which Entrust has joined to the T1042 CPU, and which will provide a more secure operation
(indeed, this module is covered by some FIPS 140-2 and 140-3 certifications). The hardware
accelerator should also yield better encryption performance, at least for long messages.

Alternatively, if the nFast core API turns out to be inappropriate for use in the SEE
application, e.g. for key derivation reasons, then a constant-time software implementation
may be used. There are several implementation strategies that can compute both AES and
GHASH without lookup tables, or at least using only non-secret addresses for any table
access. One example is the BearSSL library, in particular its aes_ct_ctr  (for AES in CTR
mode) and ghash_ctmul  (for GHASH) implementations. Compared to table-based
implementations, a slowdown by a factor of about 3 or 4 can be expected, though that
should be measured on the actual hardware, and may vary depending on the encrypted
plaintext size. Another constant-time implementation, in pure Rust, can be obtained with the
aes-gcm  crate; indeed, its GHASH implementation is a direct translation of BearSSL’s
“ ghash_ctmul32 ” code, and its AES code is built along the same “bitslicing” mechanism.

Location
File aes.rs, lines 48-51

Retest Results
2024-09-25 – Fixed 
NCC Group reviewed the changes WhatsApp made in code change D62053155  in response to
this finding. The WhatsApp team implemented one of the recommended NCC Group
libraries, and specifically the aes-gcm  crate. All AES-GCM operations now use this crate.
These changes fully mitigate this issue.

• 

• 

• 

1. Entrust HSMs embed a small amount of NVRAM which could be used to detect rewinding attempts,
but it does not appear to be used in the current SEE application.
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Use of the Same Encryption Key for Session
and Client Secret Data May Weaken Protocol
Overall Risk Informational

Impact High

Exploitability Undetermined

Finding ID NCC-E015746P-ML2

Component Secure Execution Environment
(SEE)

Category Cryptography

Status Fixed

Impact
An attacker may forge an encrypted HSM session and client secret data records which are
interchangeable in an attempt to break the security protocol, including but not limited to,
impersonating other users in order to access their secret data. NCC Group did not identify
an exploitable scenario, but changes to the protocol and record formats may surface
vulnerabilities in new iterations of the implementation.

Generally, the current reliance on the protobuf parser increases the attack surface of the
protocol.

Description
The HSM fleet uses a single AES key to encrypt HSM/client session information and client
secret data record before storage, for later use. The information is encrypted using the AES-
GCM cipher block mode of operation, with a random 12 byte IV, and a 16 byte tag, without
any additional authenticated data. This guarantees that only the HSM can encrypt and
decrypt these records in the absence of other vulnerabilities. This method does not allow
for the detection of whether one encrypted record was replaced with another during
decryption. The HSM provides additional logic to determine whether a session information
record was replaced with another session information record, and whether a user secret
data record was replaced with another one. One example of this additional logic is that the
HSM validates that the HSM challenge in the encrypted record matches the one provided by
a user as part of a separate request to the HSM (for example, a request for their secret
data). This in effect provides some level of assurance that a malicious party cannot
impersonate other users by exchanging session records, thus obtaining their secret data.

The HSM does not appear to provide any explicit controls to determine whether a decrypted
record type, be it HSM session or secret data, was the valid type which the HSM intended to
read. The code implicitly relies on the correct parsing of the record based on its protobuf
version 3 definition instead. This may open opportunities for attackers to smuggle data from
one record type to another, when they have some control on the data which goes into the
record type. The parsing of protobuf version 3 defined records may lead to
misinterpretations. Indeed, for one, all fields are optional.

The protobuf definition of secret user data and session data are implemented as messages 
DecryptedKeyVault  and DecryptedSessionData  respectively, in the file xdb_data.proto:

Info 

syntax = "proto3";

package whatsapp_aletheia;

message DecryptedKeyVault {

bytes stored_user_secret = 1;
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Encoding and decoding of records are implemented with the to_xdb()  and from_xdb()
methods of the structures DecryptedKeyVault , and DecryptedSessionData  using the Rust 
prost  library. The implementation currently decodes DecryptedSessionData  as highlighted in
the code snippet below in file session_data.rs as follows:

The current implementation would successfully (decrypt, then) decode the following 
DecryptedSessionData  message (secret user data record) represented in Rust pseudocode, 
as a DecryptedKeyVault  message:

string account_jid = 2;

uint32 creation_timestamp = 3;

int64 creation_key_transparency_epoch = 4;

}

message DecryptedSessionData {

bytes challenge = 1;

bytes hsm_session_ephemeral_key = 2;

string account_jid = 3;

string session_id = 4;

uint64 session_ttl = 5;

}

impl SessionData {

// SNIP

// Decrypt and deserialize the session data. The session data is serialized

// as protobuf structure and then encrypted with the security worlds' 256

// bit AES key.

pub fn from_xdb(

hsm_context: Arc<HsmContext>,

encrypted_session_data: &[u8],

) -> Result<Self, ClientResponseError> {

// SNIP

let session_data_bytes = hsm_context

.fleet_aes_decrypt(&encrypted_session_data)

.map_err(|_| ClientResponseError::SessionKeyDecryption)?;

let DecryptedSessionData {

hsm_session_ephemeral_key,

challenge,

account_jid,

session_id,

session_ttl,

} = DecryptedSessionData::decode(session_data_bytes.as_slice()).map_err(|_| {

ClientResponseError::SessionDataRead(

"Cannot deserialize DecryptedSessionData".to_owned(),

)

})?;

// SNIP

DecryptedSessionData {

hsm_session_ephemeral_key: vec![65;32],

challenge: vec![66;32],
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Specifically, the record DecryptedKeyVault  message account_jid  field would be set as AAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAA  (smuggled from DecryptedSessionData ’s 
hsm_session_ephemeral_key  bytes field). This relies on the attackers ability to force empty De
cryptedSessionData account_jid  and session_id  string fields, so that these fields are
omitted from the serialized message before encryption.

The HSM currently checks that these fields are not empty in the request from the user
before any encoding is performed, therefore preventing such attack. NCC Group did not
identify another potential avenue of attack in the time allocated to the project. However,
relying on successfully decoding data on an arguably lenient parser is fragile and increases
the attack surface of the system.

Recommendation
Consider using different encryption keys to encrypt/decrypt different types of records so
that records will be rejected if they can’t be decrypted before parsing them. This can be
achieved by using the HKDF primitive to generate different encryption keys from one key
material.

Alternatively, consider using additional authenticated data (AAD) which is different based on
the record type e.g., “DecryptedSessionData” for session data encrypted records, and
“DecryptedKeyVault” for user secret data encrypted records. Records will be rejected during
decryption if the AAD does not contain the intended value.

Location
Files xdb_data.proto, key_vault.rs, and session_data.rs

Retest Results
2024-09-25 – Fixed 
NCC Group reviewed the changes WhatsApp made in code change D62056575  in response to
this finding. WhatsApp implemented different AADs depending of the record being
encrypted: “session data” for session data records, and “key_vault” for user secret data
records. This fix was implemented for Entrust HSMs only, and is not completely
implemented for Marvell HSM. The WhatsApp team indicated that they will not use Marvell
HSMs in production just yet. These changes fully mitigate this issue for Entrust HSMs.

account_jid: String::from(""),

session_id: String::from(""),

session_ttl: 1,

};
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9 Finding Details – iOS Client

Protocol May Execute with Weaker Forward
Secrecy Assurance
Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E015746P-CN2

Component iOS Client

Category Cryptography

Status Fixed

Impact
An attacker in a privileged network position may be able to decrypt past client secret
information if HSM long term keys are compromised in the future.

Description
The HSM SEE system and client engage in a X3DH key agreement protocol to establish a
shared secret key. This shared secret is employed by clients to recover and store their own
key material which are used to protect client contact information. The X3DH protocol
provides forward secrecy; that is, future compromise of long term keys will not result in a
compromise of past session keys.

NCC Group identified an issue that may allow active adversaries to weaken forward secrecy,
so that client secret data could be recovered in the event of a compromise of the long term
HSM keys. Note that the consultant team later identified the exact same finding "Protocol
May Execute with Weaker Forward Secrecy Assurance" in the Android client.

In its Server Hello message, the HSM SEE sends its long term public key hk , its ephemeral
public key hek  and a signature for each of their values to the client. Both keys are signed
with the HSM fleet key, which is the private counterpart of hk . A new hek  is generated for
each interaction with a client.

The client validates that both hk  and hek  are signed by the HSM fleet key using a
hardcoded value for the fleet key. The client does not attempt to determine whether hk ,
and hek  correspond to respectively the long term and ephemeral/session public keys. An
attacker may therefore intercept a Server Hello message, and replace the ( hk , hek ) fields to
contain ( hk , hk ), or ( hek , hek ), or ( hek , hk ) instead. Tampering with the fields this way will
force the client to derive a different session key, than what was expected by the HSM
server. Therefore, the protocol will abort (but may restart automatically, and this time
without requiring adverse intervention, if the resulting error is a retryable event).

However, the client will have sent encrypted information that may be decryptable if the HSM
long term keys are leaked later, in contradiction with the forward secrecy guarantees of
X3DH.

The issue is illustrated in the verifyIplsIdentityOnServerHelloPayload()  function in the IPLS
HsmKeyServiceUtils.swift source file, where the implementation limits itself to checking the
signatures of hk  and hek :

Low 

func verifyIplsIdentityOnServerHelloPayload(

_ serverHelloPayload: WAPBIplsServerHelloPayload,

isPostQuantumEnabled: Bool

) -> Result<Bool, IPLSHsmServiceError> {

// --------------
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Recommendation
Consider validating that hk , and hek  are at least different and that they are in their correct
fields. Evaluate whether sending hk  is actually required, as the client already has this key
hardcoded as the fleet key.

Location
Function verifyIplsIdentityOnServerHelloPayload() , in file IPLSHsmKeyServiceUtils.swift

Retest Results
2024-09-24 – Fixed 
NCC Group reviewed the changes WhatsApp made in code changes D62239026  and 
DD63464458  to address this issue. The client implementation now validates that the hk  and 
hek  fields have different values, and that the hk  public key equals the hard-coded HSM
fleet key. These changes fully mitigate this issue.

// Verify HSM key

guard let hsmPublicKeyBytes = serverHelloPayload.hkPub,

let hsmPublicKeySignature = serverHelloPayload.hkKeySignature else {

return .failure(.verifyServerHelloPayloadError("HSM public key bytes or signature 

is missing from hello payload"))

}

guard hsmFleetPublicKey.validateSignature(hsmPublicKeySignature, withMessage: hsmPublic

KeyBytes) else {

return .failure(.verifyServerHelloPayloadError("HSM public key signature failed 

validation"))

}

// ------------------------

// Verify HSM ephemeral key

guard let hsmEphemeralPublicKeyBytes = serverHelloPayload.hekPub,

let hsmEphemeralPublicKeySignature = serverHelloPayload.hekKeySignature else {

return .failure(.verifyServerHelloPayloadError("HSM ephemeral key bytes or 

signature missing from hello payload"))

}

guard hsmFleetPublicKey.validateSignature(hsmEphemeralPublicKeySignature, withMessage:

hsmEphemeralPublicKeyBytes) else {

return .failure(.verifyServerHelloPayloadError("HSM ephemeral public key signature 

failed validation"))

}

// SNIP

}
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Non Constant-Time AES-GCM Implementation
For ARM Platforms
Overall Risk Informational

Impact High

Exploitability Undetermined

Finding ID NCC-E015746P-GHL

Component iOS Client

Category Cryptography

Status Fixed

Impact
A malicious mobile app, running on the same device as the WhatsApp iOS application, may
be able to obtain the client AES-GCM keys when used by the client via cache attacks. This
would allow attackers to encrypt/decrypt contact information, contact information
encryption keys and to forge valid encrypted information.

Description
The IPLS protocol WhatsApp iOS client employs AES in the GCM block mode of operation to
protect two assets:

contact information, encrypted with client generated AES keys (contact information
encryption keys),

contact information encryption key, encrypted with a shared session key, which is
derived from the X3DH key agreement protocol between the HSM SEE, and the client.

The client AES-GCM operations are implemented in the NetworkUtils  Swift protocol
extension methods aesDecrypt() , and aesEncrypt() , in file NetworkUtils+Crypto.swift, as
illustrated below:

Info 

• 

• 

extension NetworkUtils {

/// Decrypts data using AES GCM

/// - Parameters:

///   - key: the AES key

///   - data: the data to decrypt

///   - nonce: a nonce

///   - auth: an auth tag

/// - Returns: the plaintext data

public static func aesDecrypt(_ key: Data, data: Data, nonce: Data, auth: Data) throws ->

Data {

guard let result = WABloksAESGCMDecrypt(key, data, nonce, nil, auth) else {

throw EncryptedPayloadError.invalidResponse("error decrypting response")

}

return result

}

/// Encrypts data using AES GCM

/// - Parameters:

///   - key: the AES key

///   - data: the data to encrypt

///   - nonce: a nonce

///   - aad: additional account data

///   - tagLength: auth tag len

/// - Returns: the plaintext data
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These functions wrap the MbedTLS cryptography library AES-GCM implementation in folder 
third_party/mbedtls. The library AES cipher in the GCM mode block mode of operation is
mostly implemented in files aes.c, and gcm.c. The library appears to use dedicated
hardware instructions for AES-GCM on x86 systems. It does not appear to use dedicated
instructions for ARM systems, the primary iOS platform; instead, it performs table lookups
for the AES and GHASH primitives, which underpin AES-GCM.

Table lookups may reveal the AES encryption keys, and GHASH hash subkeys via cache
attacks.

Recommendation
Consider using Apple CryptoKit framework’s AES-GCM implementation. Apple states that
CryptoKit has side channel-resistance.

Location
NetworkUtils  Swift protocol extension methods in file NetworkUtils+Crypto.swift

Retest Results
2024-09-27 – Fixed 
NCC Group reviewed the changes WhatsApp made in code diff D63505288  in response to
this finding. The WhatsApp team implemented NCC Group’s recommendation to use Apple
CryptoKit AES-GCM implementation, for devices running iOS 13+. WhatsApp plans to drop
support for iOS 12, which represents a tiny fraction of their users. Apple does not appear to 
support iOS 12 anymore and is therefore not likely to provide security patches for this
version. For these reasons, and considering the risk rating of this finding, NCC Group
considers that these changes address the issue.

public static func aesEncrypt(_ key: Data, data: Data, nonce: Data, aad: Data? = nil,

tagLength: Int) throws -> (data: Data, auth: Data) {

guard let encTuple = WABloksAESGCMEncrypt(key, data, nonce, aad, Int32(tagLength)),

let data = encTuple.firstObject as Data?,

let auth = encTuple.secondObject as Data?

else {

throw EncryptedPayloadError.encryption

}

return (data, auth)

}

// (SNIP)
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10 Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for
application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.
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Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or
software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.
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11 WhatsApp Contacts Cryptographic
Architecture

The following diagram illustrates NCC Group’s understanding of the architecture of
WhatsApp Contacts.
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12 Protocol Specification Review
The first phase of the WhatsApp Contacts’ privacy-preserving backup and restore feature
audit focuses solely on reviewing the specifications. This section provides notes and
recommendations regarding the Identity Proof Linked Storage (IPLS) protocol as is
described in the ipls.md document at commit 56f456e  (version 1.1). Findings with security
impact and their mitigations are described in the Finding Details section. NCC Group
observations below may no longer fully apply, and are presented for informational purposes
only.

Notes on Privacy Claims
The IPLS protocol leverages Hardware Security Modules (HSMs) and Auditable Key
Directories (AKDs) to provide a privacy-preserving backup and restore solution. WhatsApp
users create a keypair on their primary device, register their public key with AKD, and use
their private key to prove possession of the key to the WhatsApp HSM. During the contact’s
metadata backup flow, the user performs a handshake with the HSM to establish a
symmetric key which it will use to encrypt its secret data payload. The HSM securely stores
the payload. Later, during the contacts’ metadata restore flow, the user provides an AKD
proof of the link between their phone number and the new key, and also proves possession
of the new key by signing an HSM’s challenge.

It is worth noting that the metadata mainly contains contact names as they are entered by
the user. The metadata does not include contacts’ phone numbers (referred to as 
account_jid s in the design document), and as such phone numbers are visible to the
WhatsApp backend. It is also worth highlighting that WhatsApp servers can delete an
account’s stored data at any time.

There is also a notion of profile names (internally called “push names”) that users set for
themselves in their WhatsApp profiles. These profile names are visible to WhatsApp servers
as (encrypted) chat messages pass through their systems, but WhatsApp does not explicitly
store them. WhatsApp Contacts enables app users to give their in-app contacts names
other than what those contacts have set for themselves in their profiles. For example,
WhatsApp user Charlie may have contacts with the profile names “Alice” and “Bob”, but
Charlie could rename them in WhatsApp Contacts to “Mom” and “Dad”.

Notes on the Core Handshake Protocol
The following remarks are not security findings, but are a list of inconsistencies and missing
details that should be clarified in order to facilitate development.

Step 2: The quoted IplsServerHelloPayload  contains an extra challenge_response  field
which is unexplained and does not belong to this message (since the response to the
challenge is a value that the client will send to the server, not vice versa). The definition
in ipls.proto does not contain that extraneous field.

Step 3: The cloudflare_signature  is missing from the ClientInit  structure. Also 
session_create_t  is missing from the “HSM Session Table”, or possibly session_t  should
be renamed to session_create_t .

Step 4: Step 3 mentions that session_id_signature  is XEdDSA_SIGN(msg=HMAC-
SHA-256(hek_pub, session_id), key=hek_priv , however step 4 specifies that: “Client will
also verify session_id_signature  is the HMAC-SHA-256(hk_pub, session_id)  is signed by
the HSM ephemeral key”. There seems to be a typo in step 4, and hk_pub  should be
changed to hek_pub .

Step 9: In the IplsClientHelloPayload  message description, the IV index should be 3.

Step 11: It is stated that HSMs should enforce a 10 minute time to live (TTL) for
handshakes and abort if the creation timestamp was older than 10 minutes before now.
Further, it is stated “Note: +/- 60 seconds drift between HSM nodes is acceptable” (this

• 

• 

• 

• 

• 
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applies only to the extent that the session table is shared between distinct HSMs). The
difference between the current time ( now ) and the session creation timestamp
( session_create_t ) should therefore be checked to be at most 11 minutes; however, the
specification shows an explicit assertion that uses “ 20_minutes ” instead.

Step 11: cloudflare_signature_message  is a concatenation of epoch , digest , 
cloudflare_timestamp , and cloudflare_namespace . Here digest  is undefined.

Step 12: It is stated that “Client will update the SK(Session key)  derived above in step 11
with kem_shared_secret  outputted by decapsulation, to yield a quantum-safe shared
secret”. This step is performed by the HSM, and “Client” should be edited to “HSM”.

Step 16(2): The IplsClientSecretData  is required to include the client’s account_jid ,
however IplsClientSecretata  as is defined in the ipls.proto file only includes a map of 
key_id s to client’s secret key lists and is missing the account_jid .

Contact Metadata Plaintext Format, and Encryption Are Not Sufficiently Documented
Both the metadata plaintext format, and encryption should be specified to facilitate further
reasoning, and to ensure a correct implementation:

Metadata encryption: The documents provided to aid this review do not appear to
specify how contact metadata is encrypted. The team explained over chat that they
intend to use AES-GCM encryption with the client secret key. Updated 2024-10-02: The
details of how AES-GCM encryption is used were fully reviewed during the
implementation review phase.

Metadata plaintext format: The metadata plaintext data format should be carefully
devised and documented. NCC Group explained in finding "Contact Metadata Ciphertext
Length Side-Channel" how its serialization prior to encryption may affect the success of
length side-channel attacks. Specifically, it may help in determining whether a field was
populated by a user, or not.

No Authentication of Cloudflare Timestamp Field in HSM Record
In the course of the project, WhatsApp introduced a Cloudflare timestamp freshness
assertion over the lookup proof provided by the server to the HSM, to ensure client public
keys are not stale, as a fallback until HSM storage rollback protection is designed and
implemented. In the updated specification (ipls.md version 1.1), the HSM record is
augmented to contain a Cloudflare timestamp (in addition to the client account JID, client
wrapped secret data, and payload HMAC).

The Cloudflare timestamp does not appear to be validated for authenticity (specifically, the
payload HMAC does not appear to encompass this field). Modification of the timestamp field
of the HSM record, in addition to an HSM rollback by a malicious internal actor, would permit
usage of a compromised client identity key. However, the window of opportunity for usage
of a stale key and its associated lookup proof would be 6 hours, as the HSM enforces this
limit when it receives a lookup proof, with an accompanying Cloudflare assertion, before
proceeding with handling any request.

WhatsApp should ensure that the HSM record timestamp field is authenticated to mitigate
such attack.

Updated 2024-10-02: The implementation was fully reviewed during the implementation
review phase, and any findings were documented in the Finding Details section.

PBKDF2 could be Swapped with HKDF
Uploading or rotating IPLS client secret data requires generating a symmetric encryption key
on the primary device to encrypt the contacts’ metadata. This key is generated by passing

• 

• 

• 

• 

• 
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64 pseudorandom bytes (referred to as the base secret) to a Password-Based Key
Derivation Function version 2 (PBKDF2) with HMAC-SHA-256 as the PRF using 32 iterations.
PBKDF2 is designed to derive a cryptographic key from user-provided randomness which
often has low entropy. Presently the recommended number of iterations in such a scenario
is on the order of 600,000. However, since a CSPRNG is used to generate the base secret, it
presumably has acceptable entropy, and it can be expanded to a 128-byte secret key using
a Hash-based Key Derivation Function (HKDF). In addition to simplifying the design,
swapping PBKDF2 with HKDF will enhance performance without loss of security.

Duplicate Client Handshake Material
In the IplsClientHelloPayload  message, the client sends its handshake material ( IplsClient
HelloHandshakeMaterial ) twice: directly as a sub-element of IplsClientHelloPayload , and
again as part of the encrypted payload
( IplsClientRequestOpaquePayload.handshake_material ). The HSM verifies that both versions
are identical (step 13 of ipls.md), in order to strengthen the cryptographic binding of the
payload with the handshake. The second handshake material instance (inside the encrypted
payload) could be replaced with a hash of that material (e.g. with SHA-256), which would
preserve the expected security properties, but reduce the size of the encrypted payload
and therefore the network usage. In particular, the client handshake material, if using the
post-quantum KEM, includes a Kyber768 ciphertext, which has a size of 1088 bytes, while a
SHA-256 hash fits in 32 bytes.

Lack of Domain Separation
The protocol contains multiple instances of signatures of various objects. In particular, the
HSM permanent key ( hk_pub ) is signed with the HSM fleet key, but so is the HSM ephemeral
key ( hek_pub ). Since the two keys have the same format (32 bytes), an active attacker could
swap the two keys and their signatures without incurring immediate detection. No such
substitution attack seems to result in an exploitable vulnerability in the currently defined
protocol, but in general it is highly recommended to apply strict domain separation to ensure
that different uses of the same signing key over different kinds of objects cannot be
exchanged. Domain separation is easily achieved by using as signed data not the object 

that is to be signed, but the concatenation  for some prefix  which is specific to the
type of object that is signed. The prefix should be such that the boundary between prefix
and message is unambiguous; e.g. all prefixes may have a fixed, common size (say, 32
bytes), or all prefixes may consist of a zero-terminated ASCII string.

Updated 2024-10-02: key substitution was addressed by the WhatsApp team, as detailed in
findings finding "Protocol May Execute with Weaker Forward Secrecy Assurance" (iOS), and f
inding "Protocol May Execute with Weaker Forward Secrecy Assurance" (Android).

Redundant Elements
The ipls.md protocol includes several elements which are redundant, and thus increase the
computational cost, message size, and overall complexity, without providing additional
security features. Such redundant elements include the following:

Session ID: The session ID’s main use is to ensure freshness of the HSM’s response, by
having the HSM sign the session ID in conjunction with the HSM’s permanent public key
( hk_pub ) with its ephemeral private key ( hek_priv ); since the client generated the
session ID randomly, and the HSM’s ephemeral public key hek_pub  was signed by the
HSM fleet key, then this signature guarantees to the client that a real HSM has been
involved in computing this specific response. However, this freshness property is already
ensured by X3DH itself: the client has just generated its own ephemeral key pair
( cek_pub  and cek_priv ), and already knows that the session key SK  can be computed
only by an entity knowing hk_priv  (since hk_pub  is used in X3DH) and using that freshly

m

p ∥ m p

• 
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generated cek_pub  key. Moreover, session IDs have a one-to-one mapping to account
IDs, since the HSM must maintain the invariant that for any account_jid  value, a single
session ID should exist at any one time.

Note: the signature on the session ID also allows the client to detect a replay attack by a
hostile server one step earlier in the process, but this property has no real benefits since
the client cannot do much in that situation except declare that the process failed. Making
the server always return a payload encrypted with SK , even on PUT  and DELETE  requests
(e.g. a simple acknowledgement message), would ensure that the client always
ultimately gets explicit assurance that a real HSM was involved in the processing.

HSM challenge: The HSM challenge is a random value generated by the HSM and signed
by the client; it is similar to the session ID, but this time for the HSM to verify that the
client’s request is fresh. This is again redundant with X3DH: since the HSM generated a
fresh ephemeral public key pair ( hek_pub  and hek_priv ), which is used in X3DH, a client
request payload may be successfully decrypted by the server only if the sender used
that value of hek_pub .

Signatures on ephemeral EC keys: The HSM’s ephemeral public key hek_pub  is signed
with the HSM’s fleet key, while the client’s ephemeral public key cek_pub  is signed with
the client’s identity key ( cik_priv ). These signatures are redundant with the use of these
keys in X3DH, which already ensures mutual authentication: the client knows that the
resulting session key SK  can be computed only by the owner of hk_priv , since hk_pub  is
involved in the process; similarly, the server knows that the message comes from the
expected client, through the use of cik_pub  in X3DH. The extra ephemeral keys in X3DH
do not need to have additional authentication; their role is to ensure freshness of
communications and post-compromise security. A contrario, the signature on hk_pub
with the HSM fleet key is important: the client needs an a priori assurance that only a
true HSM running the expected software will be able to recompute the session key SK .
The signature on the Kyber768 key ( kem_pub ) can also be deemed useful, though its lack
would only allow rather contrived attack scenarios.

The overall protocol could be simplified by removing the redundant elements listed above
and still provide the expected security guarantees.

• 

• 
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13 Implementation Review Engagement Notes
In this section, we present various remarks about the implementation for informational
purposes only. None of them are a security vulnerability, but they were deemed worth
reporting for discussion and to avoid pitfalls with possible future extensions. As WhatsApp
implemented changes to their code in several areas following intermediate feedback from
the consultants during the course of the project, some initial observations from the NCC
Group team may no longer fully apply.

Extra Check Of RNG Output Length
The Rust new()  function implemented on the HsmRng  struct in the rand.rs source file checks
that the amount of requested entropy is equal to the amount of returned entropy as seen
highlighted below, or returns an error otherwise:

Entropy is obtained by a call to the C function get_random_bytes()  in the rand.c source file.
This function in turn calls the try_checked_memcpy()  function which verifies that both
amounts are equal as highlighted below, or returns an error otherwise.

impl HsmRng {

pub fn new() -> Result<Self> {

#[cfg(profilite)]

let _p = profilite::start_guard("HsmRng::new");

let mut seed: [u8; 32] = [0u8; 32];

let mut seed_len_inout: std::os::raw::c_uint = 32;

let fill_status: Status =

unsafe { see_native::get_random_bytes(seed.as_mut_ptr(), &mut seed_len_inout) };

if fill_status != STATUS_OK {

let err = get_status_string(fill_status);

bail!(

"Error creating HsmRng. Error getting HSM random bytes: {:?}",

err

);

}

if seed_len_inout != 32 {

bail!(

"Error getting HsmRng seed. Only received {:?} out of 32 random bytes",

seed_len_inout

);

}

Ok(Self::from_seed(seed))

}

Status get_random_bytes(unsigned char* output, M_Word* num_bytes_inout) {

M_Command command = {0};

command.cmd = Cmd_GenerateRandom;

command.args.generaterandom.lenbytes = *num_bytes_inout;

M_Reply reply = {0};

M_Status status = SEElib_Transact(&command, &reply);

Status result = Ok;

if (command_failed(status, &reply, "Cmd_GenerateRandom")) {

result = GenerateRandomError;

} else {

const unsigned char* data = reply.reply.generaterandom.data.ptr;

const M_Word data_len = reply.reply.generaterandom.data.len;
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The get_random_bytes()  function does not document or commit to this guarantee. If it did,
the extra validation in the Rust function could be omitted.

Non Constant-Time Comparison of Session ID
The validate_session()  function in the session_data.rs source file does not compare the
secret session ID value provided by the client in a request, with the value obtained from a
decrypted record by the HSM, in constant time as highlighted below. This may in principle
leak the correct value of the session ID and thus provide one of the steps required to
impersonate a client by forging a valid session. Any potential timing side-channels resulting
from this code are probably not exploitable in the current implementation (one of the first
difficulties in this case would be to guess the value within the session lifetime of 10
minutes). Nevertheless, NCC Group recommends using constant-time code to compare
secret data.

if (try_checked_memcpy(output, *num_bytes_inout, data, data_len)) {

result = SafeMemcopyFromHsmError;

} else {

*num_bytes_inout = data_len;

}

}

// Free any data allocated into `reply` by API call.

SEElib_FreeReply(&reply);

return result;

}

// Validate 1. session_ttl is valid, 2. session_id matches the one in encrypted session 

data

pub fn validate_session(

&self,

session_id: &str,

user_id_with_namespace: String,

) -> Result<(), ClientResponseError> {

if user_id_with_namespace != self.account_jid {

return Err(ClientResponseError::SessionDataRead(

"user ID does not match the one in persisted session data".to_owned(),

));

}

if session_id != self.session_id {

return Err(ClientResponseError::SessionIdMismatch);

}

let utc_now: DateTime<Utc> = Utc::now();

let now_ts: i64 = utc_now.timestamp();

let converted_now_ts: u64 = now_ts

.try_into()

.map_err(|_| ClientResponseError::Unknown)?;

if self.session_ttl < converted_now_ts {

return Err(ClientResponseError::SessionExpired);

}

Ok(())

}

}
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Entropy Usage Documentation And Implementation Discrepancies
Upon startup, the HSM SEE code instantiates a HSM context, which holds a pointer to a
cryptographically secure random number generator implemented on the HsmRng  struct. The 
rng_try_fill_bytes()  function permits obtaining the required amount of entropy from the
HSM context. HsmRng  is underpinned by the low-level get_random_bytes()  C function, which
itself calls the Entrust CodeSafe Cmd_GenerateRandom  HSM API. The source code states that
all rng usage relies on HsmRng , in the rand.rs source file:

This is not strictly correct. While this structure is used for generating random IVs for the
AES-GCM cipher block mode of operation, NCC Group noted the usage of the rand  crate th
read_rng().fill_bytes()  function for generating HSM challenges, ephemeral elliptic curve
keys and OsRng  for signing. The thread_rng() , ThreadRng , and OsRng  functionality
implemented on ThreadRng  appears to be backed by the getrandom()  system call. SEE does
not implement/whitelist this system call. Therefore, WhatsApp implemented a wrapper in file
syscall_wrapper.c around the getrandom()  system call, and linked its SEE binary with this
wrapper. The wrapper calls the same get_random_bytes()  described above.

The implementation team should consider updating the code documentation accordingly.

Support for Post-Quantum Cryptography
Note: Post-Quantum cryptography support was not in scope for the implementation review.

NCC Group notes that there is embryonic code for post-quantum cryptography support, but
it is not functional at the time of review. For instance, a dummy public key is generated,

/* HsmRng: Interface to native HSM crypto rng.

*

* HSM doesn't allow system calls to `getrandom`, so all rng usage relies on

* this struct.

*/

impl HsmRng {

pub fn new() -> Result<Self> {

#[cfg(profilite)]

let _p = profilite::start_guard("HsmRng::new");

let mut seed: [u8; 32] = [0u8; 32];

let mut seed_len_inout: std::os::raw::c_uint = 32;

let fill_status: Status =

unsafe { see_native::get_random_bytes(seed.as_mut_ptr(), &mut seed_len_inout) };

if fill_status != STATUS_OK {

let err = get_status_string(fill_status);

bail!(

"Error creating HsmRng. Error getting HSM random bytes: {:?}",

err

);

}

if seed_len_inout != 32 {

bail!(

"Error getting HsmRng seed. Only received {:?} out of 32 random bytes",

seed_len_inout

);

}

Ok(Self::from_seed(seed))

}
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signed, and sent by the HSM to the client in the handle()  function on the InitHandler
struct, in the init.rs source file. This arguably unnecessarily increases the attack surface of
the SEE system, while the code is not fully implemented.

NCC Group also notes that some of the documentation, including the protocol specification
in the ipls.md file, was updated to include post-quantum cryptography since the last design
review.

Integration Testing and Auditor Signature TTL Verification
During the course of the review, change D61499433  was implemented to disable auditor
signature TTL in integration tests, as shown in the code excerpt below, in the auditor_signat
ure_verifier.rs source file.

The feature integration_test  is enabled by default, thus disabling this check globally. The
WhatsApp team should ensure this change will not impact production.

Erratum: aes_gsm  for AES-GCM operations
In several locations within the codebase, AES-GCM is incorrectly identified as “AES-GSM”.
The typo stems from definitions within the utils.rs source file, lines 75 and 97, which define
helper functions for aes_gsm_decrypt  and aes_gsm_encrypt  respectively. These functions
appear to perform standard AES-GCM operations, and should be named as such. It is noted
in passing that the same typo is also present in unrelated code for FB Pay.

Duplicated Protobuf Files
The protobuf file specifying IPLS messages is duplicated in several codebases and does not
appear to be synchronized among them. The main locations are the following, in order from
most recently updated to least recently updated, with main differences noted:

whatsapp-common/../ipls.proto: last updated 14 August, 2024 
uses proto2

request type enum  capitalized as IPLSRequestType

session_id_signature  (field 8) of IplsServerHelloPayload  marked as deprecated

cek_pub_signature  (field 7) of IplsClientHelloHandshakeMaterial  marked as 
deprecated

whatsapp/../ipls.proto: last updated 17 July, 2024 
uses proto3

request type enum  capitalized as IPLSRequestType

session_id_signature  (field 8) of IplsServerHelloPayload  present

cek_pub_signature  (field 7) of IplsClientHelloHandshakeMaterial  present

• 
◦ 

◦ 

◦ 

◦ 

• 
◦ 

◦ 

◦ 

◦ 

// 4. timestamp not too old compared to HSM clock

let now_ts: i64 = utc_now.timestamp_millis();

let converted_now_ts: u64 = now_ts.try_into().map_err(|_| {

ClientResponseError::InvalidRequest(FieldInfo::PayloadProtobuf(format!(

"Failed to convert now timestamp to u64: {now_ts:?}"

)))

})?;

if converted_now_ts > (message.timestamp + AUDITOR_SIGNATURE_TTL_IN_MILLISECONDS) {

// Do not validate auditor signature TTL in integration tests, since we can't

// get fresh auditor signatures for integration tests.

#[cfg(not(feature = "integration_test"))]

return Err(ClientResponseError::OldAuditorSignature);

}
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whatsapp-iphone/../contact_encryption_ipls.proto: last updated 2 August, 2024 
uses proto3

request type enum  capitalized as IplsRequestType

session_id_signature  (field 8) of IplsServerHelloPayload  absent

cek_pub_signature  (field 7) of IplsClientHelloHandshakeMaterial  present

whatsapp-android/../ipls.proto: last updated 1 August, 2024 
uses proto3

request type enum  capitalized as IplsRequestType

session_id_signature  (field 8) of IplsServerHelloPayload  present

cek_pub_signature  (field 7) of IplsClientHelloHandshakeMaterial  present

There are also differences in comments and order of messages.

32-bit Assumption
In the syscall_wrapper.c source file, the code assumes that it is compiled and run on a 32-
bit system (lines 30-33 and again lines 76-78), so that size_t  and uint32_t  have the same
size. The HSM hardware is a PowerPC CPU (Freescale e5500 cores) that supports both 32-
bit and 64-bit modes, hence the code may conceptually be compiled in 64-bit mode, which
will break that assumption. It is thus recommended to at least include a protection
mechanism that will abort compilation if the target mode is not 32-bit; for instance, the
following could be added to syscall_wrapper.c:

This code will prevent compilation from completing if the target system uses pointers that
are larger than 32 bits.

An alternative would be to make the code compatible with 64-bit mode, which could have
performance benefits, e.g. for computing some hash functions such as SHA-384 or SHAKE.
However, this is not recommended because the 64-bit multiplication opcodes of e5500
cores happen to have execution timings that depend on the values of the input operands.
Specifically:

In 32-bit mode, a multiplication of two unsigned 32-bit integers with a 64-bit result will
use the mullw  and mulhwu  instructions (for the low and high halves of the result), which
both have fixed execution timings (4-cycle latency and 1-cycle reciprocal throughput).

In 64-bit mode, similar opcodes mulld  and mulhdu  can multiply two unsigned 64-bit
integers, into a 128-bit product. However, these instructions have varying latencies (4 to
7 cycles) and reciprocal throughputs (2 or 4 cycles) depending on the sizes and signs of
the operands (note that mulld  covers both the sign and unsigned cases, which do not
differ in the low half of the output products, and thus may leverage the signed
interpretation of operands).

When used in 64-bit mode, the X25519 and Ed25519 implementation (the curve25519-dalek
library) will use the 64×64→128 multiplications in order to improve performance, which
unfortunately leads to non constant-time operations that can at least conceptually be
leveraged into a timing attack that leaks X25519 and Ed25519 private keys. Therefore, 64-bit
mode should not be used in the SEE application in its current state.

• 
◦ 

◦ 

◦ 

◦ 

• 
◦ 

◦ 

◦ 

◦ 

• 

• 

#include <stdint.h>

#if (INTPTR_MAX >> 31) != 0

#error Only 32-bit mode is supported

#endif
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Busy Loops
The SEE application is organized as several asynchronous tasks using the Tokio framework.
A custom Tokio scheduler is created by calling tokio::runtime::Builder::new_current_thread
() , which will use a single thread to run all tasks. Within the application, a busy-looping
pattern is used for several long-running tasks; it can be seen for instance in the …/
see_job_device/mod.rs (lines 115 and 289), …/see_job_processor/mod.rs (line 101), and …/cli
ent_request_processor/mod.rs (line 50) source files. In this pattern, a loop is used, which
repeatedly checks a condition (e.g. whether a given queue is empty or not), then calls 
yield_now()  to let other tasks run:

This pattern has two undesirable characteristics:

If the application is nominally idle and just waiting for the next request from the outside
world, then all such long-running tasks will keep spinning, repeatedly checking the
queues and yielding. From the point of view of the SEE kernel, the thread will be always
busy, and the core on which it runs will never enter an idle state. This will induce a higher
energy usage and operating temperature than if the CPU core was allowed to be idle.
The HSM lifetime, before hitting a hardware failure, might be reduced.

The yielding mechanism relies on the assumption that all runnable tasks are scheduled in
a round-robin way, and that the task that calls yield_now()  is moved to the very end of
the list of runnable tasks, thus ensuring that all other runnable tasks are regularly
scheduled. This is how the “current thread” Tokio scheduler operates for now, but the 
Tokio documentation explicitly denies any such guarantee. In a future version of Tokio,
the loop-and-yield pattern might instead run only a subset of the runnable tasks and
consistently avoid some other tasks, leading to an application failure. Also, the
application might later on be modified to support using several native threads, in order to
leverage the multiple cores of the CPU (the NXP QorIQ T1042 has four e5500 cores) for
improved performance; in such a case, a different scheduler would be used, with a
different behaviour upon explicit yielding.

An alternative pattern, which would allow CPU idling and avoid assumptions on the
scheduler strategy, would be to make such loops block (with the Tokio synchronization
primitives) until they have actual requests to process.

Avoidable Signature Generation
In the IPLS protocol specification, each HSM has its own permanent public/private key pair
( hk_pub / hk_priv ), and generates a new ephemeral public/private key pair ( hek_pub /

• 

• 

loop {

{

let mut requests_guard = self.requests.lock().unwrap();

let requests = &mut *requests_guard;

if let Some(requests_vec) = requests {

// <SNIP>

}

}

// After processing the previous set of requests, SeeJobProcessor

// will "block" in this method until the next batch of requests is

// received. Since SEE is single threaded, to ensure other tasks

// (e.g. RaftTask) can run, we yield here.

let _ = tokio::task::yield_now().await;

}
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hek_priv ) when receiving a client request. The HSM has moreover access to the fleet
private key ( fleet_priv ) and uses it to sign both hk_pub  and hek_pub  (and also kem_pub , if
used). The client verifies these signatures relatively to the fleet public key, which is
hardcoded in the client. The X3DH key exchange is performed with hk , hek , and the
corresponding client-side permanent ( cik ) and ephemeral ( cek ) keys.

Since it is not actually important for security that the HSM’s permanent public key ( hk ) and
the fleet key be distinct, the SEE application conflates the two, i.e. it sends a copy of the
fleet key as hk_pub , and the signature on the fleet key is then a self-signature (the fleet key
signs itself). In the implementation, this self-signature is computed anew for every request
(in init.rs):

Since the fleet key does not change, that signature value does not have to be recomputed
each time; it could be cached locally. Such caching would reduce the computation cost in
the HSM.

Alternatively, as pointed out in finding "Protocol May Execute with Weaker Forward Secrecy
Assurance", since the security does not rely on hk  being distinct from the fleet key, the
protocol could be amended to simply remove the sending of hk_pub  and the accompanying
signature; instead, the client may simply assume the situation which is already applied by
the server, i.e. that hk_pub is the fleet public key, that the client already knows. This would
reduce the used network bandwidth (no need to transmit a key that the client already has)
and allow removing both the self-signature generation (in the HSM) and the self-signature
verification (in the client).

Allocation Checking
In the see_job.c source file, a buffer is allocated but there is no check for allocation failure:

If the memory allocation fails, then malloc()  will return NULL  and the write access will be
performed at an invalid (low) address, which triggers undefined behaviour. Low-memory
conditions can usually be forced by the host, e.g. by sending a (fake) request split into a
very large number of individual “pages”.

Android Client Digital Signature Validation
In its Server Hello message, the HSM SEE sends its long term public key hk , its ephemeral
public key hek , and a signature for each of their values to the client. Both keys are signed
with the HSM fleet key, which is the private counterpart of hk . The client validates that both
hk  and hek  are signed by the hard-coded HSM fleet key.

The Android client digital signature validation implementation wraps a vendored version of
Signal’s curve25519-java  library with pure Java, and JNI/C language implementations in the
general purpose CryptoUtils  Java class. Both implementations do not check that the public
key used to sign the hk , and hek  values is not an elliptic curve point of low order. This
would in principle enable attackers to forge valid signatures for arbitrary messages.
However, it is assumed that the attacker would not have control over the client hard-coded
public key for the HSM fleet, making this issue moot in the current implementation. It is
worth keeping in mind though, if the CryptoUtils  class is used for other purposes, and/or in
other projects in the future.

let hk_key_signature: [u8; 64] = hk_signing_key.sign(&hk_pub, OsRng);

SmPacketReq* packet_req = (SmPacketReq*)malloc(sizeof(SmPacketReq));

packet_req->sm_packet_request = sm_req;
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Test HSM Fleet Key
The WhatsApp Android Client authenticates the HSM Hello message payload in a call to the 
assertIplsHsmIdentity()  function, using a hard-coded HSM fleet public key passed as an
argument variable named MOCK_HSM_FLEET_KEY , as illustrated in the code extract below of the
handleClientIplsInitSuccessResponse()  function in the 
ContactMetaDataEncryptionHelper.kt source file:

This note is a reminder to ensure that this variable is set to the correct value in production,
and to consider renaming the variable accordingly.

Contact Metadata Padding Before Encryption
The Android client pads contact metadata before encryption, in order to not reveal its size to
observers of encrypted data, in the constructContactMetadataProto()  function within the Co
ntactMetaDataEncryptionHelper.kt source file:

The highlighted conditional branch implicitly assumes that the padding length might be zero,
and that therefore a record does not require padding. If it is the case, then the size of a
record that does not require padding will be two bytes less than a record that was padded,

@WorkerThread

private fun handleClientIplsInitSuccessResponse(response: ClientIplsInitResponse.Success) {

Log.i("${TAG}/handleClientIplsInitSuccessResponse ${requestType}")

val serverHelloPayload = response.serverHelloPayload

val responseByteArray = Base64.decode(serverHelloPayload, Base64.NO_PADDING)

val serverHelloPayloadProto = Ipls.IplsServerHelloPayload.parseFrom(responseByteArray)

val hsmAssertionResult =

clientIplsHandshakeUtils.assertIplsHsmIdentity(serverHelloPayloadProto, MOCK_HSM_FLEET_

KEY)

// SNIP

fun constructContactMetadataProto(

waContact: WAContact

): ContactMetadataOuterClass.ContactMetadata {

val contactMetadataBuilder = ContactMetadataOuterClass.ContactMetadata.newBuilder()

contactMetadataBuilder.firstName = (waContact.given_name ?: "").take(MAX_FIRST_NAME_THRESHO

LD)

contactMetadataBuilder.lastName = (waContact.family_name ?: "").take(MAX_LAST_NAME_THRESHOL

D)

contactMetadataBuilder.businessName =

(waContact.company ?: "").take(MAX_BUSINESS_NAME_THRESHOLD)

contactMetadataBuilder.syncPolicy =

when (waContact.syncPolicy) {

ContactSyncPolicyType.SYNC_WITH_DEVICE ->

ContactMetadataOuterClass.ContactMetadata.SyncPolicy.SYNC_TO_DEVICE

else -> ContactMetadataOuterClass.ContactMetadata.SyncPolicy.NOT_SYNC_TO_DEVICE

}

val metadataProtoWithoutPadding = contactMetadataBuilder.build()

val requiredPaddingLength = paddingLength(metadataProtoWithoutPadding)

if (requiredPaddingLength > 0) {

return transformToProtoWithPadding(metadataProtoWithoutPadding, requiredPaddingLength)

} else {

return contactMetadataBuilder.build()

}

}
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because of the addition of the protobuf padding  field for the latter. This may thus leak
whether the contact metadata was the maximum allowed size, or not. However, the required
amount of padding is computed as follows:

where the current PROTO_SIZE_THRESHOLD  value is large enough, such that the else
conditional branch will never be taken. The WhatsApp team is still in the process of deciding
the value of this threshold, and other thresholds (e.g., maximum name size). Therefore, the
above should be taken into account when finalizing these values. Obviously, occurrences of
records that do not require padding should be rare, or even inexistent. However, this may
offer an avenue to forge, disseminate, and track such encrypted records for other malicious
purposes.

Unnecessary Length Management
In the support code for AES encryption specific to the Marvell HSMs, within the aes.rs
source file, when applying AES/GCM encryption, the plaintext length is checked to be less
than a constant size, which is 4000000000:

However, immediately after that check, the plaintext length is converted to the 16-bit type 
c_ushort  (because the underlying native HSM function cannot process plaintexts larger than
65535 bytes). This conversion is checked ( try_into()  is used and any error result is
propagated to the caller). Thus, the second conversion is much stricter that the first one,
which is thereby rendered useless. It may be noted that in the corresponding decryption
code, the same conversion (of the ciphertext length) to c_ushort  is used, but there is no
prior check of the ciphertext length against AES_256_GCM_MAX_ENCRYPTION_SIZE_BYTES . The
extra test in the encryption path is probably a remnant of an initial code import from the
support code for the Entrust HSM, which supports 32-bit plaintext/ciphertext lengths and
for which that test is conceptually more meaningful. An unnecessary test is harmless in
itself, but it might indicate that the implementation is not fully stabilized yet.

Another length-related quirk occurs in the same file; when encrypting, a ciphertext  vector
is created to receive the ciphertext, with the same length as the plaintext since GCM is a
length-preserving mode:

This is followed by the invocation of the native encryption function ( encrypt_aes() ), which
receives a native pointer to the content area of ciphertext ; the native function is unaware
that the destination area is part of a Rust vector ( Vec ), and the ciphertext_len  variable is
not referenced at all in that code chunk. Finally, a truncate()  call is performed:

Since, at that point, neither the length of ciphertext  (as a vector) nor the ciphertext_len
variable have been modified, the ciphertext  vector length must still be equal to 
ciphertext_len , and the truncation does nothing. This truncation operation is probably a

val requiredPadding = Math.max(PROTO_SIZE_THRESHOLD - totalBytes, 0)

ensure!(

plaintext.len() <= AES_256_GCM_MAX_ENCYPTION_SIZE_BYTES,

"Overlimit 128 AES-GCM plaintext"

);

let plaintext_len: c_ushort = plaintext.len().try_into()?;

let ciphertext_len: c_ushort = plaintext_len;

let ciphertext: Vec<u8> = vec![0u8; ciphertext_len.try_into()?];

ciphertext.truncate(ciphertext_len.try_into()?);
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trace of an older code version which would have not used GCM, but a different, non-length-
preserving encryption mode, such as CBC. A similar unnecessary truncation is present in the
decryption path.

Malicious Insider Could Prevent Epoch Creation and Attestation
Update 2024-09-26: The WhatsApp team validated that epochs are increasing, and
sequential, rendering the observations in this subsection moot. It is kept for informational
purposes only.

By publishing epochs with increasing – but not sequential – epoch numbers, a malicious
WhatsApp insider could effectively brick the Cloudflare attestation system, preventing the
HSM from successfully verifying any user’s identity, and preventing the creation of new
epochs (i.e., new sets of public key changes in the AKD).

Cloudflare acts as a third-party attestation service for the AKD, providing signed
attestations that the AKD root digest for a namespace has a certain value in a certain epoch.
WhatsApp requests a signature from Cloudflare by invoking the “Create a new epoch” API,
which is specific to a particular namespace, with a digest (32-byte value) and an epoch
(encoded as int64 ). WhatsApp requires the Cloudflare signature on the epoch and digest at
the time an epoch is published (i.e., when a set of changes to the AKD is made public).
According to the API documentation, Cloudflare requires that “[e]pochs must be increasing”
to prevent split-view attacks where there are different signed digests for the same epoch.
However, the documentation does not state that epochs must be sequential.

Suppose the last published epoch, with a signed attestation from Cloudflare, is N. A
malicious or compelled WhatsApp insider could invoke the “Create a new epoch” API with
epoch value N+2. This would prevent WhatsApp from ever publishing epoch N+1 in that
namespace, since it requires signed attestations to publish epochs, and audit proofs require
published epochs to be sequential. The malicious or compelled WhatsApp insider could also
invoke the “Create a new epoch” API with the maximum epoch value, 264-1. In this case, the
Cloudflare signing API would sign no further requests, rendering the AKD for that
namespace entirely useless. The HSM would no longer service client requests without up-
to-date signatures from Cloudflare.

The denial of service could be expanded if the insider further invokes the “Create
namespace” API for all namespaces allowable by the HSM, and repeats this attack for each,
preventing their legitimate use. There are 256 other namespaces allowed by the HSM, due
to the use of u8::from_str()  in check_cloudflare_namespace_format() .

While such a denial-of-service attack would be detectable (via Cloudflare signature logs and
the list of namespaces), it is not preventable. However, requiring Cloudflare to enforce 
sequential, not just increasing, epoch numbers in each namespace would prevent it.

HSM Critical Reliance On Third-Party Service Availability
The WhatsApp Contacts service is underpinned by a read-only HSM configuration in
production. The HSM application relies on a third-party attestation service from Cloudflare
to operate normally. That is, if the Cloudflare service is not available, or does not produce
the correct data, the HSM cannot validate, and will therefore reject user WhatsApp Contacts
service requests. resulting in a denial of service. Most issues with the third-party service
would likely to be transient in nature, and recoverable e.g. temporary connectivity loss
because let’s say a router failed, until fail-over happen.

Destruction of the attestation service private key would result in bricking the HSM fleet in
the current WhatsApp HSM software implementation, and permanent denial of service for
the WhatsApp Contacts service. In general, WhatsApp should seek some level of assurance
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that the attestation service is resilient, and secure. NCC Group also understands that
WhatsApp may implement support for other attestation services to avoid reliance on a single
provider.

Entrust HSMs Identify Keys With SHA-1
In Entrust SEE machines, permissions are enforced by checking that an operation is
authorized by a key with a certain hash. For example, the AES and X25519 fleet keys’
permissions allow exporting them to the host encrypted with a key whose hash matches 
hkm  from the NFKM Info of the Security World. According to vendor documentation (nshield-
v13-6-3-utilities-reference.pdf, p. 194), hkm  is “the SHA-1 hash of the Security World key”.

SHA-1 is not a collision-resistant hash function, and there have been practical
implementations of chosen-prefix collision attacks (https://shattered.io/). While the HSM
vendor documentation states (ncore-v13-6-3-developer-tutorial.pdf, p. 109) that “SHA-1 is a
hash function that has been approved by NIST”, NIST actually deprecated the use of SHA-1
for digital signatures in 2011 and announced in 2022 that SHA-1 has “reached the end of its
useful life”.

If the HSM setup ceremony were compromised, an insider could craft a pair of keys ahead of
time that have the same hash, and use one of these illegitimately. This further illustrates the
importance of auditing the ceremony to ensure that all keys were freshly generated by the
HSM.
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