

go-cose Security Assessment

Microsoft Corporation

Version 1.0 – May 16, 2022

© 2022 – NCC Group

Prepared by NCC Group Security Services, Inc. for Microsoft. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Gérald Doussot

Kevin Henry

Elena Bakos Lang

Thomas Pornin

Prepared For

Quim Muntal Diaz

Steve Lasker

Josh Watson

Roy Williams

Shiwei Zhang

1 Executive Summary

Synopsis

Between the days of April 25th and May 6th, 2022, four (4) consultants from NCC Group

engaged in a security assessment for a total of fifteen (15) person-days of effort reviewing

Microsoft’s contributions to the go-cose library, a Go library implementing signing and

verification for CBOR Object Signing and Encryption (COSE), as specified in RFC 8152. This

library focuses on a minimal feature set to enable the signing and verification of COSE

messages using a single signer, aka “sign1”.

The purpose of this assessment was to identify cryptographic vulnerabilities and

application-level security issues that could adversely affect the security of the go-cose

library. This assessment was performed by NCC Group under the guidelines provided in the

statement of work for the engagement.

Scope

NCC’s evaluation included:

github.com/veraison/go-cose, commit 8cef769 : Primary target of review; a fork of the

go-cose library implementing “sign1” functionality.

github.com/fxamacker/cbor, v2.4.0: The CBOR library utilized by go-cose . Review was

limited to portions of the API and library functions used directly by go-cose .

Testing Methods

Testing was performed using NCC Group’s standard methodology for a code-assisted

review. Microsoft provided NCC Group with access to source code and documentation in

order to improve the effectiveness of the testing. NCC Group’s consultants used a

combination of manual test techniques and proprietary and public automated tools

throughout the assessment. The following aspects of go-cose were reviewed as part of

this assessment:

Information leaks through exposed files, APIs, inappropriate error handling, and more

Business logic and ability to make unauthorized changes

Encoding-related issues, such as message canonicalization and serialization attacks

Identification of threats to the cryptosystem and the risks associated with threats, such

as ways for an attacker to:

Obtain inappropriate access to cryptographic keys and sensitive and/or protected

information

Tamper or otherwise influence protected information

Implementation of cryptographic primitives, including the following:

Selection of cryptographic primitives and algorithms

Appropriate use of standard libraries or implementations

Validation of parameters to cryptographic algorithms

Use of random numbers for cryptographic operations

Cryptographic protocol sequences and data flows, including the following:

Authentication and/or identification of protocol participants

State management, with emphasis on invalid state transitions

Malicious tampering, re-ordering, and replaying of protocol messages

Side channels in cryptographic primitives and protocols:

Timing attacks at the protocol, primitive, and underlying library level

Oracle attacks, such as the use of padding and compression oracles

•

•

•

•

•

•

◦

◦

•

◦

◦

◦

◦

•

◦

◦

◦

•

◦

◦

2 / 19 – Executive Summary

https://datatracker.ietf.org/doc/html/rfc8152
https://github.com/veraison/go-cose/tree/8cef769ef52c8fc111a8b1e4da83649f1cb170d0
https://github.com/fxamacker/cbor

Key Findings

During the assessment, NCC Group identified:

One informational finding, Signature Size May Be Incorrect For Some Curves: For some

elliptic curves, the encoded signature size may be incorrect, leading to interoperability

issues or rare failures. The standard NIST curves (P-256, P-384 and P-521) are not

affected. This issues has subsequently been fixed.

A detailed listing of requirements and recommendations from RFC 8152 relevant to go-

cose , with an explanation of how go-cose has addressed them, where applicable.

A detailed documentation review and minor comments that did not warrant standalone

findings, but that are likely of interest to the go-cose team.

Strategic Recommendations

Upon completion of the assessment, all findings were reported to Microsoft along with

recommendations:

Ensure all function documentation is consistent, clear, and concise. In general, functions

and requirements are well-documented, but an editing pass for correct grammar and

consistency would improve the quality of the documentation.

Consider providing safer interfaces for common user-facing functionality. Features such

as new algorithm registration may be unsafe in some situations, such as in multi-

threaded contexts. Adherence to RFC requirements also relies on the user not modifying

a message after signing, which suggests a SignAndMarshalCBOR() interface may be

safer than distinct Sign() and MarshalCBOR() functions for the “sign1” use case.

It was observed that the library supports duplicate labels across the protected and

unprotected portions of the header, in direct contradiction to the RFC. While the

provided interface within the library facilitates safe usage, higher level libraries may

merge header fields, potentially creating ambiguity. Consider enforcing uniqueness of

labels across the entire header or updating documentation to clearly highlight the

implemented behavior.

Retest Results

Following initial reporting of these issues to Microsoft, NCC Group reviewed several pull

requests in accordance with the above methodology and observed that the reported issues

were effectively addressed.

1.

2.

3.

•

•

•

3 / 19 – Executive Summary

https://datatracker.ietf.org/doc/html/rfc8152

2 Dashboard

Target Data Engagement Data

Name go-cose Type Security Assessment

Type Security Library Method Cose-assisted

Platforms Go Date 2022-04-20

Environment Local Consultants 4

Targets

veraison / go-cose A fork of the go-cose library that adds sign1 support.

Finding Breakdown

Critical issues 0

High issues 0

Medium issues 0

Low issues 0

Informational issues 1

Total issues 1

Category Breakdown

Cryptography 1

 Critical High Medium Low Informational

4 / 19 – Dashboard

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Signature Size May Be Incorrect For Some Curves Fixed 6XB Info

5 / 19 – Table of Findings

4 Finding Details

Signature Size May Be Incorrect For Some

Curves

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-E002762-6XB

Category Cryptography

Status Fixed

Impact

For some elliptic curves, the encoded signature size may be incorrect, leading to

interoperability issues or rare failures. The standard NIST curves (P-256, P-384 and P-521)

are not affected.

Description

An ECDSA signature consists of a pair of integers (r, s); the two integers are in the 1 to q-1

range, where q is the order of the subgroup of the elliptic curve in which the signature is

computed. In COSE, such a signature is encoded into bytes using the following process,

described in RFC 8152:

Neither the notion of “key size” nor the key_length value are defined in RFC 8152; thus,

the expected length of each half of the signature is ambiguous (this is arguably a defect of

the RFC itself). Since the integers are taken modulo the curve subgroup order (q), it would

be natural to use the size of that order as the key_length value. The go-cose

implementation, however, uses the BitSize curve parameter:

In the Go API, the BitSize value is really the size (in bits) of the finite field in which curve

point coordinates are defined, not the size of the curve (sub)group order. The subgroup

order may be shorter than the field, especially when the subgroup of interest is not the

complete curve (i.e. the cofactor is not equal to 1); if the subgroup order is at least 1 byte

shorter than the field, then go-cose may reject signatures generated by third-party

implementations, and similarly go-cose may produce signatures that third-party

implementations may reject. It may also be that the curve order is up to 1 bit larger than the

field size; in that case, the computed r or s might fail to be encodable within the computed

size of n bytes, leading to a signature process failure.

Info

The signature algorithm results in a pair of integers (R, S). These

integers will be the same length as the length of the key used for

the signature process. The signature is encoded by converting the

integers into byte strings of the same length as the key size. The

length is rounded up to the nearest byte and is left padded with zero

bits to get to the correct length. The two integers are then

concatenated together to form a byte string that is the resulting

signature.

Using the function defined in [RFC8017], the signature is:

Signature = I2OSP(R, n) | I2OSP(S, n)

where n = ceiling(key_length / 8)

n := (curve.Params().BitSize + 7) / 8

6 / 19 – Finding Details

https://datatracker.ietf.org/doc/html/rfc8152#section-8.1
https://pkg.go.dev/crypto/elliptic@go1.18.1#CurveParams

For the usual NIST curves with prime order fields (P-256, P-384 and P-521), the field

modulus and the curve order have exactly the same size (256, 384 and 521 bits,

respectively), and are thus not impacted.

Recommendation

The length of the curve subgroup order should be used instead

(curve.Params().N.BitLen()).

Location

ecdsa.go, lines 99 and 113

Retest Results

2022-05-04 – Fixed

This issue was filed on GitHub: https://github.com/veraison/go-cose/issues/59, resulting in

the following pull request implementing the recommendation: https://github.com/veraison/

go-cose/pull/60/commits.

7 / 19 – Finding Details

https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/ecdsa.go#L99
https://github.com/veraison/go-cose/issues/59
https://github.com/veraison/go-cose/pull/60/commits
https://github.com/veraison/go-cose/pull/60/commits

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

8 / 19 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

9 / 19 – Finding Field Definitions

6 RFC 8152 Requirements Review

This section surveys formal requirements (e.g., MUST, MUST NOT) and SHOULD

statements from the RFC and highlights how go-cose has addressed them.

Valid Map Labels

The presence of a label in a COSE map that is not a string or an integer is an error.

Applications can either fail processing or process messages with incorrect labels;

however, they MUST NOT create messages with incorrect labels. (Section 1.4)

When constructing headers, the library provides a validateHeaderLabel() function to

enforce this requirement; see headers.go:

This function returns an error if the label is not an 8-64-bit uint , int , or a string . Note

that a uint64 label will be converted to an int64 without any overflow check. Checks are

enforced in MarshalCBOR() for both protected and unprotected headers, thereby satisfying

the “MUST NOT” portion of this requirement.

For incoming messages, the function UnmarshalCBOR() for both protected and unprotected

headers calls validateHeaderLabelCBOR() , which in turn unmarshals the elements of the

provided map if and only if the labels are of type uint , int or string , and also protects

against potential integer overflow from the parsed label.

Header Parameters

protected: Contains parameters about the current layer that are to be

cryptographically protected. This bucket MUST be empty if it is not going to be

included in a cryptographic computation. This bucket is encoded in the message

as a binary object. This value is obtained by CBOR encoding the protected map

and wrapping it in a bstr object. (Section 3)

The user-facing API expects the user to:

Create/retrieve signer information (e.g., a private key);

Create and populate a Sign1Message object;

Sign the message;

Marshal (CBOR encode) the message.

Marshal will fail if a signature is not set, which ensures the user has called Sign()

previously. The Sign() function will confirm that the signing algorithm appears in the

protected header and matches the algorithm of the provided key. If the algorithm is

missing, the protected header will be populated with the signing algorithm of the provided

signing key. Therefore, use of the above sequence of API calls will ensure that the

protected header is always non-empty if it is involved in a cryptographic computation.

The library does not prevent a user from manually populating the signature field or

modifying the protected header after calling Sign() to potentially violate this requirement.

Such modifications would cause signature validations to fail.

334

335

336

337

338

339

1.

2.

3.

4.

// validateHeaderLabel validates if all header labels are integers or strings.

//

// label = int / tstr

//

// Reference: https://datatracker.ietf.org/doc/html/rfc8152#section-1.4

func validateHeaderLabel(h map[interface{}]interface{}) error {

10 / 19 – RFC 8152 Requirements Review

https://datatracker.ietf.org/doc/html/rfc8152#section-1.4
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L334-#L375
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L334-#L375
https://datatracker.ietf.org/doc/html/rfc8152#section-3

Encoding of Maps

Senders SHOULD encode a zero-length map as a zero-length string rather than as

a zero-length map (encoded as h’a0’). The zero-length binary encoding is

preferred because it is both shorter and the version used in the serialization

structures for cryptographic computation. After encoding the map, the value is

wrapped in the binary object. (Section 3)

The above requirement is implemented by MarshalCBOR() for a protected header, where

the encoded header is set to a zero-length string if the header map is empty; see

headers.go:

Encoding of Empty Values or Zero-Length Values

Recipients MUST accept both a zero-length binary value and a zero-length map

encoded in the binary value. The wrapping allows for the encoding of the

protected map to be transported with a greater chance that it will not be altered in

transit. (Badly behaved intermediates could decode and re-encode, but this will

result in a failure to verify unless the re-encoded byte string is identical to the

decoded byte string.) This avoids the problem of all parties needing to be able to

do a common canonical encoding. (Section 3)

Support for both of these types is provided by the underling CBOR library. Support for both

is explicitly tested; see test cases in headers_test.go, for example:

The above ensures that both an empty map and an empty byte string produce the

expected empty protected header.

Uniqueness of Labels

Labels in each of the maps MUST be unique. When processing messages, if a label

appears multiple times, the message MUST be rejected as malformed. (Section 3)

163

164

165

166

167

168

169

170

171

172

// MarshalCBOR encodes the protected header into a CBOR bstr object.

// A zero-length header is encoded as a zero-length string rather than as a

// zero-length map (encoded as h'a0').

func (h ProtectedHeader) MarshalCBOR() ([]byte, error) {

var encoded []byte

if len(h) == 0 {

encoded = []byte{}

}

...

return encMode.Marshal(encoded)

{

name: "empty header",

data: []byte{0x40},

want: ProtectedHeader{},

},

{

name: "empty map",

data: []byte{0x41, 0xa0},

want: ProtectedHeader{},

},

11 / 19 – RFC 8152 Requirements Review

https://datatracker.ietf.org/doc/html/rfc8152#section-3
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L31-L52
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L31-L52
https://datatracker.ietf.org/doc/html/rfc8152#section-3
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers_test.go#L163-#L172
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers_test.go#L163-#L172
https://datatracker.ietf.org/doc/html/rfc8152#section-3

Messages generated by the library use Go’s map structure, which would not support

duplicate labels. However, labels may be converted to a uint or int during encoding,

potentially creating a collision. The library explicitly checks for duplicate labels in the

header in the function validateHeaderLabel() in headers.go.

For messages parsed by the library, the following options decoding options are enforced in

cbor.go:

DupMapKeyEnforcedAPF enforces detection and rejection of duplicate map keys.

APF means “Allow Partial Fill” and the destination map or struct can be partially

filled. If a duplicate map key is detected, DupMapKeyError is returned without

further decoding of the map. It’s the caller’s responsibility to respond to

DupMapKeyError by discarding the partially filled result if their protocol requires it.

The go-cose library does not rely on this partial decode functionality, and passes along

the resulting error when encountered.

Applications SHOULD verify that the same label does not occur in both the

protected and unprotected headers. If the message is not rejected as malformed,

attributes MUST be obtained from the protected bucket before they are obtained

from the unprotected bucket. (Section 3)

The go-cose library does not check for duplicate labels between the protected and

unprotected headers, and as a result cannot strictly enforce that the protected header is

preferred. However, the impact of this is minimal in practice, as the library maintains

distinct maps for the protected and unprotected header entries. Therefore, a user

retrieving a value from the protected header will never mistakenly receive a value from the

unprotected header.

Algorithm Paramters

alg: This parameter is used to indicate the algorithm used for the security

processing. This parameter MUST be authenticated where the ability to do so

exists. (Section 3.1)

As referenced earlier in this section, the Sign() function confirms that the existing

algorithm identifier matches the signing algorithm if alg is present, or populates the alg

label with the signing algorithm associated with the Signer. Therefore, under the intended

use of the library, the alg parameter will always be present in the protected header. Note

that, as identified earlier, a user may intentionally create a malformed message using the

current API, if desired.

Critical Parameters

crit: The parameter is used to indicate which protected header labels an

application that is processing a message is required to understand. Parameters

defined in this document do not need to be included as they should be understood

39

40

41

42

43

44

// init decode mode

decOpts := cbor.DecOptions{

DupMapKey: cbor.DupMapKeyEnforcedAPF, // duplicated key not allowed

IndefLength: cbor.IndefLengthForbidden, // no streaming

IntDec: cbor.IntDecConvertSigned, // decode CBOR uint/int to Go int64

}

12 / 19 – RFC 8152 Requirements Review

https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L334-L375
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L334-L375
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/cbor.go#L41
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/cbor.go#L41
https://datatracker.ietf.org/doc/html/rfc8152#section-3
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1

by all implementations. When present, this parameter MUST be placed in the

protected header bucket. The array MUST have at least one value in it. (Section

3.1)

The ensureCritical() function is responsible for ensuring the crit parameter is

populated correctly in a protected header. If the crit parameter is present but the

resulting map is empty, an error will be thrown in the function Critical() in headers.go:

Integer labels in the range of 0 to 8 SHOULD be omitted. (Section 3.1)

This requirement does not appear to be enforced by the library. Under normal usage they

will not be included, but a user may explicitly add them if desired.

Integer labels in the range -129 to -65536 SHOULD be included as these would be

less common parameters that might not be generally supported. (Section 3.1)

This requirement does not appear to be enforced by the library. A user is free to add these

labels, however there is nothing requiring them to do so.

Labels for parameters required for an application MAY be omitted. Applications

should have a statement if the label can be omitted. (Section 3.1)

This requirement is application-specific and out of scope for the go-cose library itself. A

user has the ability to include or exclude any label they wish.

Applications SHOULD provide this parameter [content type] if the content

structure is potentially ambiguous. (Section 3.1)

This requirement is application-specific and out of scope for the go-cose library itself. A

user has the ability to include or exclude any label they wish.

Key Identifiers and Message Identifiers

kid: This parameter identifies one piece of data that can be used as input to find

the needed cryptographic key. The value of this parameter can be matched

against the ‘kid’ member in a COSE_Key structure. Other methods of key

distribution can define an equivalent field to be matched. Applications MUST NOT

assume that ‘kid’ values are unique. There may be more than one key with the

same ‘kid’ value, so all of the keys associated with this ‘kid’ may need to be

checked. (Section 3.1)

Management of Signer and Verifier keys is not provided by go-cose . Therefore, this

requirement is out of scope for the library. The library does facilitate the populating or

parsing of the kid field by a user.

Partial IV: The ‘Initialization Vector’ and ‘Partial Initialization Vector’ parameters

MUST NOT both be present in the same security layer. (Section 3.1)

139

140

141

142

// if present, the array MUST have at least one value in it.

if len(criticalLabels) == 0 {

return nil, errors.New("empty crit header")

}

13 / 19 – RFC 8152 Requirements Review

https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L139-L142
https://github.com/veraison/go-cose/blob/8cef769ef52c8fc111a8b1e4da83649f1cb170d0/headers.go#L139-L142
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1
https://datatracker.ietf.org/doc/html/rfc8152#section-3.1

The go-cose library does not provide any explicit support for these parameters. A user is

free to set them within a message, but go-cose will not prevent usage that contradicts the

above requirement.

Signing Requirements

signature: This field contains the computed signature value. The type of the field

is a bstr. Algorithms MUST specify padding if the signature value is not a multiple

of 8 bits. (Section 4.1)

Finding "Signature Size May Be Incorrect For Some Curves" highlighted some

considerations with regards to signature sizes. The library uses byte arrays to store

signature values, so signatures will always be a multiple of 8 bits. Therefore, the issue of

padding is left to the underlying cryptographic implementation. No padding is specified (or

needed) for the default supported algorithms, but guidance to users registering their own

algorithms may be useful.

Out of Scope Requirements

The later portions of the RFC are concerned with encryption-related requirements, key

management-related requirements, and algorithm-specific security considerations. The

current version of go-cose does not directly support encryption/decryption or the

management of keys. Therefore, specific requirements around key identifiers, key types,

initialization values, allowed usages, etc. were not considered in scope for the purposes of

this review. Requirements from Section 7 of the RFC or later were not validated as part of

this assessment.

14 / 19 – RFC 8152 Requirements Review

https://datatracker.ietf.org/doc/html/rfc8152#section-4.1
https://datatracker.ietf.org/doc/html/rfc8152#section-7

7 Additional Comments

The following comments are about some noteworthy points about the go-cose library,

though none of them can be deemed a true security issue. Most relate to source code

documentation. Given that the go-cose library is open source and API documentation will

be published on https://pkg.go.dev/, it is recommended to ensure all documentation is

consistent, clear, and concise.

Following the initial reporting of these issues to Microsoft, the following pull request was

created: https://github.com/veraison/go-cose/pull/61. This PR addresses documentation-

related comments highlighted in this section.

algorithm.go

Line 59: “presents” should read “ is present”.

Line 60: “HashFunc does not present” should read “If HashFunc is not present”.

Line 65: “build-in” should read “built-in”.

Line 140: “computing” should read “computes”

Line 156: “cose” should be stylized “COSE” for consistency.

Line 160: “hashFunc presents” should read “hashFunc is present”.

Line 160: “does not present” should read “is not present”.

Line 163: “build-in” should read “built-in”.

The following caveats also apply to the external algorithm registration mechanism, as

implemented:

There is no API to verify whether a given extension algorithm has been registered or

not; applications must attempt a registration and filter on the error condition.

There is no mechanism to deregister an algorithm. Once a registration has occurred, it

will remain active until the end of the current process.

58

59

60

61

•

•

63

64

65

66

67

•

140

141

142

•

156

157

158

159

160

161

162

163

164

•

•

•

•

•

•

// Hash is the hash algorithm associated with the algorithm.

// If HashFunc presents, Hash is ignored.

// If HashFunc does not present and Hash is set to 0, no hash is used.

Hash crypto.Hash

// HashFunc is the hash algorithm associated with the algorithm.

// HashFunc is preferred in the case that the hash algorithm is not

// supported by the golang build-in crypto hashes.

// For regular scenarios, use Hash instead.

HashFunc func() hash.Hash

// computeHash computing the digest using the hash specified in the algorithm.

// Returns the input data if no hash is required for the message.

func (a Algorithm) computeHash(data []byte) ([]byte, error) {

// RegisterAlgorithm provides extensibility for the cose library to support

// private algorithms or algorithms not yet registered in IANA.

// The existing algorithms cannot be re-registered.

// The parameter `hash` is the hash algorithm associated with the algorithm. If

// hashFunc presents, hash is ignored. If hashFunc does not present and hash is

// set to 0, no hash is used for this algorithm.

// The parameter `hashFunc` is preferred in the case that the hash algorithm is not

// supported by the golang build-in crypto hashes.

func RegisterAlgorithm(alg Algorithm, name string, hash crypto.Hash, hashFunc func()

hash.Hash) error {

15 / 19 – Additional Comments

https://pkg.go.dev/
https://github.com/veraison/go-cose/pull/61

The registration is performed through a global map. There is no mutex protection:

concurrent accesses from several distinct threads (“goroutines”) may lead to adverse

effects, including multiple registrations of an algorithm, overwriting of an existing

registration, or a panic due to out-of-bounds memory access. The calling application is

expected to apply its own locking to ensure that no other thread may access the library

(including for merely verifying a signature) while any thread is performing a registration;

however, this aspect is entirely undocumented.

These issues were reported to Microsoft, leading to the following pull request: https://

github.com/veraison/go-cose/pull/62. This PR adds a mutex to the registration function,

which prevents a potential race condition due to concurrent access.

ecdsa.go

Line 39 should be “ECDSA-based” (with a hyphen). A similar comment applies to line 62

and line 120.

The crypto/ecdsa implementation is safe to use, however it does not follow the SHOULD

recommendation from the linked RFC. Moreover, this implementation will utilize the

provided randomness source, so the comment specifying “possibly using entropy from

rand” may be misleading. Per RFC 8152:

Implementations SHOULD use a deterministic version of ECDSA such as the one

defined in [RFC 6979]. The use of a deterministic signature algorithm allows for

systems to avoid relying on random number generators in order to avoid

generating the same value of ‘k’ (the per-message random value).

Whereas crypto/ecdsa specifies:

Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as

defined in FIPS 186-4 and SEC 1, Version 2.0.

Signatures generated by this package are not deterministic, but entropy is mixed

with the private key and the message, achieving the same level of security in case

of randomness source failure.

The implemented approach is safe, but the documentation could be updated to better

reflect the implemented behavior.

Other function documentation links to the associated RFC when cited, so it is

recommended to do so here. A similar comment applies to Line 110.

•

39

40

•

74

75

76

77

78

96

97

98

// ecdsaKeySigner is a ECDSA based signer with golang built-in keys.

type ecdsaKeySigner struct {

// Sign signs digest with the private key, possibly using entropy from rand.

// The resulting signature should follow RFC 8152 section 8.1.

//

// Reference: https://datatracker.ietf.org/doc/html/rfc8152#section-8.1

func (es *ecdsaKeySigner) Sign(rand io.Reader, digest []byte) ([]byte, error) {

// encodeECDSASignature encodes (r, s) into a signature binary string using the

// method specified by RFC 8152 section 8.1.

func encodeECDSASignature(curve elliptic.Curve, r, s *big.Int) ([]byte, error) {

16 / 19 – Additional Comments

https://github.com/veraison/go-cose/pull/62
https://github.com/veraison/go-cose/pull/62
https://datatracker.ietf.org/doc/html/rfc8152#section-8.1
https://pkg.go.dev/crypto/ecdsa

ed25519.go

Documentation in this file consistently refers to “EdDsA”, which is not a typical stylization. It

is recommend to use “EdDSA” instead.

headers.go

Function description on line 146 is grammatically unsound. Intended comment was

probably: “[…] ensures all critical headers are present […]”.

The underlying cbor library maps negative integers to the int64 type, except when

they are out of the representable range of that type (the CBOR “negative int” type can

encode values down to -2
64

, but the Go int64 type cannot go below -2
63

), in which

case a big.Int value is used instead. The code on lines 399-401 rejects that case.

Note that nonnegative integers greater than 2
63

-1 are also rejected upon decoding by

the use of the IntDecConvertSigned option of the cbor decoder (set in cbor.go , line

43): this value makes the cbor backend force all integers to the signed int64 type,

and an error is triggered for an out-of-range value. The main effect is that integer label

values in the -2
64

 to -2
63

-1 and the +2
63

 to +2
64

-1 ranges, which are nominally valid

per RFC 8152, are rejected by the go-cose library. Fortunately, this is unlikely to be

much of a problem in practice: standard integer labels are explicitly allocated as much

smaller values, and there is little reason to use large integers even for private-use,

application-specific labels, in particular because such large labels increase the

encoding size.

The above caveats are now noted within the library as part of https://github.com/veraison/

go-cose/pull/61.

README.md

Line 48 refers to the undefined variable msgToSign , and should likely refer to the

previously defined msg instead. Alternatively, msgToSign could be used uniformly to

remove any ambiguity as to its intended usage.

sign1.go

The message decoding function includes an explicit check on the first two bytes of the

encoded message, to verify the presence of the tags #6.18 (explicit tag for a Sign1

message) and #4.4 (tag for an array of 4 elements). The reference byte values are for

the minimal-length encodings of both tags, each on a single byte (the fact that the

explicit #6.18 tag uses a single byte is then used on line 94, where that byte is skipped

146

147

•

399

400

401

•

46

47

48

49

•

87

88

89

90

•

// ensureCritical ensures all critical headers present in the protected bucket.

func (h ProtectedHeader) ensureCritical() error {

if _, ok := hlv.value.(big.Int); ok {

return errors.New("cbor: header label: int key must not be higher than 1<<63 - 1")

}

// create message to be signed

msg := cose.NewSign1Message()

msgToSign.Payload = []byte("hello world")

msg.Headers.Protected.SetAlgorithm(cose.AlgorithmES512)

// fast message check

if !bytes.HasPrefix(data, sign1MessagePrefix) {

return errors.New("cbor: invalid COSE_Sign1_Tagged object")

}

17 / 19 – Additional Comments

https://github.com/veraison/go-cose/pull/61
https://github.com/veraison/go-cose/pull/61

in a sub-slice). However, CBOR permits non-minimal length encodings as well; e.g. the

tag #6.18 is normally encoded as a single byte of value 0xD2, but it could also use a

two-byte encoding 0xD8 0x12 (or even longer encodings). COSE does not forbid such

non-minimal encodings (canonical encoding is mandated only for the synthetic

structures such as Sig_structure , which are used as input to cryptographic algorithms,

but not for actual on-the-wire objects). Thus, go-cose would reject some nominally

valid COSE signed messages. However, it may be argued that there is no reason for an

encoder to use a non-minimal encoding, and enforcing slightly stricter rules than the

RFC in that respect can be viewed as a desirable feature of the library.

Line 131: “MUST present” should read “MUST be present”. A similar comment applies to

Line 168.

signer.go

Line 32: there are too many backquotes after “ crypto.Signer ”.

Line 45: “minimun” should read “minimum”.

130

131

•

32

33

34

•

45

46

47

48

49

•

// check algorithm if present.

// `alg` header MUST present if there is no externally supplied data.

// All signing keys implementing `crypto.Signer`` with `Public()` outputing a

// public key of type `*rsa.PublicKey`, `*ecdsa.PublicKey`, or

// `ed25519.PublicKey` are accepted.

// RFC 8230 6.1 requires RSA keys having a minimun size of 2048 bits.

// Reference: https://www.rfc-editor.org/rfc/rfc8230.html#section-6.1

if vk.N.BitLen() < 2048 {

return nil, errors.New("RSA key must be at least 2048 bits long")

}

18 / 19 – Additional Comments

8 Contact Info

The team from NCC Group has the following primary members:

Gérald Doussot – Consultant

gerald.doussot@nccgroup.com

Kevin Henry – Consultant

kevin.henry@nccgroup.com

Elena Bakos Lang – Consultant

elena.bakoslang@nccgroup.com

Thomas Pornin – Consultant

thomas.pornin@nccgroup.com

Javed Samuel – Practice Director, Cryptography Services

javed.samuel@nccgroup.com

The team from Microsoft Corporation has the following primary members:

Quim Muntal Diaz

qmuntaldiaz@microsoft.com

Steve Lasker

steve.lasker@microsoft.com

Josh Watson

joshwatson@microsoft.com

Roy Williams

roywill@microsoft.com

Shiwei Zhang

shiwei.zhang@microsoft.com

•

•

•

•

•

•

•

•

•

•

19 / 19 – Contact Info

mailto:gerald.doussot@nccgroup.com
mailto:kevin.henry@nccgroup.com
mailto:elena.bakoslang@nccgroup.com
mailto:thomas.pornin@nccgroup.com
mailto:javed.samuel@nccgroup.com
mailto:qmuntaldiaz@microsoft.com
mailto:steve.lasker@microsoft.com
mailto:joshwatson@microsoft.com
mailto:roywill@microsoft.com
mailto:shiwei.zhang@microsoft.com

	Title Page
	Executive Summary
	Synopsis
	Scope
	Testing Methods
	Key Findings
	Strategic Recommendations
	Retest Results

	Dashboard
	Table of Findings
	Finding Details
	Signature Size May Be Incorrect For Some Curves

	Finding Field Definitions
	Risk Scale
	Category

	RFC 8152 Requirements Review
	Out of Scope Requirements

	Additional Comments
	Contact Info

