

Aleo snarkOS Implementation and

Consensus Mechanism Review

Aleo Systems
Version 1.0 – February 5, 2024

©2024 – NCC Group

Prepared by NCC Group Security Services, Inc. for Aleo Systems Inc. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the

information contained herein. Use of NCC Group’s services does not guarantee the security of a system,

or that computer intrusions will not occur.

Prepared By

Elena Bakos Lang

Paul Bottinelli

Kevin Henry

Eric Schorn

Prepared For

Collin Chin

Raymond Chu

Howard Wu

1 Executive Summary

Synopsis
In November 2023, Aleo engaged NCC Group’s Cryptography Services team to perform a

review of the consensus mechanism implemented by snarkOS: “a decentralized operating

system for zero-knowledge applications [that] forms the backbone of Aleo network, which

verifies transactions and stores the encrypted state applications in a publicly verifiable

manner.” The consensus mechanism is based on a partially synchronous version of the

Bullshark Byzantine Fault Tolerance (BFT) protocol, which uses a directed acyclic graph

(DAG) to order updates. The review was performed remotely by four consultants, over a total

of 25 person-days of effort. A retest was performed in January 2024.

Scope
The review targeted the snarkOS repository (tagged branch testnet3-audit-ncc / commit

1ab8c4c). The main focus of the review was on the subdirectories snarkOS/node/bft and

snarkOS/node/consensus/src, with the rest of the snarkOS/node being of secondary focus.

The review is supplemented by the following resources relating the underlying BFT DAG and

Aleo’s approach:

Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus

Bullshark: The Partially Synchronous Version

The Aleo Whitepaper (draft)

A prior review by NCC Group examined portions of snarkVM, which provides data structures

and utilities that are leveraged by snarkOS. Some findings in this report reference snarkVM

code as a result.

Retesting was performed via individual pull requests targeting each individual finding as

applicable.

Limitations
Several findings reference data structures or functions in snarkVM, however, a complete

formal review of snarkVM is not included in this report.

Key Findings
Notable findings from the assessment include:

Finding "Validators May Update Round and Trigger Garbage Collection Upon Receipt of

Maliciously Crafted Certificates", which details a situation in which a node can be

induced to advance their current round number based on unvalidated data, thereby

triggering garbage collection on data required to advance the consensus state.

Finding "Timestamp Calculation Does Not Provide Byzantine Fault Tolerance", which

demonstrates how a set of Byzantine validators can maliciously skew the consensus

timestamp without exceeding the allowed Byzantine threshold.

Several findings relating to brittle or late error handling across the codebase.

Additionally, several comments and observations that did not warrant formal findings are

documented in the appendix Engagement Notes.

After retesting, NCC Group found that eight (8) of eleven (11) reported findings had been

addressed by the team at Aleo, with two (2) remaining findings acknowledged as “Risk

Accepted”, and one (1) finding marked as “Not Fixed”. These unaddressed findings represent

security improvement opportunities and not vulnerabilities within the consensus mechanism

and may be addressed in the future.

•

•

•

•

•

•

2 / 42 – Executive Summary

Client Confidential

https://github.com/AleoHQ/snarkOS/
https://github.com/AleoHQ/snarkOS/
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc/node/bft
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc/node/bft
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc/node/consensus/src
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc/node/consensus/src
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc/node
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc/node
https://arxiv.org/abs/2105.11827
https://arxiv.org/abs/2209.05633
https://github.com/AleoHQ/snarkVM/
https://github.com/AleoHQ/snarkVM/

Strategic Recommendations
Most literature relating to BFT systems models individual participants, a threshold of

which may be Byzantine. In adapting BFT algorithms to a stake-based model, careful

consideration is required to ensure that the underlying assumptions remain valid.

Decisions made with respect to a number of participants (e.g., a number of active

network connections) must be considered in a manner that acknowledges the stake held

by these participants.

Ensure that detectable errors are handled as early as possible within functions in a

robust manner.

The snarkOS repository includes a fairly comprehensive set of tests. However, a

significant proportion of these tests exercise more than one functionality; only few tests

are true unit tests. While this is somewhat expected in complex systems such as the

consensus protocol implemented in snarkOS (since it requires non-trivial amount of set-

up code before performing any operation), writing unit tests exercising single functions

would be beneficial, for example to facilitate reviewers’ efforts at dynamically testing

individual portions of the code.

•

•

•

3 / 42 – Executive Summary

Client Confidential

2 Dashboard

Target Data Engagement Data

Name snarkOS Type Cryptography / Security

Assessment

Type Blockchain Library Method Code-assisted

Platforms Rust Dates 2023-11-09 to 2023-12-01

Environment Local Consultants 4

Level of Effort 25

Targets

snarkOS https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc

“a decentralized operating system for zero-knowledge applications [that] forms

the backbone of Aleo network, which verifies transactions and stores the

encrypted state applications in a publicly-verifiable manner.”

Finding Breakdown

Critical issues 0

High issues 1

Medium issues 1

Low issues 8

Informational issues 1

Total issues 11

Category Breakdown

Access Controls 1

Cryptography 1

Data Exposure 1

Data Validation 5

Denial of Service 1

Other 1

Session Management 1

4 / 42 – Dashboard

Client Confidential

https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-ncc

Component Breakdown

snarkOS cli 2

snarkOS node 6

snarkOS node, snarkVM batch-certificate 1

snarkVM ledger 1

snarkVM subdag 1

 Critical High Medium Low Informational

5 / 42 – Dashboard

Client Confidential

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Validators May Update Round and Trigger Garbage

Collection Upon Receipt of Maliciously Crafted

Certificates

Fixed FA9 High

Timestamp Calculation Does Not Provide Byzantine

Fault Tolerance

Fixed EVJ Medium

Late/Distant Validation of Block Request Range Risk Accepted JR7 Low

Brittle Error Handling of NoiseState::Handshake Risk Accepted Y4N Low

Secret Key Stored in Plaintext File, Missing Permission

Checks

Fixed K4R Low

Event FromBytes Tolerates Extraneous Input Fixed UJF Low

CLI Input Private Keys and Sensitive Values Not

Zeroized

Fixed 7VR Low

Missing Validation of Transmission Response Fixed UPV Low

Potentially Dangerous Handling of Duplicate

Signatures on Certificates

Fixed 76W Low

Weak Malicious Peer Handling Not Fixed LA4 Low

Leader Election Process Does Not Match Whitepaper Fixed VFD Info

6 / 42 – Table of Findings

Client Confidential

4 Finding Details

Validators May Update Round and Trigger

Garbage Collection Upon Receipt of

Maliciously Crafted Certificates

Overall Risk High

Impact High

Exploitability High

Finding ID NCC-E009544-FA9

Component snarkOS node

Category Data Validation

Status Fixed

Impact
Invalid certificates may cause a node to update its local round number, potentially triggering

garbage collection and preventing the node from accepting other valid batch proposals or

certificates. This effectively constitutes a denial-of-service attack and prevents the

validator (and their stake) from contributing to the consensus computation.

Description
The function process_batch_certificate_from_peer() takes as input a BatchCertificate

received from a peer, stores a valid certificate locally, and updates to the next round if all

received certificates so far reach quorum. As part of this process, the function ensures that

the local state is consistent with the state described in the BatchCertificate and updates it

as needed, which is done in the sync_with_certificate_from_peer() function. This function

first syncs the local state based on the provided BatchHeader by calling sync_with_batch_hea

der() , before calling insert_certificate() to validate the certificate and add it to local

storage:

Figure 1: node/bft/src/primary.rs

High

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

// If the peer is ahead, use the batch header to sync up to the peer.

let missing_transmissions = self.sync_with_batch_header_from_peer(peer_ip, batch_h

eader).await?;

// Check if the certificate needs to be stored.

if !self.storage.contains_certificate(certificate.id()) {

// Store the batch certificate.

self.storage.insert_certificate(certificate.clone(), missing_transmissions)?;

debug!("Stored a batch certificate for round {batch_round} from '{peer_ip}'");

// If a BFT sender was provided, send the round and certificate to the BFT.

if let Some(bft_sender) = self.bft_sender.get() {

// Send the certificate to the BFT.

if let Err(e) =

bft_sender.send_primary_certificate_to_bft(certificate).await {

warn!("Failed to update the BFT DAG from sync: {e}");

return Err(e);

};

}

}

7 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1266-L1282
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1266-L1282

In particular, the function sync_with_batch_header_from_peer() updates the local round if the

node has fallen behind:

Figure 2: node/bft/src/primary.rs

However, note that the bulk of the certificate validation does not occur until the call to

insert_certificate() that occurs after syncing with the header, via a call to

check_certificate() :

Figure 3: node/bft/src/helpers/storage.rs

As a consequence, the current local round number (and local garbage collected round) may

update based on the information contained within an invalid certificate, which may cause a

node to reject otherwise valid proposals or certificates in the future. In particular, the current

round for the node may be fast-forwarded up to max_gc_rounds in the future, thereby

preventing it from reaching the availability threshold or quorum threshold to advance its

state based on the current consensus information.

Note that the first action taken after advancing the local round number is to fetch the

missing certificates from the peer, which may enable this attack to be executed recursively

using a chain of maliciously crafted certificates. It should be emphasized that a single

malcious peer can craft a certificate that will pass initial validation, although it will not pass

the availability or quorum thresholds.

As a separate comment, the sync_with_batch_header() function distinguishes between

peers that have fallen behind, and peers that have fallen behind by more than

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

495

496

497

498

499

500

501

502

503

504

505

506

507

// Check if our primary should move to the next round.

// TODO (howardwu): Re-evaluate whether we need to guard this to increment after

quorum threshold is reached.

let is_behind_schedule = batch_round > self.current_round();

// Check if our primary is far behind the peer.

let is_peer_far_in_future = batch_round > self.current_round() +

self.storage.max_gc_rounds();

// If our primary is far behind the peer, update our committee to the batch round.

if is_behind_schedule || is_peer_far_in_future {

// If the batch round is greater than the current committee round, update the

committee.

self.try_increment_to_the_next_round(batch_round).await?;

}

pub fn insert_certificate(

&self,

certificate: BatchCertificate<N>,

transmissions: HashMap<TransmissionID<N>, Transmission<N>>,

) -> Result<()> {

// Ensure the certificate round is above the GC round.

ensure!(certificate.round() > self.gc_round(), "Certificate round is at or below

the GC round");

// Ensure the certificate and its transmissions are valid.

let missing_transmissions = self.check_certificate(&certificate, transmissions)?;

// Insert the certificate into storage.

self.insert_certificate_atomic(certificate, missing_transmissions);

Ok(())

}

8 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1300-L1309
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1300-L1309
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs#L495-L507
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs#L495-L507

max_gc_rounds , suggesting that the committee will be updated to the provided round in

either case:

Figure 4: node/bft/src/primary.rs

However, the try_increment_to_the_next_round() only updates to the current round if the

node is less than max_gc_rounds() behind, incrementing by a single round otherwise:

Figure 5: node/bft/src/primary.rs

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

// Check if our primary should move to the next round.

// TODO (howardwu): Re-evaluate whether we need to guard this to increment after

quorum threshold is reached.

let is_behind_schedule = batch_round > self.current_round();

// Check if our primary is far behind the peer.

let is_peer_far_in_future = batch_round > self.current_round() +

self.storage.max_gc_rounds();

// If our primary is far behind the peer, update our committee to the batch round.

if is_behind_schedule || is_peer_far_in_future {

// If the batch round is greater than the current committee round, update the

committee.

self.try_increment_to_the_next_round(batch_round).await?;

}

// If the next round is within GC range, then iterate to the penultimate round.

if self.current_round() + self.storage.max_gc_rounds() >= next_round {

let mut fast_forward_round = self.current_round();

// Iterate until the penultimate round is reached.

while fast_forward_round < next_round.saturating_sub(1) {

// Update to the next round in storage.

fast_forward_round =

self.storage.increment_to_next_round(fast_forward_round)?;

// Clear the proposed batch.

*self.proposed_batch.write() = None;

}

}

// Retrieve the current round.

let current_round = self.current_round();

// Attempt to advance to the next round.

if current_round < next_round {

// If a BFT sender was provided, send the current round to the BFT.

let is_ready = if let Some(bft_sender) = self.bft_sender.get() {

match bft_sender.send_primary_round_to_bft(current_round).await {

Ok(is_ready) => is_ready,

Err(e) => {

warn!("Failed to update the BFT to the next round - {e}");

return Err(e);

}

}

}

// Otherwise, handle the Narwhal case.

else {

// Update to the next round in storage.

self.storage.increment_to_next_round(current_round)?;

// Set 'is_ready' to 'true'.

true

};

9 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1300-L1309
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1300-L1309
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1112-L1144
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L1112-L1144

It is unclear whether this behavior is intentional. In particular, a case where an honest peer is

more than max_gc_rounds rounds in the future implies that a quorum of honest peers has

surpassed the garbage collection threshold relative to the node’s local round and will no

longer be storing the necessary information for the node to catch up. This suggests that the

check if is_behind_schedule || is_peer_far_in_future may be incorrect and the behavior

should differ based on the value of is_peer_far_in_future .

Recommendation
Revisit the TODO item suggesting it is not safe to advance the round until a quorum is

reached and consider what validation can be performed prior to this step. Advancing rounds

one-by-one based on the availability threshold or quorum threshold may be safer but would

require a large number of certificates to be fetched and processed in sequence. If a node is

out of sync by more than max_gc_rounds rounds, then an alternative approach may be

necessary, but only when a quorum of validators agree on the round number.

Additionally, determine the correct behavior for a node that has fallen far behind, and

update the sync_with_batch_header() and try_increment_to_the_next_round() functions

accordingly.

Location
snarkOS/blob/node/bft/src/primary.rs

snarkOS/blob/node/bft/src/helpers/storage.rs

Retest Results
2024-01-15 – Fixed

NCC Group reviewed pull request 2897 (commit 3f9083f at the time of retest; not yet

merged) which updated the behavior of sync_with_batch_header_from_peer() to separate the

cases of being behind schedule (within garbage collection range) and being far behind

schedule (larger than the garbage collection range). In the latter case, a newly added cache

is used to ensure that recovery from Byzantine-triggered garbage collection is possible.

Figure 6: Revised approach in node/bft/src/primary.rs

•

•

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

// If our primary is behind shedule, update our committee to the batch round.

if is_behind_schedule {

// If the batch round is greater than the current committee round, update the

committee.

self.try_increment_to_the_next_round(batch_round).await?;

// If our peer is far ahead, check if a quorum of peers is ahead and consider

updating our committee.

} else if is_peer_far_in_future {

// Get the highest round seen from a quorum of the current committee

let committee = self.ledger.get_committee_for_round(self.current_round())?;

let round_with_quorum =

(*self.batch_round_cache.write()).update(batch_round, batch_header.author()

, &committee)?;

let is_quorum_far_in_future = round_with_quorum > self.current_round() +

self.storage.max_gc_rounds();

// If our primary is far behind a quorum of peers, update our committee to the

round_with_quorum.

if is_quorum_far_in_future {

self.try_increment_to_the_next_round(round_with_quorum).await?;

}

}

10 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs
https://github.com/AleoHQ/snarkOS/pull/2897/files
https://github.com/AleoHQ/snarkOS/pull/2897/commits/3f9083f168efc8c6e73e8282ab117c6f957fb0ba
https://github.com/AleoHQ/snarkOS/pull/2897/commits/3f9083f168efc8c6e73e8282ab117c6f957fb0ba
https://github.com/AleoHQ/snarkOS/pull/2897/commits/3f9083f168efc8c6e73e8282ab117c6f957fb0ba
https://github.com/AleoHQ/snarkOS/pull/2897/files#diff-730a4dec91b426c3e3cb97824dba5b96097304cf2568e9376f3a6ed793080284
https://github.com/AleoHQ/snarkOS/pull/2897/files#diff-730a4dec91b426c3e3cb97824dba5b96097304cf2568e9376f3a6ed793080284

The highlighted update() function has been added to perform the following:

Figure 7: New functionality in node/bft/src/helpers/cache_round.rs

This function implements the recommendation that the round should only be advanced one-

by-one as long as consensus is met at each step. As this approach is substantially slower

than the previous approach, it is only applied in situations where a peer claims to be far in

the future.

The implemented changes are aligned with the recommendations made above, and this

finding has been marked “Fixed”.

99

100

101

102

103

/// Update based on a new (round, address) pair seen in the wild. This does two things:

/// - If the round is higher than a previous one from this address, set it in

highest_rounds

/// - Keep incrementing `last_highest_round_with_quorum` as long as it passes a stake-

weighted quorum

/// We ignore the case where tomorrow's stake-weighted quorum round is *lower* than

the current one

pub fn update(&mut self, round: u64, validator_address: Address<N>, committee:

&Committee<N>) -> Result<u64> {

11 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/pull/2897/files#diff-c5a5126f96a85e7c489db3912036a4a32b47368e71458d45383335c68d9eabd4
https://github.com/AleoHQ/snarkOS/pull/2897/files#diff-c5a5126f96a85e7c489db3912036a4a32b47368e71458d45383335c68d9eabd4

Timestamp Calculation Does Not Provide

Byzantine Fault Tolerance

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E009544-EVJ

Component snarkVM subdag

Category Data Validation

Status Fixed

Impact
The BFT mechanism assumes that a two-thirds majority of the stake is held by honest

validators, but parts of the implementation require that the number of honest validators be a

majority. As a result, a Byzantine validator may influence the consensus timestamp in a

manner not reflected by their stake.

Description
The Byzantine Fault Tolerance (BFT) mechanism ensures that the system can progress and

achieve consensus provided that fewer than one third of the validator committee behave in

a Byzantine manner (e.g., arbitrarily deviate from the protocol). In general settings, each

validator is weighted equally, and the Byzantine threshold refers to the number of Byzantine

validators in the committee. Because the Aleo blockchain uses a proof-of-stake mechanism,

the Byzantine threshold is viewed in terms of the amount staked to Byzantine validators,

where consensus should be achieved if the stake held by Byzantine validators is less than

one third of the total stake. Reframing Bullshark, the underlying consensus mechanism, in

terms of stake rather than validators, requires careful consideration to ensure that Byzantine

validators cannot exert undue influence on the resulting block chain.

The consensus mechanism ensures that a given anchor block satisfies an availability

threshold or quorum threshold, which ensures that a sufficient number of validators and a

sufficient amount of stake is backing the update. However, part of the computation of this

anchor block involves consensus on the timestamp to be included in the block. The

expected process is described in a draft of The Aleo Whitepaper:

The timestamp_i in block_i is computed as the median timestamp of the batch

certificates. Validators ensure the timestamp_i is greater than timestamp_{i-1} from

block_{i-1}.

It follows from the honest majority assumption that if n = 3f +1 then the median

timestamp is safe from corruption as it is derived from at least (n - f) batch

certificates. Thus, in the worst case scenario, at least 1/2 of the reported

timestamps are honest and the median cannot be corrupted.

Medium

12 / 42 – Finding Details

Client Confidential

This description is written in a language where the parameter f denotes the number of

Byzantine validators and not the amount staked by these validators. The implementation

aligns with this description, where the timestamp of an anchor block is computed as:

Figure 8: snarkVM/ledger/narwhal/subdag/src/lib.rs

where median_timestamp() returns the median, without consideration of individual stake:

Figure 9: snarkVM/ledger/narwhal/batch-certificate/src/lib.rs

While it follows that a majority of the stake is held by honest validators, it does not follow

that a majority of the timestamps are honest, which directly contradicts the conclusion

above:

Thus, in the worst case scenario, at least 1/2 of the reported timestamps are honest

and the median cannot be corrupted.

As an alternative, the timestamp calculation could be updated to leverage the weighted

median, where the weight of each timestamp is proportional to the stake of the validator.

This will return the value that sits at the 50th percentile based on proportion of total stake.

Such a measure appears to meet the necessary correctness criteria when applied to a

stake-based approach.

Recommendation
Consider adopting the weighted median instead of the median when computing timestamps.

Location
snarkVM/ledger/narwhal/subdag/src/lib.rs

snarkVM/ledger/narwhal/batch-certificate/src/lib.rs

Retest Results
2024-01-11 – Fixed

NCC Group reviewed pull request 2223 (merged in aa5e85e), which updates the

timestamp() function to return the weighted median (by stake) for a given committee. This

effectively implements the recommendation above and ensures that the resulting timestamp

is not substantially skewed by Byzantine behavior. Therefore, this finding is considered

“Fixed”.

123

124

125

126

127

129

130

131

132

133

134

•

•

/// Returns the timestamp of the anchor round, defined as the median timestamp of the

leader certificate.

pub fn timestamp(&self) -> i64 {

// Retrieve the median timestamp from the leader certificate.

self.leader_certificate().median_timestamp()

}

/// Returns the median timestamp of the batch ID from the committee.

pub fn median_timestamp(&self) -> i64 {

let mut timestamps = self.timestamps().chain(

[self.batch_header.timestamp()].into_iter()).collect::<Vec<_>>();

timestamps.sort_unstable();

timestamps[timestamps.len() / 2]

}

13 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/subdag/src/lib.rs#L129-L133
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/subdag/src/lib.rs#L129-L133
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs#L122-L127
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs#L122-L127
https://en.wikipedia.org/wiki/Weighted_median
https://en.wikipedia.org/wiki/Weighted_median
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/subdag/src/lib.rs#L129-L133
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/subdag/src/lib.rs#L129-L133
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs#L122-L127
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs#L122-L127
https://github.com/AleoHQ/snarkVM/pull/2223
https://github.com/AleoHQ/snarkVM/commit/aa5e85e60be54359cef244df25972f649c09d9ce
https://github.com/AleoHQ/snarkVM/commit/aa5e85e60be54359cef244df25972f649c09d9ce
https://github.com/AleoHQ/snarkVM/commit/aa5e85e60be54359cef244df25972f649c09d9ce

Late/Distant Validation of Block Request Range

Overall Risk Low

Impact High

Exploitability Undetermined

Finding ID NCC-E009544-JR7

Component snarkOS node

Category Data Validation

Status Risk Accepted

Impact
Late and/or distant validation of deserialized range values may result in oversights involving

A) unexpected downstream behavior arising from (for example) an overflowing subtraction

of unsigned integers in a block count calculation, B) enabling traffic amplification attacks

arising from an overly large specified range, and/or C) corruption of internal data structures.

Description
The get_blocks() function implemented within the routes.rs source file deserializes both a

starting block height and an ending block height, and then immediately validates that the

heights are strictly increasing and together specify a reasonable range. This function is

excerpted below and provides a positive example of early (highlighted) validation checks.

Figure 10: snarkOS/node/rest/src/routes.rs

However, the read_le() function that implements corresponding functionality within the

block_request.rs source file does not perform these validation checks. This function is

excerpted below and is the subject of this finding. Note that the checks are not performed

within the nearby new() function either.

Low

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

53

54

55

56

// GET /testnet3/blocks?start={start_height}&end={end_height}

pub(crate) async fn get_blocks(

State(rest): State<Self>,

Query(block_range): Query<BlockRange>,

) -> Result<ErasedJson, RestError> {

let start_height = block_range.start;

let end_height = block_range.end;

const MAX_BLOCK_RANGE: u32 = 50;

// Ensure the end height is greater than the start height.

if start_height > end_height {

return Err(RestError("Invalid block range".to_string()));

}

// Ensure the block range is bounded.

if end_height - start_height > MAX_BLOCK_RANGE {

return Err(RestError(format!(

"Cannot request more than {MAX_BLOCK_RANGE} blocks per call (requested {})",

end_height - start_height

)));

}

...

impl FromBytes for BlockRequest {

fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {

let start_height = u32::read_le(&mut reader)?;

let end_height = u32::read_le(&mut reader)?;

14 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/rest/src/routes.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/rest/src/routes.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/rest/src/routes.rs#L104-L125
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/rest/src/routes.rs#L104-L125
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/block_request.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/block_request.rs

Figure 11: snarkOS/node/bft/events/src/block_request.rs

The usage of BlockRequest in the inbound() function implemented in the gateway.rs source

file mitigates this as shown below.

Figure 12: snarkOS/node/bft/src/gateway.rs

However, this validation is performed well beyond the point where this could be first

detected (in the initial deserialization or new() functions). Future evolution of the code base

may involve usage of BlockRequest instances that are not as well protected.

Similarly (and separately), the BatchPropose struct contains both a batch_round and

batch_header , where the latter item also contains a batch_round . These two instances of

batch_round could be validated to align during deserialization, but they are not.

Recommendation
Consider validating information that crosses a trust boundary as close to the point of

deserialization as possible. In the read_le() function excerpted above, implement early

validation that start_height is less than end_height and that the two values specify a range

of reasonable size. Validate the instances of batch_round at deserialization.

Location
Positive examples: get_blocks() within snarkOS/node/rest/src/routes.rs

read_le() within snarkOS/node/bft/events/src/block_request.rs

Mitigation snarkOS/node/bft/src/gateway.rs

BatchPropose deserialization snarkOS/node/bft/events/src/batch_propose.rs

Retest Results
2024-01-11 – Not Fixed

See client response.

Client Response
The BlockRequest does not need to have a bound in the constructor. Because they are

node/consensus dependent, the validation will be done by the recipient node.

57

58

59

60

53

54

55

56

57

58

59

60

61

62

63

64

•

•

•

•

Ok(Self::new(start_height, end_height))

}

}

Event::BlockRequest(block_request) => {

let BlockRequest { start_height, end_height } = block_request;

// Ensure the block request is well-formed.

if start_height >= end_height {

bail!("Block request from '{peer_ip}' has an invalid range ({start_height}..

{end_height})")

}

// Ensure that the block request is within the allowed bounds.

if end_height - start_height > DataBlocks::<N>::MAXIMUM_NUMBER_OF_BLOCKS as u32 {

bail!("Block request from '{peer_ip}' has an excessive range ({start_height}..

{end_height})")

}

...

15 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/block_request.rs#L53-L60
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/block_request.rs#L53-L60
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L551-L561
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L551-L561
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/rest/src/routes.rs#L104-L125
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/rest/src/routes.rs#L104-L125
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/block_request.rs#L53-L60
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/block_request.rs#L53-L60
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L551-L561
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L551-L561
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/batch_propose.rs#L53-L60
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/batch_propose.rs#L53-L60

Brittle Error Handling of NoiseState::Handshake

Overall Risk Low

Impact High

Exploitability None

Finding ID NCC-E009544-Y4N

Component snarkOS node

Category Denial of Service

Status Risk Accepted

Impact
An attacker able to trigger an error condition leading to a panic may cause a denial of

service.

Description
The encode() function implemented in the codec.rs source file contains logic that encodes

Events or Bytes subject to the current state of the Noise codec. Normal operation falls

within the NoiseState::Handshake and NoiseState::PostHandshake conditions as partially

excerpted below.

Figure 13: snarkOS/node/bft/events/src/helpers/codec.rs

In the above code snippet, the encode() function returns a (highlighted) Result<(),

Self::Error> that allows calling logic to handle errors gracefully. However, the (highlighted)

NoiseState::Failed condition utilizes the unreachable!() macro which results in an

uncontrolled panic rather than utilizing the Result error path.

Codecs can fail from a variety of unexpected (and even intermittent) conditions. The well-

structured into_post_handshake_state() function implemented on lines 150-170 of the same

source file correctly handles and returns known positive results, while leaving a final non-

positive return of NoiseState::Failed for everything else. If an external attacker is able to

trigger this NoiseState::Failed condition in the above code, it may result in a denial of

service.

Low

fn encode(&mut self, message_or_bytes: EventOrBytes<N>, dst: &mut BytesMut) -> Result<(), Self:

:Error> {

let ciphertext = match self.noise_state {

NoiseState::Handshake(ref mut noise) => {

... logic snipped...

}

NoiseState::PostHandshake(ref mut noise) => {

...logic snipped...

}

NoiseState::Failed => unreachable!("Noise handshake failed to encode"),

};

// Encode the resulting ciphertext using the length-delimited codec.

self.codec.encode(ciphertext.freeze(), dst)

}

16 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/helpers/codec.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/helpers/codec.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/helpers/codec.rs#L187-L252
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/helpers/codec.rs#L187-L252

It was understood from the kick-off call that the Noise codec is not yet utilized in production

(likely due to intermittent failures). Thus, the exploitability of this finding has been rated

“Undetermined” and the overall severity “Low”.

From a larger perspective, the code base was found to exhibit some inconsistencies in the

way errors were handled. Any error conditions that can be triggered directly-or-indirectly

immediately-or-later from the external environment should be handled gracefully and avoid

a panic. Due to the complexity of this determination, it is preferable to err on the side of

caution and gracefully handle errors wherever possible. That said, note that there are many

instances of unwrap() which are paired with adjacent comments explaining their usage; this

is a positive aspect of the code.

Recommendation
Adapt the highlighted instance of the NoiseState::Failed condition to utilize the Result

error path.

Consider prioritizing a defense-in-depth review of error handling in the consensus logic.

Location
snarkOS/node/bft/events/src/helpers/codec.rs

Retest Results
2024-01-12 – Not Tested

This finding was reported for completeness but relates to unused code. No updates or

changes were made as a result and the exploitability of this finding is rated at “None”. As the

code is unreachable in the current environment, this finding has been marked as “Risk

Accepted”. Should this code be re-visited in the future, the recommendations made here

remain valid.

Client Response
During the November 16 status call, the developers noted that the Noise codec is not yet

wired in and that the error arrangement may be as intended. As a result, the exploitability of

this finding has been adjusted to “None” but the finding maintained for completeness.

17 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/helpers/codec.rs#L187-L252
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/helpers/codec.rs#L187-L252

Secret Key Stored in Plaintext File, Missing

Permission Checks

Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E009544-K4R

Component snarkOS cli

Category Access Controls

Status Fixed

Impact
A secret key stored in a group- or public-accessible plaintext file is subject to leakage,

malicious use and/or (potentially) unbonding/slashing. Missing permission checks allow

unrecognized key exposure to continue.

Description
SnarkOS provides a permissionless and scalable network for ZK powered smart contracts.

On a staked node, protecting the private keys is of paramount importance for continued

participation, particularly as lower-skilled operators eventually join the network. Currently,

the documentation and code allow private keys to be stored in world-readable plaintext files

which increases the risk of leakage.

The code repository README.md file excerpted below indicates the ability to start the

network with a private key stored in an accessible plaintext file.

Figure 14: snarkOS/README.md

The corresponding parse_private_key() function implemented within the start.rs source file

is used to parse the private key file, and is excerpted below.

Figure 15: snarkOS/cli/src/commands/start.rs

Low

209

210

211

212

213

214

215

216

217

218

219

220

221

USAGE:

snarkos start [OPTIONS]

OPTIONS:

...

--private-key <PRIVATE_KEY> Specify the node's account private key

--private-key-file <PRIVATE_KEY_FILE> Specify the path to a file containing the

node's account private key

...

/// Read the private key directly from an argument or from a filesystem location,

/// returning the Aleo account.

fn parse_private_key<N: Network>(&self) -> Result<Account<N>> {

match self.dev {

None => match (&self.private_key, &self.private_key_file) {

// Parse the private key directly.

(Some(private_key), None) => Account::from_str(private_key.trim()),

// Parse the private key from a file.

(None, Some(path)) => Account::from_str(std::fs::read_to_string(path)?.trim()),

// Ensure the private key is provided to the CLI, except for clients or nodes

in development mode.

(None, None) => match self.client {

true => Account::new(&mut rand::thread_rng()),

...

18 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/README.md
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/README.md
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/README.md#5-command-line-interface
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/README.md#5-command-line-interface
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/start.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/start.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/start.rs#L209-L227
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/start.rs#L209-L227

The highlighted line above does not check file permissions (necessary to issue a warning to

the user) nor issue any warning related to overly permissive file permissions.

There are a variety of ways an attacker can exfiltrate these plaintext files. Physical removal

of the disk and mounting on a system with different constraints (such as Kali Linux) may

obviate any set permissions. Acquisition of any backups at any point in their lifecycle may

also result in exposure. A Docker image may be configured (or exploited) to offer shell

access. An attacker able to comprise the owner account or otherwise obtain root privileges

on a running system will have straightforward access.

Note that this private key could be considered similar to an SSH key which is typically

passphrase-protected. However, passphrase protection limits the ability of unattended

booting of applications. Nonetheless, SSH user safety is improved by warnings on finding

keys in files or directories with loose permissions1. The .ssh directory is required to have

0o700 (drwx------) permissions and the private key file is required to have 0o600 (-

rw-------) permissions, though arguably 0o400 would be sufficient. These permissions

prevent access by other users or group members.

Recommendation
There are several approaches to improve the security of secret keys, including:

While environment variables are not ideal, they are typically less persistent and

accessible than plaintext files. This technique is already incorporated into the run-

prover.sh and run-validator.sh scripts, and could become the single recommended

approach.

A Docker node could contain a stored public key corresponding to a trusted external

entity, and accept a properly signed value injected by that entity at startup/configuration

time.

Adapt the prover and validator to be run inside a Docker container and utilize provided

mechanisms2 for secret management. Kubernetes provides similar capabilities3.

Utilize a built-for-purpose third-party component such as Hashicorp Vault4, AWS KMS5 or

Google’s Secret Manager6.

If plaintext files must be used, implement a check within parse_private_key() for 0o700

permissions on the directory and 0o600 permissions on the file (the same as SSH).

As the product moves toward production, consider the overall lifecycle of key management7

including the potential for key rotation.

Location
parse_private_key() within snarkOS/cli/src/commands/start.rs

Retest Results
2024-01-12 – Fixed

NCC Group reviewed pull request 2998 (merged in 7a11bce), which added a function

check_permissions() to enforce that the folder permissions are 0o700 permissions on the

key file are 0o600 (read and write for owner only) before proceeding and uses this function

•

•

•

•

1. https://superuser.com/questions/215504/permissions-on-private-key-in-ssh-folder

2. https://docs.docker.com/engine/swarm/secrets/

3. https://kubernetes.io/docs/concepts/configuration/secret/

4. https://www.vaultproject.io/use-cases/secrets-management

5. https://aws.amazon.com/kms/

6. https://cloud.google.com/secret-manager

7. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

19 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/start.rs#L209-L227
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/start.rs#L209-L227
https://github.com/AleoHQ/snarkOS/pull/2998
https://github.com/AleoHQ/snarkOS/commit/7a11bce1898a80c2ba88b4e507b1adb7b00984d0
https://github.com/AleoHQ/snarkOS/commit/7a11bce1898a80c2ba88b4e507b1adb7b00984d0
https://github.com/AleoHQ/snarkOS/commit/7a11bce1898a80c2ba88b4e507b1adb7b00984d0
https://superuser.com/questions/215504/permissions-on-private-key-in-ssh-folder
https://docs.docker.com/engine/swarm/secrets/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.vaultproject.io/use-cases/secrets-management
https://aws.amazon.com/kms/
https://cloud.google.com/secret-manager
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

in the affected code above. This change is consistent with the recommendations above, and

as such, this finding is considered “Fixed”.

20 / 42 – Finding Details

Client Confidential

Event FromBytes Tolerates Extraneous Input

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E009544-UJF

Component snarkOS node

Category Data Validation

Status Fixed

Impact
Tolerating extraneous bytes during deserialization may preclude the detection of malicious

probing behavior and/or misaligned serialization-deserialization code between

communicating parties.

Description
The from_le function implemented on the Event struct tolerates left over bytes after the

deserialization of events. In other words, the condition where there are still bytes remaining

in the reader when execution approaches line 217 below is not detected or reported. Note

that the read_le function below currently returns a (highlighted) Result.

Figure 16: snarkOS/node/bft/events/src/lib.rs

The condition of leftover input can occur during malicious probing or if there are

implementation issues between communicating parties. From a defense-in-depth

perspective, it is worthwhile detecting and reporting this condition.

Low

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

impl<N: Network> FromBytes for Event<N> {

fn read_le<R: io::Read>(mut reader: R) -> io::Result<Self> {

// Read the event ID.

let id = u16::read_le(&mut reader).map_err(|_| error("Unknown event ID"))?;

// Deserialize the data field.

let event = match id {

0 => Self::BatchPropose(BatchPropose::read_le(reader)?),

1 => Self::BatchSignature(BatchSignature::read_le(reader)?),

2 => Self::BatchCertified(BatchCertified::read_le(reader)?),

3 => Self::BlockRequest(BlockRequest::read_le(reader)?),

4 => Self::BlockResponse(BlockResponse::read_le(reader)?),

5 => Self::CertificateRequest(CertificateRequest::read_le(reader)?),

6 => Self::CertificateResponse(CertificateResponse::read_le(reader)?),

7 => Self::ChallengeRequest(ChallengeRequest::read_le(reader)?),

8 => Self::ChallengeResponse(ChallengeResponse::read_le(reader)?),

9 => Self::Disconnect(Disconnect::read_le(reader)?),

10 => Self::PrimaryPing(PrimaryPing::read_le(reader)?),

11 => Self::TransmissionRequest(TransmissionRequest::read_le(reader)?),

12 => Self::TransmissionResponse(TransmissionResponse::read_le(reader)?),

13 => Self::ValidatorsRequest(ValidatorsRequest::read_le(reader)?),

14 => Self::ValidatorsResponse(ValidatorsResponse::read_le(reader)?),

15 => Self::WorkerPing(WorkerPing::read_le(reader)?),

16.. => return Err(error("Unknown event ID {id}")),

};

Ok(event)

}

}

21 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/lib.rs#L192-L220
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/lib.rs#L192-L220

Recommendation
Incorporate a test for extraneous bytes after event deserialization by (for example) replacing

line 218 with the following (and adding the &mut prefix to the prior 0..15 reader instances).

Location
snarkOS/node/bft/events/src/lib.rs

Retest Results
2024-01-11 – Fixed

NCC Group reviewed changes as part of pull request 2994 (merged in 20f1d63) which

added checks to the FromBytes() function for both Event and Message that returns an error

if there are leftover bytes after deserialization. As a result, this finding is considered “Fixed”.

•

let mut overflow = [0u8; 1];

let err_finish = reader.read(&mut overflow);

if err_finish.is_err() | (err_finish.unwrap() == 0) {

Ok(event)

} else {

Err(error("Extraneous bytes in reader"))

}

22 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/lib.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/lib.rs
https://github.com/AleoHQ/snarkOS/pull/2994
https://github.com/AleoHQ/snarkOS/commit/20f1d63e4bfd7db529a78df2b08007d137e30b5b
https://github.com/AleoHQ/snarkOS/commit/20f1d63e4bfd7db529a78df2b08007d137e30b5b
https://github.com/AleoHQ/snarkOS/commit/20f1d63e4bfd7db529a78df2b08007d137e30b5b

CLI Input Private Keys and Sensitive Values Not

Zeroized

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E009544-7VR

Component snarkOS cli

Category Data Exposure

Status Fixed

Impact
Failure to zeroize sensitive values may allow them to leak to other processes on the same

system.

Description
Various commands provided by the snarkOS CLI accept a private key as one of their input

parameters. For example, the Decrypt struct wraps parameters for decryption:

Figure 17: cli/src/commands/developer/decrypt.rs

The above is used to construct a ViewKey :

Figure 18: snarkVM/console/account/src/view_key/mod.rs

It was observed that internal structs holding private keys, such as ViewKey and PrivateKey ,

derive the Zeroize trait to ensure that they are zeroized on drop. However, the structs in CLI

which prepare these structs do not derive the Zeroize trait. For consistency, and to protect

against memory-related attacks, it is recommended to consistently leverage the Zeroize

trait for all sensitive values.

Recommendation
Add Zeroize to the list of derived traits for Account , Decrypt , Deploy , Execute , Scan , and

TransferPrivate structs.

Location
cli/src/commands/developer/*

cli/src/commands/account.rs

Low

26

27

28

29

30

31

32

33

34

35

31

32

33

•

•

/// Decrypts a record ciphertext.

#[derive(Debug, Parser)]

pub struct Decrypt {

/// The record ciphertext to decrypt.

#[clap(short, long)]

pub ciphertext: String,

/// The view key used to decrypt the record ciphertext.

#[clap(short, long)]

pub view_key: String,

}

/// The account view key used to decrypt records and ciphertext.

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Zeroize)]

pub struct ViewKey<N: Network>(Scalar<N>);

23 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/developer/decrypt.rs#L26-L35
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/developer/decrypt.rs#L26-L35
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/console/account/src/view_key/mod.rs#L31-L33
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/console/account/src/view_key/mod.rs#L31-L33
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/developer
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/developer
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/developer/scan.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/cli/src/commands/developer/scan.rs

Retest Results
2024-01-11 – Fixed

NCC Group reviewed changes introduced as part of pull request 2982 (merged in 1db968e)

that adds the zeroize crate and either implements or derives a function to zeroize the

identified structs on drop. As a result, this finding is considered “Fixed”.

24 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/pull/2982
https://github.com/AleoHQ/snarkOS/commit/1db968e5da4118d0719d5d3622e728d1793e848e
https://github.com/AleoHQ/snarkOS/commit/1db968e5da4118d0719d5d3622e728d1793e848e
https://github.com/AleoHQ/snarkOS/commit/1db968e5da4118d0719d5d3622e728d1793e848e

Missing Validation of Transmission Response

Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-E009544-UPV

Component snarkOS node

Category Data Validation

Status Fixed

Impact
An adversary able to respond to transmission requests is able to corrupt the pending queue,

potentially impacting timeout logic.

Description
The worker.rs source file implements the send_transmission_request() function to send a

transmission request to a remote peer, the send_transmission_response() function for that

remote peer to reply, and the finish_transmission_request() function for the originator to

handle the peer’s reply. The latter function is excerpted below with a TODO comment

highlighted that notes a missing validation on the reply.

Figure 19: snarkOS/node/bft/src/worker.rs

A honest remote peer may receive a transmission request and reply with a

TransmissionReponse as declared in the transmission_response.rs source file as excerpted

below.

Figure 20: snarkOS/node/bft/events/src/transmission_response.rs

However, a malicious peer may respond with the correct transmission_id but with different

and malicious contents of transmission . As a result, the remove() function on line 406

above is called with unexpected/mismatched values. The remove function will indeed

remove the correct pending item based on information within transmission_id , but may then

Low

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

18

19

20

21

/// Handles the incoming transmission response.

/// This method ensures the transmission response is well-formed and matches the

transmission ID.

fn finish_transmission_request(&self, peer_ip: SocketAddr, response:

TransmissionResponse<N>) {

let TransmissionResponse { transmission_id, transmission } = response;

// Check if the peer IP exists in the pending queue for the given transmission ID.

let exists = self.pending.get(transmission_id).unwrap_or_default().contains(&peer_ip);

// If the peer IP exists, finish the pending request.

if exists {

// TODO: Validate the transmission.

// TODO (howardwu): Deserialize the transmission, and ensure it matches the

transmission ID.

// Note: This is difficult for testing and example purposes, since those

transmissions are fake.

// Remove the transmission ID from the pending queue.

self.pending.remove(transmission_id, Some(transmission));

}

}

pub struct TransmissionResponse<N: Network> {

pub transmission_id: TransmissionID<N>,

pub transmission: Transmission<N>,

}

25 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/worker.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/worker.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/worker.rs#L394-L408
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/worker.rs#L394-L408
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21

send a notification to an unexpected/different callback (based on information within

transmission).

It appears that in this context, callbacks only relate to timeout functionality so the impact is

limited. Further, the TODO comment suggests this is a known issue being worked on. For

these reasons, the overall severity of this finding is marked ‘Low’ and it is presented to

refresh awareness and maintain prioritization.

Recommendation
The contents of the TransmissionResponse struct includes replicated transmission_id

information that should be validated when crossing a trust boundary. The adjacent comment

indicates test challenges that may be addressed by an instance of #[cfg(test)] or cfg!

(test)
8.

Location
The finish_transmission_request() function in snarkOS/node/bft/src/worker.rs

The TransmissionResponse struct in snarkOS/node/bft/events/src/

transmission_response.rs

Retest Results
2023-11-15 – Fixed

Pull Request 2487 (merged in 8de3abd) adds validation of the transmission response fields

via the ensure_transmission_id_matches() function implemented in the ledger.rs source file

as recommended. Therefore, this finding is considered “Fixed”.

•

•

8. https://doc.rust-lang.org/std/macro.cfg.html

26 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/worker.rs#L394-L408
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/worker.rs#L394-L408
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/events/src/transmission_response.rs#L18-L21
https://github.com/AleoHQ/snarkOS/pull/2847
https://github.com/AleoHQ/snarkOS/commit/8de3abde9b69abad566728acdcdf1f286e8020f3
https://github.com/AleoHQ/snarkOS/commit/8de3abde9b69abad566728acdcdf1f286e8020f3
https://github.com/AleoHQ/snarkOS/commit/8de3abde9b69abad566728acdcdf1f286e8020f3
https://github.com/AleoHQ/snarkOS/blob/8de3abde9b69abad566728acdcdf1f286e8020f3/node/bft/ledger-service/src/ledger.rs
https://github.com/AleoHQ/snarkOS/blob/8de3abde9b69abad566728acdcdf1f286e8020f3/node/bft/ledger-service/src/ledger.rs
https://doc.rust-lang.org/std/macro.cfg.html

Potentially Dangerous Handling of Duplicate

Signatures on Certificates

Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-E009544-76W

Component snarkOS node, snarkVM

batch-certificate

Category Cryptography

Status Fixed

Impact
A signer may sign a certificate multiple times, and the author of a batch may additionally

sign their own certificate. Such behavior does not affect consensus but may lead to

divergent behavior in future implementations / clients.

Description
This finding highlights potentially dangerous assumptions about the validity of incoming

data, and highlights potential missing validation checks on said data. No ability to violate

consensus was identified, but the current approach may be exploitable to induce artificial

workloads on validators via redundant certificate validation or increased storage

requirements.

A certificate consists of a batch header and a set of signatures, where the batch header

contains a signature from the author of the batch. For consensus purposes, the set of

signers includes both the author and the other peers that signed the certificate. The

following code is used to deserialize a certificate:

Figure 21: ledger/narwhal/batch-certificate/src/bytes.rs

The resulting signatures are individually verified before being passed back to the caller:

Low

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

93

94

95

96

97

else if version == 2 {

// Read the batch header.

let batch_header = BatchHeader::read_le(&mut reader)?;

// Read the number of signatures.

let num_signatures = u16::read_le(&mut reader)?;

// Read the signatures.

let mut signatures = IndexSet::with_capacity(num_signatures as usize);

for _ in 0..num_signatures {

// Read the signature.

let signature = Signature::read_le(&mut reader)?;

// Insert the signature.

signatures.insert(signature);

}

// Return the batch certificate.

Self::from(batch_header, signatures).map_err(error)

}

/// Initializes a new batch certificate.

pub fn from(batch_header: BatchHeader<N>, signatures: IndexSet<Signature<N>>) ->

Result<Self> {

// Verify the signatures are valid.

for signature in &signatures {

if !signature.verify(&signature.to_address(), &[batch_header.batch_id()]) {

27 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/bytes.rs#L46-L61
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/bytes.rs#L46-L61

Figure 22: ledger/narwhal/batch-certificate/src/lib.rs

Within SnarkOS, the logic is primarily concerned with the signers themselves, and not the

individual signatures, where a HashSet is used to represent the set of signers, and the

signer address is derived from the signature, e.g.:

Figure 23: node/bft/src/helpers/proposal.rs

Similarly, when checking the validity of a cerificate, a complete set of the signers is

constructed:

Figure 24: node/bft/src/helpers/storage.rs

The use of a HashSet ensures that each signer only appears once in the list of signers and is

similarly only included once for the purposes of availability or quorum threshold

computation. However, the use of a HashSet causes duplicate signatures for the same signer

to be silently ignored. There are several remarks that can be made about the above

approach:

Duplicate signatures within the serialized data are tolerated, but silently dropped during

deserialization due to the use of an IndexSet . One could check if signatures.insert(sign

ature) returns false or if the resulting length of the set is equal to num_signatures and

throw a warning or error if this is not the case.

Duplicate signers within the serialized data are tolerated and will only be counted once

for threshold purposes but will have each individual signature validated.

The author of a certificate may add a signature to the certificate as well. The function

from_unchecked ensures at least one signature is present, which is validated in from() . It

follows that a single validator may produce a certificate on their own which

98

99

100

101

102

103

95

96

97

98

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

1.

2.

3.

bail!("Invalid batch certificate signature")

}

}

// Return the batch certificate.

Self::from_unchecked(batch_header, signatures)

}

/// Returns the signers.

pub fn signers(&self) -> HashSet<Address<N>> {

self.signatures.iter().chain(Some(self.batch_header.signature())).map(

Signature::to_address).collect()

}

// Initialize a set of the signers.

let mut signers = HashSet::with_capacity(certificate.signatures().len() + 1);

// Append the batch author.

signers.insert(certificate.author());

// Iterate over the signatures.

for signature in certificate.signatures() {

// Retrieve the signer.

let signer = signature.to_address();

// Ensure the signer is in the committee.

if !previous_committee.is_committee_member(signer) {

bail!("Signer {signer} is not in the committee for round {round} {gc_log}")

}

// Append the signer.

signers.insert(signer);

}

28 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs#L93-L103
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs#L93-L103
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/proposal.rs#L95-L98
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/proposal.rs#L95-L98
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs#L460-L475
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs#L460-L475

cryptographically validates within SnarkOS. This does not allow the author to be counted

twice for threshold purposes.

The usage of sets may introduce implied assumptions about the order in which data is

processed. While the current usage appears to be safe, future functionality or alternative

clients may not make the same assumptions about signature processing.

As a concrete example, the function signers() excerpted above computes over self.signat

ures.iter().chain(Some(self.batch_header.signature())) , which considers the list of

signatures followed by the author. In contrast, the check_certificate() function includes

the author first, followed by the remaining signers. The same logic applied to signatures

instead of signers would result in a different set of signatures being validated, which may

introduce unintended or incorrect behavior. This does not affect consensus, as the individual

signatures must all be valid. But it does suggest that two different implementations may

compute over two distinct sets of data based on how the above situations are handled.

As a final consideration, the function add_signature() , used to add a signature to a batch,

will explicitly reject a duplicate signer, and the calling function will throw an error before

attempting to add a signature for the current primary (i.e., the author). The observations

above can be summarized by noting that these same constraints are not enforced on

incoming data.

Recommendation
Consider stronger consistency checks on certificates, such as ensuring each signature is

from a unique signer and not from the author.

Location
node/bft/src/helpers/proposal.rs

node/bft/src/helpers/storage.rs

ledger/narwhal/batch-certificate/src/bytes.rs

ledger/narwhal/batch-certificate/src/lib.rs

Retest Results
2024-01-11 – Fixed

NCC Group reviewed changes as part of pull request 2298 (merged in b062f9e) which add

additional checks to the set of signers. In particular, the use of an IndexSet has been

changed to HashSet during deserialization, an explicit check to ensure the author is not

among the list of signers has been added, and the number of signatures in the final HashSet

is compared against the expected number of signatures to ensure that no duplicates are

present. These changes collectively implement the recommendations made above, and this

finding is therefore considered “Fixed”.

4.

•

•

•

•

29 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/proposal.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/proposal.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/storage.rs
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/bytes.rs
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/bytes.rs
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/narwhal/batch-certificate/src/lib.rs
https://github.com/AleoHQ/snarkVM/pull/2298
https://github.com/AleoHQ/snarkVM/commit/b062f9e2dc574e3f67aaafc785d593f0ce8d0a2b
https://github.com/AleoHQ/snarkVM/commit/b062f9e2dc574e3f67aaafc785d593f0ce8d0a2b
https://github.com/AleoHQ/snarkVM/commit/b062f9e2dc574e3f67aaafc785d593f0ce8d0a2b

Weak Malicious Peer Handling

Overall Risk Low

Impact Low

Exploitability Medium

Finding ID NCC-E009544-LA4

Component snarkOS node

Category Session Management

Status Not Fixed

Impact
Nodes actively disconnect from peers when malicious behavior is detected but do not track

which peers have acted maliciously in the past. At each network heartbeat, the peer may

actively reconnect to a malicious peer.

Description
At various points in the Primary structure, a proposal, batch, or certificate is checked for

consistency, and malicious behavior is detected and handled. For example:

Figure 25: node/bft/src/primary.rs

Here, a peer that sends a batch signature that does not match their address is assumed to

be malicious and a disconnect is triggered. However, no proactive action is taken to prevent

this peer from reconnecting in the future. In many cases, a reconnection will be

automatically established at each network heartbeat. For example, if the malicious peer

appears on the trusted validator list, then a reconnection will be triggered at every

heartbeat as part of handle_trusted_validators() . If the malicious node is not a trusted

validator and the number of connected validators is below MIN_CONNECTED_VALIDATORS , then

the function handle_min_connected_validators() will request a list of validator IPs from a

random connected validator, which will in turn trigger a connection attempt to each validator

in the ValidatorsResponse message.

The implemented behavior when encountering malicious behavior appears to be at odds

with the implemented approach for maintaining an active connection to at least

MIN_CONNECTED_VALIDATORS . If malicious behavior warrants an active disconnection from a

peer, then it may be necessary to actively prevent reconnection for some well-defined

period of time. A list of recent malicious peers could be maintained, and reconnection to any

peer not on this list could be prioritized over suspected malicious peers. Care must be taken

to ensure that any response to misbehavior cannot be triggered by a malicious peer

attempting to frame an honest peer for misbehavior.

Low

620

621

622

623

624

625

626

627

628

629

630

631

// Retrieve the signer.

let signer = spawn_blocking!(Ok(signature.to_address()))?;

// Ensure the batch signature is signed by the validator.

if self.gateway.resolver().get_address(peer_ip).map_or(true, |address| address !=

signer) {

// Proceed to disconnect the validator.

self.gateway.disconnect(peer_ip);

bail!("Malicious peer - batch signature is from a different validator ({signer})");

}

// Ensure the batch signature is not from the current primary.

if self.gateway.account().address() == signer {

bail!("Invalid peer - received a batch signature from myself ({signer})");

}

30 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L620-L631
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L620-L631

It was noted that a restricted_peers list does exist as part of the router, but its use is

limited to tracking connection failures above the MAXIMUM_CONNECTION_FAILURES threshold.

At a system level, it was noted that although peers locally observe potentially malicious

behavior, there does not appear to be any disincentive to such behavior, aside from a

temporary disconnection. Ethereum, for example, introduces penalties for observed

malicious behavior, where the stake of malicious nodes is slashed when misbehavior occurs.

Recommendation
Track which peers have triggered a disconnection for potential malicious activity and

prioritize connections to validators that do not appear on this list.

Carefully consider any changes relating to misbehavior response to ensure that honest

peers cannot be mistakenly or maliciously identified and punished for misbehavior.

Location
node/bft/src/primary.rs

Retest Results
2024-01-16 – Not Fixed

See client response.

Client Response
Won’t address for now. Will focus on tackling peer/validator reputation scores and malicious

behavior in the future.

•

•

•

31 / 42 – Finding Details

Client Confidential

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/rewards-and-penalties/#slashing
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs

Leader Election Process Does Not Match

Whitepaper

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E009544-VFD

Component snarkVM ledger

Category Other

Status Fixed

Impact
Discrepancies between documentation and implementation may represent unintended

behavior or introduce confusion.

Description
To support the review, a draft of The Aleo Whitepaper was provided, which specifies the

following regarding leader election:

The leader election algorithm takes into account the current round number, the

number of validators, and the amount of stake bonded to each validator.

The corresponding implementation of this in SnarkVM does not include the number of

validators, but does include the starting round:

Figure 26: snarkVM/ledger/committee/src/lib.rs

This seed is later used to select the leader at random, weighted by their total stake. The

consensus mechanism and reward payout does not rely on the unpredictability of this value,

which suggests that both the implemented and documented approaches are appropriate.

Recommendation
Validate that the implemented approach is the intended approach and ensure that the

documentation and implementation are aligned prior to publication.

Location
snarkVM/ledger/committee/src/lib.rs

Retest Results
2024-01-11 – Fixed

This finding highlighted a discrepancy between the implementation and a draft paper

explaining the implemented approach. Aleo has confirmed that the implemented approach is

correct and that the paper will be updated accordingly. As no code changes are required as

a result, this finding is considered “Fixed”.

Info

160

161

162

163

164

165

166

167

•

pub fn get_leader(&self, current_round: u64) -> Result<Address<N>> {

// Ensure the current round is at least the starting round.

ensure!(current_round >= self.starting_round, "Current round must be at least the

starting round");

// Retrieve the total stake of the committee.

let total_stake = self.total_stake();

// Construct the round seed.

let seed = [self.starting_round, current_round, total_stake].map(Field::from_u64);

...

32 / 42 – Finding Details

Client Confidential

https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs#L160-L166
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs#L160-L166
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs#L160-L166
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs#L160-L166

Client Response
The intention is the same, the whitepaper will be updated to have more clear verbiage. The

difference is that the implementation does not use the “number of validators”, but just the

validator set itself.

33 / 42 – Finding Details

Client Confidential

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these recommendations

are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a

small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability, as

well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

34 / 42 – Finding Field Definitions

Client Confidential

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

35 / 42 – Finding Field Definitions

Client Confidential

6 Engagement Notes

This informational section contains a number of notes and observations on the design and

implementation of snarkOS.

General Notes and Concerns on the Topic of Staked Validators in a Dynamic Committee

Setting

The consensus mechanism underpinning Aleo’s snarkOS implementations is a generic DAG

BFT protocol (Bullshark9 and Narwhal10), which was converted to a proof-of-stake system

and additionally modified to support a dynamic committee. While no straightforward

incompatibilities seem to result from these modifications, this system does blur the lines

between stakes and validators. BFT protocols such as the one used in snarkOS are

commonly proven to function correctly as long as the number of Byzantine nodes does not

exceed 1/3 of the total number of nodes in the system. That is, given a total number of

participants , the system behaves normally as long as at most participants

are Byzantine. Translating this concept to a proof-of-stake system implies that for the

system to proceed, given a total amount of stake equal to , validators amounting to at

least stake should be in consensus. These types of checks are performed in a few

areas in the code base, but ultimately resolve to the function is_quorum_threshold_reached()

in the ledger component of snarkVM, in snarkVM/ledger/committee/src/lib.rs and provided

below for reference. This function sums up the combined stakes of the given set of

addresses and checks whether that amount is enough to reach the quorum threshold,

.

Figure 27: ledger/committee/src/lib.rs

A positive example of this process happens in the function propose_batch() in the file node/

bft/src/primary.rs, where a batch will not be proposed until the quorum threshold has been

reached.

Figure 28: node/bft/src/primary.rs

N = 3f + 1 f

N

2f + 1

2f +

1

115

116

117

118

119

120

121

122

123

124

125

126

340

341

342

343

344

345

346

347

348

/// Returns `true` if the combined stake for the given addresses reaches the quorum

threshold.

/// This method takes in a `HashSet` to guarantee that the given addresses are unique.

pub fn is_quorum_threshold_reached(&self, addresses: &HashSet<Address<N>>) -> bool {

let mut stake = 0u64;

// Compute the combined stake for the given addresses.

for address in addresses {

// Accumulate the stake, checking for overflow.

stake = stake.saturating_add(self.get_stake(*address));

}

// Return whether the combined stake reaches the quorum threshold.

stake >= self.quorum_threshold()

}

// If quorum threshold is not reached, return early.

if !committee.is_quorum_threshold_reached(&connected_validators) {

debug!(

"Primary is safely skipping a batch proposal {}",

"(please connect to more validators)".dimmed()

);

trace!("Primary is connected to {} validators", connected_validators.len() - 1);

return Ok(());

}

9. https://arxiv.org/abs/2209.05633

10. https://arxiv.org/pdf/2105.11827.pdf

36 / 42 – Engagement Notes

Client Confidential

https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs#L115-L126
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/ledger/committee/src/lib.rs#L115-L126
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L340-L348
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L340-L348
https://arxiv.org/abs/2209.05633
https://arxiv.org/pdf/2105.11827.pdf

In order to assess the security of the modifications to the consensus protocol, it is crucial to

identify areas in the design and in the implementation of the protocol where important

processes hinge upon the number of validators when they should instead rely on the stakes

of these validators. One such issue was described in finding "Timestamp Calculation Does

Not Provide Byzantine Fault Tolerance", where it was observed that the timestamp

computation was not weighted by the respective stakes of the validators, but it was equally

weighted among them.

Another area where this distinction appears to be unclear is in the underlying

communication protocol, as implemented by the Gateway in node/bft/src/gateway.rs. The

gateway is in charge of maintaining communication with other validators in the system. The

gateway also defines an upper bound and a lower bound on the number of validators that it

maintains connections with, as can be observed in the following variables:

Figure 29: node/bft/src/gateway.rs

The gateway frequently ensures it is connected to a minimum number of validators, by way

of the handle_min_connected_validators() function called during the heartbeat process of

the gateway, see below.

Figure 30: node/bft/src/gateway.rs

Theoretically, being connected to a minimum number of validators does not ensure that

their combined stake is enough to reach the quorum threshold. As such, a validator could

essentially be connected to a majority of Byzantine nodes (in terms of stake), in a form of

Eclipse attack11, which could break some of the guarantees of the system.

The NCC Group team further encourages Aleo to perform a pass throughout the code base

to try and identify areas where potential assumption discrepancies between the number of

validators and their stake occur.

Instability of the System at Genesis

Genesis of the system starts with 4 validators, each with an equal amount of stake.

However, the system does not reward validators whose stake is larger than 25% of the total

stake, in an apparent effort to incentivize greater stake distribution and larger number of

validators.

85

86

87

88

880

881

882

883

884

885

886

887

26

27

28

/// The minimum number of validators to maintain a connection to.

const MIN_CONNECTED_VALIDATORS: usize = 175;

/// The maximum number of validators to send in a validators response event.

const MAX_VALIDATORS_TO_SEND: usize = 200;

/// This function sends a `ValidatorsRequest` to a random validator,

/// if the number of connected validators is less than the minimum.

fn handle_min_connected_validators(&self) {

// If the number of connected validators is less than the minimum, send a

`ValidatorsRequest`.

if self.number_of_connected_peers() < MIN_CONNECTED_VALIDATORS {

// Retrieve the connected validators.

let validators = self.connected_peers().read().clone();

// If there are no validator IPs to connect to, return early.

/// Returns the updated stakers reflecting the staking rewards for the given committee and

block reward.

/// The staking reward is defined as: `block_reward * stake / total_stake`.

///

11. https://research.nccgroup.com/2023/06/02/how-to-spot-and-prevent-an-eclipse-attack/

37 / 42 – Engagement Notes

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L85-L88
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L85-L88
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L880-L890
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L880-L890
https://research.nccgroup.com/2023/06/02/how-to-spot-and-prevent-an-eclipse-attack/

Figure 31: synthesizer/src/vm/helpers/rewards.rs

In a genesis state with 4 validators, each possessing exactly 25% of the total stake, rewards

will still be paid out to these validators. However, as soon as the stake of any single validator

is increased, this validator will necessarily possess more than 25% of the total stake and will

cease to receive rewards. Should the network continue to progress in this state, the stake of

the remaining validators will increase over time until they each surpass 25% of the total

stake, at which point they will cease to be paid rewards and the situation inverts. From this

point on, the set of validators earning rewards will oscillate as they cross and then

subsequently fall behind this threshold.

While it is understood that a network with only 4 validators may not be considered resilient

or trustworthy, the above behavior may be considered unintuitive, or even undesirable. It

also suggests that in corner cases, there may be incentive for “malicious staking” of tokens.

For example, at the genesis state, a malicious validator could lower their stake slightly such

that the remaining validators each possess more than 25% of the stake. This action does not

increase the rewards for the malicious node but may nevertheless be seen as a successful

attack when relative rewards are compared.

For correctness, a minimum of 4 validators are necessary, however the above observations

(as well as many similar variants on the above), suggest that for stability it may be desirable

for the genesis state to consists of at least 5 or more validators such that no validator is

required to forego rewards during the initial blocks of the network. It may also be beneficial

to consider under what scenarios an attack involving “malicious staking” might allow an

attacker to disrupt or undermine trust in the system.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

/// This method ensures that stakers who are bonded to validators with more than **25%**

/// of the total stake will not receive a staking reward. In addition, this method

/// ensures stakers who have less than 10 credit are not eligible for a staking reward.

///

/// The choice of 25% is to ensure at least 4 validators are operational at any given time,

/// since our security model adheres to 3f+1, where f=1. As such, we tolerate Byzantine

behavior

/// up to 33% of the total stake.

pub fn staking_rewards<N: Network>(

stakers: &IndexMap<Address<N>, (Address<N>, u64)>,

committee: &Committee<N>,

block_reward: u64,

) -> IndexMap<Address<N>, (Address<N>, u64)> {

// If the list of stakers is empty, there is no stake, or the block reward is 0, return

the stakers.

if stakers.is_empty() || committee.total_stake() == 0 || block_reward == 0 {

return stakers.clone();

}

// Compute the updated stakers.

cfg_iter!(stakers)

.map(|(staker, (validator, stake))| {

// If the validator has more than 25% of the total stake, skip the staker.

if committee.get_stake(*validator) > committee.total_stake().saturating_div(4) {

trace!("Validator {validator} has more than 25% of the total stake -

skipping {staker}");

return (*staker, (*validator, *stake));

}

38 / 42 – Engagement Notes

Client Confidential

https://github.com/AleoHQ/snarkVM/blob/v0.16.8/synthesizer/src/vm/helpers/rewards.rs#L26-L53
https://github.com/AleoHQ/snarkVM/blob/v0.16.8/synthesizer/src/vm/helpers/rewards.rs#L26-L53

Unpruned Restricted Peer List in Router

The InnerRouter structure defined in node/router/src/lib.rs, which is responsible for routing

messages between nodes, defines and maintains a number of lists of peers. Among these

lists, the restricted_peers keeps track of misbehaving peers and maps their address to

their latest offending action.

Figure 32: node/router/src/lib.rs

The NCC Group team noted that this list could grow arbitrarily and did not seem to get

pruned regularly. The only place where a peer may be removed from that list happens in the

function insert_connected_peer() , see the highlighted line in the code excerpt below.

Figure 33: node/router/src/lib.rs

In order to check if a peer is restricted, which is performed when trying to connect to a new

peer, the function is_restricted() fetches the entry for the given IP address, and declares

the peer restricted if they have been inserted in the list less than RADIO_SILENCE_IN_SECS

seconds ago (currently set to 2.5 minutes), see below.

Figure 34: node/router/src/lib.rs

Thus, the list will eventually contain a large number of stale “restricted” peers, but no longer

considered restricted. It would be advisable to add a frequent pruning step to that list,

which would remove entries that are no longer considered restricted. This would prevent the

list from growing arbitrarily, and avoid the redundant work of repeatedly checking whether a

given peer is restricted based on the RADIO_SILENCE_IN_SECS delay.

Unpruned Connecting Peer List in Router

In the same file, it seems that the connecting_peer list is not properly pruned once we have

successfully connected to a trusted peer. In the function connect() , a tentative peer is

added to the connecting_peers list in the function call check_connection_attempt() (first line

highlighted below). If the connection is unsuccessful, the peer is removed from the

connecting_peers list. However, if the connection is successful, it seems that the peer will

not be removed from that list.

86

87

283

284

285

286

287

288

289

290

136

137

138

/// The set of restricted peer IPs.

restricted_peers: RwLock<IndexMap<SocketAddr, Instant>>,

/// Inserts the given peer into the connected peers.

pub fn insert_connected_peer(&self, peer: Peer<N>, peer_addr: SocketAddr) {

let peer_ip = peer.ip();

// ...

// Remove this peer from the restricted peers, if it exists.

self.restricted_peers.write().remove(&peer_ip);

}

/// Returns `true` if the given IP is restricted.

pub fn is_restricted(&self, ip: &SocketAddr) -> bool {

self.restricted_peers

.read()

.get(ip)

.map(|time| time.elapsed().as_secs() < Self::RADIO_SILENCE_IN_SECS)

.unwrap_or(false)

}

pub fn connect(&self, peer_ip: SocketAddr) -> Option<JoinHandle<bool>> {

// Return early if the attempt is against the protocol rules.

if let Err(forbidden_message) = self.check_connection_attempt(peer_ip) {

39 / 42 – Engagement Notes

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L86-L87
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L86-L87
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L391-L402
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L391-L402
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L283-L290
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L283-L290

Figure 35: node/router/src/lib.rs

In the case where the connection is performed as part of the handshake process, the peer

will eventually be removed from that list. However, there are instances where the connect()

function is called outside of the handshake, such as in the handle_trusted_peers() function

in node/router/src/heartbeat.rs. In that case, it appears that the trusted peer will not be

properly removed from the connecting_peer list.

Static Lists of Trusted Peers

Still in the file node/router/src/lib.rs, the router also maintains a list of trusted peers which is

provided upon instantiation of that object. That list is essentially static; once peers have

been added to it upon creation, they won’t ever be removed and will always be considered

trusted. The same can be said about the bootstrap peers, located in the function

bootstrap_peers() .

Figure 36: node/router/src/lib.rs

In the event that one of these trusted peers becomes untrusted, due to an unforeseen

change such as their IP address getting re-allocated, the router does not have any

mechanism in place to remove trust in them.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

372

373

374

375

376

377

378

379

380

381

382

383

384

warn!("{forbidden_message}");

return None;

}

let router = self.clone();

Some(tokio::spawn(async move {

// Attempt to connect to the candidate peer.

match router.tcp.connect(peer_ip).await {

// Remove the peer from the candidate peers.

Ok(()) => {

router.remove_candidate_peer(peer_ip);

true

}

// If the connection was not allowed, log the error.

Err(error) => {

router.connecting_peers.lock().remove(&peer_ip);

warn!("Unable to connect to '{peer_ip}' - {error}");

false

}

}

}))

}

/// Returns the list of bootstrap peers.

pub fn bootstrap_peers(&self) -> Vec<SocketAddr> {

if cfg!(feature = "test") || self.is_dev {

vec![]

} else {

vec![

SocketAddr::from_str("35.224.50.150:4133").unwrap(),

SocketAddr::from_str("35.227.159.141:4133").unwrap(),

SocketAddr::from_str("34.139.203.87:4133").unwrap(),

SocketAddr::from_str("34.150.221.166:4133").unwrap(),

]

}

}

40 / 42 – Engagement Notes

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L135-L160
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L135-L160
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/heartbeat.rs#L230-L240
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/heartbeat.rs#L230-L240
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L372-L384
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/router/src/lib.rs#L372-L384

Late Detection of Disconnected Peer

The function process_batch_signature_from_peer() performs several checks for potential

malicious behavior prior to acquiring a write lock, followed by a check for whether or not the

batch has previously been seen, which is eventually followed by a check that the signer is a

currently connected peer:

Figure 37: node/bft/src/primary.rs

In comparison, process_batch_certificate_from_peer() combines several of these peer

checks and terminates early if the signer is disconnected:

Figure 38: node/bft/src/primary.rs

It may be beneficial to align these two approaches such that detectable errors are handled

as early as possible, particularly before entering a critical section of the code.

Minor Error in Code Comment

The comment below refers to a timestamp instead of a batch_id , which appears to be a

reference to the deprecated V1 BatchSignature format.

Figure 39: node/bft/src/primary.rs

Outdated Reference to candidate peers in Code Comment

In the file gateway.rs, the function remove_connected_peer() is preceded by a comment

referring to a list of candidate peers . The gateway currently only maintains lists of

connected_peers and connecting_peers ; candidate peers seems to be an outdated

reference.

Figure 40: node/bft/src/gateway.rs

654

655

656

711

712

713

714

715

716

717

718

719

720

721

722

617

618

448

449

let Some(signer) = self.gateway.resolver().get_address(peer_ip) else {

bail!("Signature is from a disconnected validator");

};

// Ensure the batch certificate is from the validator.

match self.gateway.resolver().get_address(peer_ip) {

// If the peer is a validator, then ensure the batch certificate is from the

validator.

Some(address) => {

if address != author {

// Proceed to disconnect the validator.

self.gateway.disconnect(peer_ip);

bail!("Malicious peer - batch certificate from a different validator

({author})");

}

}

None => bail!("Batch certificate from a disconnected validator"),

}

// Retrieve the signature and timestamp.

let BatchSignature { batch_id, signature } = batch_signature;

/// Removes the connected peer and adds them to the candidate peers.

fn remove_connected_peer(&self, peer_ip: SocketAddr) {

41 / 42 – Engagement Notes

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#654
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#654
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L620
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L620
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L617-L618
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/primary.rs#L617-L618
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L448-L449
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/gateway.rs#L448-L449

Unclear Repeated Hash Function Call in assign_to_worker

In node/bft/src/helpers/partition.rs, the function assign_to_worker() is used to assign an

operation to a given worker, in order to distribute the work equally among processes. To do

so, it computes a hash of the transmission ID and reduces it to a value in the range of the

number of workers, see highlighted lines below.

Figure 41: node/bft/src/helpers/partition.rs

The hash function call sha256d_to_u128() on line 45 performs a double SHA256 operation: it

hashes the transmission ID and hashes the resulting digest again. It is unclear what benefits

are obtained with this second hash function call. Performing a single hash function call and

incorporating some randomness would presumably achieve similar results, with the

additional advantage of being less predictable by adversaries.

38

39

40

41

42

43

44

45

46

47

48

49

50

/// Returns the worker ID for the given transmission ID.

pub fn assign_to_worker<N: Network>(transmission_id: impl Into<TransmissionID<N>>,

num_workers: u8) -> Result<u8> {

// If there is only one worker, return it.

if num_workers == 1 {

return Ok(0);

}

// Hash the transmission ID to a u128.

let hash = sha256d_to_u128(&transmission_id.into().to_bytes_le()?);

// Convert the hash to a worker ID.

let worker_id = (hash % num_workers as u128) as u8;

// Return the worker ID.

Ok(worker_id)

}

42 / 42 – Engagement Notes

Client Confidential

https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/partition.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/partition.rs
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/partition.rs#L38-L50
https://github.com/AleoHQ/snarkOS/blob/1ab8c4c25c4d9783fc42b8e91c90be6479cd7bed/node/bft/src/helpers/partition.rs#L38-L50

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Validators May Update Round and Trigger Garbage Collection Upon Receipt of Maliciously Crafted Certificates
	Timestamp Calculation Does Not Provide Byzantine Fault Tolerance
	Late/Distant Validation of Block Request Range
	Brittle Error Handling of NoiseState::Handshake
	Secret Key Stored in Plaintext File, Missing Permission Checks
	Event FromBytes Tolerates Extraneous Input
	CLI Input Private Keys and Sensitive Values Not Zeroized
	Missing Validation of Transmission Response
	Potentially Dangerous Handling of Duplicate Signatures on Certificates
	Weak Malicious Peer Handling
	Leader Election Process Does Not Match Whitepaper

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes

