

HTTPS://WWW.ISECPARTNERS.COM 1/13

CONTENT SECURITY POLICY BEST PRACTICES

Jake Meredith – jmeredith[at]isecpartners[dot]com

iSEC Partners, Inc

123 Mission Street, Suite 1020

San Francisco, CA 94105

https://www.isecpartners.com

July 14, 2013

Abstract

Content Security Policy is an HTTP header that provides client-side defense-in-depth

against content injection attacks. This document describes the nuances of Content Security

Policy, provides guidance on testing and deploying, and proposes a list of best practices for

its secure use.

1 INTRODUCTION

Content Security Policy 1.0 is a mechanism that allows developers to whitelist the locations from which

applications can load resources. It does this through use of directives which restrict various web resources for

the web application. The main purpose behind Content Security Policy is to mitigate content injection

vulnerabilities. Cross-site scripting (XSS) vulnerabilities tend to be the most prevalent and harmful form of

these vulnerabilities. Web applications can use this feature by supplying a Content-Security-Policy HTTP

header that specifies valid script locations. If the web application is attempting to load a script, the client

browser matches the source of the script against the Content Security Policy directives before loading it.

Content Security Policy extends beyond script origins, allowing web applications to control the source of

images, frames, styles, and other elements. It is important to note that CSP is a second-line defense

mechanism. Application authors should always take standard precautions to prevent injections such as

output encoding of user-controlled content.

Content Security Policy can be deployed in a Report-Only mode. In this mode, the web application’s behavior

does not change, but any violations of the policy are reported to a specified URI for logging. This makes it

possible to test different policies or directives before deploying them.

Content Security Policy is a very granular control system and can therefore be easily implemented incorrectly.

The best practices will enable server administrators and developers to avoid common Content Security Policy

deployment mistakes and help secure their environment. This paper will describe the details of Content

Security Policy, give implementation specifics, and then propose a list of best practices for its use.

2 CONTENT SECURITY POLICY

Content Security Policy is defined by a list of semicolon (;) delimited directives. A directive is defined by

specifying a resource and a list of allowable URIs. This list of URIs defines a whitelist for the only locations

https://www.isecpartners.com/
https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 2/13

from which the client browser can load resources for the page. Content Security Policy has numerous

directives, schemes, and keywords that can be defined as part of the header. Since CSP is enforced by the web

application client, we will end this section by summarizing how the most popular web browsers support CSP.

2.1 DIRECTIVES

2.1.1 DEFAULT-SRC

The default-src directive is exactly as it sounds: a directive that specifies the default rules governing

resources when a resource-specific directive is not defined. If other directives (see below) are not explicitly

defined, then the default-src directive will be used for that resource. A typical policy using this directive

would be:

 Content-Security-Policy: default-src ‘self’

This policy contains one directive, default-src, which permits all resources to be loaded only from the

applications own origin, see section 2.13.1 for details on the keyword self.

If any resource- specific directive is defined in the Content-Security-Policy header after the default-src,

that directive will overwrite the default-src directive for that particular resource completely. The following

example demonstrates this behavior:

 Content-Security-Policy: default-src ‘none’; script-src js.csp.com;

The default-src directive specifies that no resources are permitted; see section 2.13.2 for details on the

keyword none. The subsequent script-src directive overwrites the default-src directive for script

resources, such as JavaScript. The end result of this directive would allow the web application to load scripts

from js.csp.com and forbid all other resources.

2.1.2 SCRIPT-SRC

The script-src directive controls the allowable locations from where an application is allowed to load

scripts. This directive may be given multiple sources separated by a space as permitted locations. A simple

policy using this directive would be:

 Content-Security-Policy: default-src ‘self’; script-src scripts.csp.com

This policy permits the client browser to load scripts from script.csp.com and all other resources from the

host domain.

There are a two other directives that can apply to script-src control on script source locations: unsafe-

inline and unsafe-eval. The unsafe-inline directive instructs the browser to execute inline scripts. The

unsafe-eval directive allows the browser to execute certain JavaScript functions otherwise disallowed by

Content Security Policy. These directives exist in order to facilitate adoption of Content Security Policy. The

removal of inline scripts and unsafe methods is a non-trivial task detailed in section 3.1.2 and 3.1.3, so these

directives allow more applications to begin using and benefitting from Content Security Policy before they

can be completely stripped of inline scripts or unsafe methods. An example of their basic use is:

Content-Security-Policy: default-src ‘self’; script-src scripts.csp.com ‘unsafe-inline’
‘unsafe-eval’

This policy would have the same effect as the previous policy except that inline scripts would be allowed and

the client browser would not prohibit the dangerous JavaScript methods, such as eval and Funtion.The

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 3/13

unsafe-inline and unsafe-eval directives have to be applied to either a script-src or default-src directive

in order to provide functionality. The inclusion of these directives limits the effectiveness of preventing

Cross-site Scripting.

2.1.3 OBJECT-SRC

The security model of the most common plugins allows full DOM access, so restricting object resources is as

important to preventing content injection as restricting script resources. The object-src directive controls

the source locations of embedded elements, applets, and plugins. This directive may be given a list of sources

from which to load object resources. A simple policy using this directive would be:

 Content-Security-Policy: default-src ‘none’; object-src plugins.csp.com

This policy begins by specifying a default policy where no resources are allowed. The second part of the

policy allows the client browser to load object data from plugins.csp.com, overwriting the default policy for

this particular resource. The end result of this policy is that object data is the only permitted resource on this

page and can only be loaded from plugins.csp.com.

2.1.4 STYLE-SRC

The style-src directive dictates the locations from which the client browser can load stylesheets. As style,

can be specified inline, Content Security Policy applies similar restrictions on style as the script-src

directive does with scripts. If a web application requires inline style the policy must specify unsafe-inline.

The same security concerns occur in the use of unsafe-inline for style as they do for scripts. Many web

applications depend upon inline style and externalizing these styles is non-trivial, see sections 3.1.2 and 3.1.3

for detailed descriptions. A policy involving the style-src is:

 Content-Security-Policy: default-src ‘none’; style-src *.csp.com ‘unsafe-inline’

This policy first declares a default policy of none which disallows all resources. The style-src directive lists

any subdomain of csp.com and specifies the allowance of inline style.

2.1.5 IMAGE-SRC

The image-src directive limits the locations from which the client browser can load image resources. This

directive takes a list of allowed image sources. An example of its use is:

 Content-Security-Policy: default-src ‘self’; image-src img.csp.com images.csp.com

This policy dictates a standard default-src directive and then specifies two valid locations for images to be

loaded from.

2.1.6 MEDIA-SRC

The media-src directive allows video and audio sources for the web application. A simple example of its use

would be:

 Content-Security-Policy: default-src ‘none’; media-src videos.csp.com media.other.com

This policy only permits media sources from the two stated domains and disallows all other resources.

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 4/13

2.1.7 FRAME-SRC

The frame-src directive permits frames from certain URIs to be present in the application, it does not control

the ability of the application to be framed on other pages (for this look to X-Frame-Options). Many web

applications use frames to bring in additional features from external sources. An example would be:

 Content-Security-Policy: default-src ‘self’; frame-src youtube.com

This directive would allow frames from youtube.com but all other resources would have to come from its own

origin.

2.1.8 FONT-SRC

The font-src directive controls access to font resources, such as Google Web Fonts. A simple example of its

usage is:

Content-Security-Policy: default-src ‘self’; font-src
https://themes.googleusercontent.com;

This directive would allow fonts to come from Google Web Fonts and all other resources could be accessed

only from the origin.

2.1.9 CONNECT-SRC

The connect-src directive permits connections, via XML HTTP Request(XHR)/WebSockets/EventSource, to

other origins. An example of this is:

 Content-Security-Policy: default-src ‘none’; connect-src xhr.csp.com

This directive would only allow outgoing connections (such as XHR) to xhr.csp.com and would not permit

any other resources to be loaded into the application.

2.1.10 REPORT URI

Content Security Policy has the ability to not only block offending resources, but also to report the offense to

the server through the use of a report-uri directive. To use the report-uri directive, simply add the

directive to the end of the policy followed by location for the reports to go:

Content-Security-Policy: default-src ‘self’; script-src js.csp.com; report-uri
reports.csp.com/cspReport.cgi

 The violation reports will be sent via POST as a JSON blob that will look like this:

{
 “csp-report”: {
 “document-uri”: “http://csp.com/index.html”,
 “referrer”: “http://notorigin.com”,
 “blocked-uri”: “http://notorigin.com/attack.js”,
 “violated directive”: “script-src ‘none’” ,

“original-policy”: “default-src ‘self’; script-src ‘none’; report-uri
/uri_parser”

 }
}

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 5/13

Table 1 report-uri

The parts of the JSON blob are fairly self-explanatory and give a lot of information about the violation.

2.1.11 SANDBOX

When the sandbox directive is used, the browser will treat the page as though it were loaded into an iframe

with the sandbox attribute. This will effectively remove this frame from associating with the main application

in terms of the Same Origin Policy. This will prevent the page from performing certain actions, such as

submitting forms and many others. This attribute is best applied to pages that contain untrusted content and

those which do not need to submit information.

The sandbox directive has several keywords to alter its restrictions. If the sandbox directive is stated without

any additional values:

 Content-Security-Policy: sandbox

The header will enforce a Same Origin Policy, prevent popups, and prevent plugin and script execution on the

associated page. All of these restrictions can be removed by adding additional parameters to the directive.

The additional parameters are: allow-forms, allow-same-origin, allow-scripts, and allow-top-navigation. Each

of these values can be added to the sandbox attribute in order to fit an application’s needs. An example of the

use of sandbox to only restrict scripts is:

 Content-Security-Policy: sandbox allow-forms allow-same-origin allow-top-navigation

2.2 SCHEME

The scheme indicates a particular protocol or type of data that will be transmitted. Examples
of schemes are http: or javascript:. If the scheme is added to a directive, only that type of
protocol or data will be allowed to be processed for the resource. An example of using the
scheme to force the use of HTTPS for all resources in a web application is:
 Content-Security-Policy: default-src https:;

One pitfall to be aware of is that if the default-src has a defined scheme and then another resource specific

directive is defined afterwards, it must also specify all schemes it applies to, including those already defined

in default-src. An example of this is:

 Content-Security-Policy: default-src https:; script-src https://partner-site.com

A mistake would be to only put partner-site.com for the script-src directive assuming that the default-src

will permit only HTTPS traffic. Any resource specific directive overwrites the default-src directive for that

particular resource.

2.3 KEYWORDS

2.3.1 SELF

When specifying a directive there are a few keywords that can be used to simplify definitions. The self

keyword aliases the origin of the application. To match self, the resource specified must be loaded from the

same host, with the same protocol using the same port. For example, the application is hosted on

https://csp.com with a Content Security Policy of:

 Content-Security-Policy: default-src ‘self’;

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 6/13

This table will show whether a resource can be loaded from the specified domain according to this Content-

Security-Policy header.

URL Outcome Reason

https://csp.com/test.js Success Same protocol and host

https://csp.com/dir/test.js Success Same protocol and host

http://csp.com/test.js Failure Different protocol

https://test.csp.com/test.js Failure Different host

https://www.csp.com/dir/test.js Failure Different host

https://csp.com:8443/test.js Failure Different port

Table 2 Same Origin

2.3.2 NONE

The none keyword defines no sources are allowed in the application. This keyword can be an effective way to

begin a default-src directive in a Content-Security-Policy header. It sets a restrictive policy that disallows

all resources by default, making permitted resources explicit. Example:

 Content-Security-Policy: default-src ‘none’

This header prevents any resources from being loaded.

2.4 BROWSER SUPPORT

Since CSP is still in a draft mode, there is no standardized HTTP header name yet and implementation varies

between web browsers. The following table summarizes CSP support offered by the most popular web

browsers at time of writing

Browser Header Name Fully supported

since version

Features supported

Firefox Content-Security-
Policy

23.0 All

Chrome Content-Security-
Policy

25.0 All

IE X-Content-
Security-Policy

Not fully supported sandbox directive

only

Safari X-Webkit-CSP 6.0 All

Opera Content-Security-
Policy

15.0 All

Android Browser Not Supported N/A None

iOS Safari X-Webkit-CSP 6.0 All

Blackberry Browser Not Supported N/A None

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 7/13

Table 3 Browser Support

For readability purposes, the examples provided document only set the Content-Security-Policy header.

When implementing CSP in web applications the recommendation is to currently use only the standard

header. Using the prefixed header can be useful if the application is specifically targeting the sandbox

directive in IE. Behavior with the prefixed header could be unintended because of its different syntax and

different behavior in Firefox.

3 IMPLEMENTING CONTENT SECURITY POLICY

Implementing Content Security Policy should be done in steps. The first step towards full implementation

will be to find out exactly what resources the current web application is loading. The most convenient way to

do this will be to deploy CSP in the report only mode, using the Content-Security-Policy-Report-Only

header.

3.1.1 CONTENT-SECURITY-POLICY-REPORT-ONLY

Content Security Policy comes with a handy HTTP header called Content-Security-Policy-Report-Only.

This header can be defined in exactly the same way as a standard Content-Security-Policy header but will

only report the violations, without preventing their execution. Using the Report-Only header will not affect

the behavior of the application in any way. This allows for a consequence free way of finding out how the web

application will fare under various Content Security Policy configurations. In order to find out exactly what

types of resources the web application is currently accessing, try creating a Content-Security-Policy-

Report-Only header as:

 Content-Security-Policy-Report-Only: default-src ‘none’; report-uri /violation_parser;

This will send a violation report to “/violation_parser” for any resources the web application loads, but will

not prevent those resources from loading. This particular policy will generate a report for EVERY resource the

application loads, so it will create a very large amount of data.

In order to use this data, create a simple database that has a hook for the parser URI and collects all of the

violations for a prescribed amount of time. Use the database to collate these reports and figure out exactly

what resources the web application uses. Once the data has been collected decide for each resource that was

accessed whether or not it should be allowed to be accessed. For instances, find all the scripts legitimately

loaded by the application and add their location to the list of permitted script locations, using the script-

src. If it is evident that only scripts from a certain subdomain are being loaded, then the script-src directive

should list only that subdomain as a valid location. Each resource that is to be permitted needs to have a

corresponding directive in the Content Security Policy.

Once all of the data has been combed through and directives written, update the Content-Security-Policy-

Report-Only header with all of the new directives. Using a similar database system, do another round of data

gathering using the new header and verify that any violations coming through are expected. Repeat this

process as many times as is necessary to feel confident about the Content Security Policy implementation not

breaking the application’s usability when converted to an enforceable header.

3.1.2 PLAYING THE INLINE SCRIPT GAME

Content Security Policy depends on having specific URI’s for valid resource locations. This allows the web

application to control the resources that are loaded and prevent malicious content injection. Due to inline

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 8/13

scripts not having an external URI, there is no way for Content Security Policy to ensure their validity and

they should not be used. All style attributes and tags must also be externalized to allow Content Security

Policy to control their usage, as they can be a target of content injection as well. Removing all inline scripts

and style is, in general, non-trivial.

Assume a Content-Security-Policy header of:

 Content-Security-Policy: script-src ‘self’

This would prevent the use of inline scripts and only allow script resource to load from the origin, csp.com.

On the index page of csp.com is a small inline script:

<script> alert(‘Welcome to CSP!’)</script>

index.html

This script would be flagged as a violation and will not be permitted. In order to maintain functionality this

script can be externalized. Create a Javascript file called alert.js with the contents of the <script> tag inside a

function

function welcome()
{
 alert(“Welcome to CSP!”);
}

alert.js

and place the file within the origin, csp.com/alert.js. On the index page of csp.com simply include the

Javascript file

<script src=’alert.js’></script>

index.html

And call the welcome() function

<script>welcome()</script>

index.html

Another very common use of inline scripts is the onclick() functionality, to externalize these the

addEventListener() can be used. A common web application inline script such as:

Click Me

html file

can be replaced with addEventListener() calls:

function someEvent() {
alert("you clicked me");
}
var obj = document.getElementById("someElementId");
obj.addEventListener("click", someEvent);

events.js

<script src=’events.js’</script>
Click Me

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 9/13

html file

The restriction on inline scripts by Content Security Policy can be avoided by including the unsafe-inline

directive. This would greatly weaken Content Security Policy’s power to prevent XSS but can be a simple way

to use Content Security Policy without substantial upfront investment in bringing the application code into

compliance with Content Security Policy. The use of unsafe-inline can allow the development team time to

remove inline scripts and inline CSS while still taking advantage of the other security features offered by

Content Security Policy
1
.

3.1.3 EVALUATING YOUR FUNCTIONS

In order to take advantage of the most secure form of Content Security Policy, several functions need to be

eliminated from the code base. These functions are dangerous in that they can cause a web application to

execute user input as JavaScript code:

 Javascript operator and function eval()

 Function() constructor

 setTimeout() method without a function as the first argument

 setInterval() method without a function as the first argument

The removal of these functions from an established codebase can be non-trivial. When Content-Security-

Policy is defined, the former two functions will throw a security exception, while the latter will return 0.

This restriction can also be avoided by including the unsafe-eval directive but would significantly weaken a

lot of the protection that Content Security Policy provides. Just like the unsafe-inline directive, the unsafe-

eval directive could be used in the Content Security Policy declaration in order to give the development team

time to convert from using the above functions.

3.1.4 CONVERTING TO REGULAR CONTENT SECURITY POLICY

Once the Content-Security-Policy-Report-Only has been established and the violation reporting is

happening as desired, the Content-Security-Policy header can be used without negatively affecting the

application. Simply copy the approved directives from the Content-Security-Policy-Report-Only header and

add them to a Content-Security-Policy header. Any violations of the directives will now be blocked.

The report-uri can either be different for the Content-Security-Policy header or the same as the Report-

Only header, but it is important that the violation reports are logged. Any violations will be representative of

malicious intent, mistakes in the header, or mistakes in the application code. It is important to monitor these

violation reports to determine the reason.

3.1.5 ITERATIVE CONTENT SECURITY POLICY

The best way to use the Content-Security-Policy-Report-Only header after the Content Security Policy has

been established is to adjust and analyze the Content-Security-Policy-Report-Only header to find even

more strict and secure ways to use the directives. Having a report only feature allows for testing new

directives and trying out new ways to make the application more secure. For instance, a good starter header

might be something as simple as:

1
 http://nmatatal.blogspot.com/2013/01/removing-inline-javascript-for-csp.html

https://www.isecpartners.com/
http://nmatatal.blogspot.com/2013/01/removing-inline-javascript-for-csp.html

HTTPS://WWW.ISECPARTNERS.COM 10/13

Content-Security-Policy: default-src ‘self’ *.csp.com unsafe-inline; report-uri
‘/reporting’

This will only allow resources from the application’s origin and from subdomains. But if, after experimenting

with the Content-Seucrity-Policy-Report-Only header, it is found that the application only loads scripts

from scripts.csp.com, then a more secure policy would be:

Content-Security-Policy: default-src ‘self’ *.csp.com unsafe-inline; script-src
scripts.csp.com unsafe-inline; report-uri ‘/reporting’

This would be the same as the previous header for all resources except scripts which can now only load from

the scripts.csp.com. Now, after the development team has worked very hard to remove all inline scripts, the

Content-Security-Policy-Report-Only header can be modified to be:

Content-Security-Policy-Report-Only: default-src ‘self’; script-src scripts.csp.com;
report-uri ‘/reporting’

This header removes the unsafe-inline directive from both the default-src and script-src directives and

instructs browsers to report any violations of the more restrictive policy. After any remaining issues are

corrected, the main Content-Security-Policy header can be updated to reflect the changes made to the

Content-Security-Policy-Report-Only header;

Content-Security-Policy: default-src ‘self’ *.csp.com; script-src scripts.csp.com;
report-uri ‘reporting’

Using this process the Content-Security-Policy-Report-Only header can be used to iteratively increase the

security of the web application.

4 BEST PRACTICES

The best practices listed below are a list of rules to follow that would create the most secure Content Security
Policy and deploying it in a disciplined fashion that doesn’t break existing functionality. Not all of these are
trivial, and for many legacy applications the upfront refactoring investment required to comply with these
recommendations will be prohibitive. This is not a list of things all web applications must do, but a list of
practices that web applications should work toward in order to improve their security. There are also a couple
real-world examples of companies implementing Content Security Policy, Twitter, Github.

4.1 SUPPORT STANDARD CONTENT SECURITY POLICY HEADER

A Content Security Policy helps to detect and mitigate certain types of attacks, including XSS and other

injection attacks. These attacks are used for everything from data theft to site defacement or distribution of

malware. Web applications should have a Content-Security-Policy header on HTTP responses. There are 3

variations of the header right now: X-WebKit-CSP, Content-Security-Policy, and X-Content-Security-

Policy. Even though it would seem natural to support all headers, the behavior of the non-standard headers

can vary, so it is recommended to support only the standard header unless a specific functionality is

targetted.

4.2 AVOID THE UNSAFE-INLINE DIRECTIVE

Content Security Policy allows the server to control the locations from which the application expects to load

resources. If the unsafe-inline directive is specified then Content Security Policy has no way to control the

https://www.isecpartners.com/
https://blog.twitter.com/2013/csp-rescue-leveraging-browser-security
https://github.com/blog/1477-content-security-policy

HTTPS://WWW.ISECPARTNERS.COM 11/13

injection of inline scripts. Authors should not include unsafe-inline in their Content Security Policy if they

wish to protect their web application from XSS.

4.3 AVOID THE UNSAFE-EVAL DIRECTIVE

Content Security Policy prevents the use of specific Javascript functions such as eval(), which can execute

user submitted data as code. The unsafe-eval directive will disable this feature and allow the use of the

unsafe functions. Adding this directive bypasses one of the most important aspects of Content Security

Policy and should not be used.

4.4 NEVER SPECIFY A WILDCARD (*) AS THE DEFAULT POLICY

Content Security Policy allows wildcards through the use of ‘*’. A Content Security Policy containing a bare ‘*’

as the default policy will not be able to mitigate the risk of script or content injection. This would be the same

as not including the Content-Security-Policy header, and would provide no protection.

4.5 NEVER SPECIFY A WILDCARD (*) WHEN REFERENCING TOP LEVEL DOMAINS, E.G. *.COM

Content Security Policy allows wildcards through the use of '*'. The misuse of a wildcard can be very dramatic

and the server could allow access to more than intended. A directive of default-src *.com would allow

anyone with a .com domain to have their content included within the application resources.

4.6 ALWAYS SPECIFY A DEFAULT-SRC DIRECTIVE

There are several Content Security Policy directives that a user agent must enforce: script-src, object-src,

style-src, image-src, media-src, frame-src, font-src, and connect-src. Since some of these may be

unneeded or not considered, the most secure way to establish a Content Security Policy is to first set the

default-src to 'self' or ‘none’ and then build up the other directives as needed. This will make the web

application “secure by default” with additional directives serving as exceptions added in order to maintain

functionality. Not supplying a default-src directive means that the application is by default insecure except

where specified.

4.7 ALWAYS SPECIFY A REPORT-URI DIRECTIVE

Adding a reporting URI allows the web application to log violations against the defined Content Security

Policy. Without this directive, the administrators/developers have no way of detecting flaws in their web

application or Content Security Policy configuration. Reporting is also very important for the initial phase of

setting up Content Security Policy. Analysis of the report-uri of the Content-Security-Policy-Report-

Only header can inform as to what resources are currently being loaded and from which locations. This is

vital in determining the Content Security Policy for an application.

4.8 NO RESOURCE-SPECIFIC DIRECTIVE MAY INDUCE A LOWER SECURITY SCHEME THAN THE

DEFAULT-SRC DIRECTIVE

If a default-src directive has a defined scheme and resource-specific directives are defined after default-

src, the resource-specific directive must specify the same scheme or one of higher security. The resource-

specific directives, when declared after a default-src directive, will overwrite the default-src directive

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 12/13

completely for that particular resource. Care needs to be taken when schemes are defined to not induce lower

security restrictions for specific resources. An example of improper use:

 Content-Security-Policy: default-src https:; frame-src frame.csp.com; //WRONG

This header would restrict all resources except frames from being passed over HTTPS, but would allow

frames to be loaded over an HTTP connection. There are rare cases where this is the intended functionality,

but generally this is not advisable.

4.9 ALL CONTENT SECURITY POLICIES SHOULD USE THE REPORT-ONLY FUNCTIONALITY TO OBSERVE

AND DETECT ANY NEEDED CHANGES IN THE CONTENT SECURITY POLICY

A Content Security Policy configuration is only as secure as the directives used to define it. Once the

Content-Security-Policy header is established, using the Content-Security-Policy-Report-Only header

will allow for testing different directives to see how the current policy can be trimmed or modified to create

the most restrictive policy possible while still allowing all resources to be obtained. The Content-Security-

Policy-Report-Only header should be used in tandem with the Content-Security-Policy header to

monitor the application for any resource violations and to secure the application.

The report-only mode should also be used to test significant changes in the Content Security Policy

configuration before adding to the Content-Security-Policy header in order to maintain site functionality.

4.10 NEVER USE A PATH WITHIN THE RESOURCE LOCATION

According to Content Security Policy 1.0 client browsers should ignore any paths specified a directive source

location. If a path is specified in the source location and the author of the policy does not realize that it will

be dropped during processing, the directive may include resource locations that are not secure or not under

the author’s control. An example of including an unsupported path:

 Content-Security-Policy: default-src csp.com/secure/;

This header specifies a path “/secure” in the csp.com domain as the source of all resources for the application.

Content Security Policy 1.0 does not support paths in this manner, so the header would actually allow all

resources from the csp.com domain instead of only from the “/secure” path.

Note: Content Security Policy 1.1 may support the use of paths, so this recommendation may change in the

future.

5 CONCLUSION

Content Security Policy allows for fine-grain access control over resource origin for web applications. The

implementation of a basic form of Content Security Policy can be easily accomplished on any website. The

Content-Security-Policy-Report-Only header gives the developers/administrators a process for adding

Content Security Policy to a web application without breaking the functionality. The removal of inline script,

inline style, and insecure functions can be a large task, so the Content Security Policy can be configured to

allow these until the application code can be properly modified. If the prerequisite work is done, Content

Security Policy can mitigate common content injection vulnerabilities. The best practices proposed above

give the developers a guideline for designing a secure policy and avoiding some common missteps in the

process.

https://www.isecpartners.com/

HTTPS://WWW.ISECPARTNERS.COM 13/13

REFERENCES

 1. W3C, Content Security Policy 1.0, http://www.w3.org/TR/CSP/

 2. M. West, An Introduction to Content Security Policy,

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

3. http://caniuse.com/contentsecuritypolicy

https://www.isecpartners.com/

