

Entropy/Rust Cryptography and

Implementation Review

Entropy Cryptography

Version 1.0 – Final Report – August 25, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Entropy Cryptography, Inc. Portions of this

document and the templates used in its production are the property of NCC Group and cannot be

copied (in full or in part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Eric Schorn

Kevin Henry

Javed Samuel

Prepared For

Tux Pacific

Bogdan Opanchuk

1 Executive Summary

Synopsis

During the summer of 2023, Entropy Cryptography Inc. engaged NCC Group’s

Cryptography Services team to perform a cryptography and implementation review of

several Rust-based libraries implementing constant-time big integer arithmetic, prime

generation, and secp256k1 (k256) elliptic curve functionality. Two consultants performed

the review over 40 person-days (including retesting) with support provided over a private

Discord channel.

The initial review resulted in 2 high severity, 7 low severity, and 3 informational findings

across the in-scope repositories. These findings were promptly addressed by Entropy and

retested as part of this engagement. Two low-severity findings remain as ‘Risk Accepted’

as they are dependent on external requirements.

Overall, the reviewed code appeared to be well-architected, robustly implemented, and

aligned to specifications. Documentation was found to be of high quality, with helpful

comments, annotations, and references where appropriate. Identified issues were

addressed promptly once reported, with the proposed fixes aligning with the

recommendations made in this report.

Scope

The three primary code repositories in scope for this review were:

Commits fde0661 and ad08a7e of github.com/RustCrypto/crypto-bigint.

Commits c6bbdf3 and 7d95cf6 of github.com/entropyxyz/crypto-primes.

Commits 0f27814 and 5c829a4 of github.com/RustCrypto/elliptic-curves/k256.

A variety of supporting resources were used including a technical paper, the associated

test cases, and Rust documentation. The testing methodology primarily relied upon manual

source code inspection and analysis, comparison to specifications and reference materials,

and detailed timing measurements made on a Cortex-M4 based MCU system.

Limitations

No significant obstacles were encountered during the project and robust coverage of the

target code was successfully achieved. The direct dependencies received light review,

primarily around API usage.

Key Findings

The initial review uncovered a variety of issues, including:

Missing Validation of ‘low s’ ECDSA Signatures that may introduce application

incompatibilities stemming from inherently malleable ECDSA signatures.

Missing Schnorr Signature Verification Check which allows two valid signatures to be

verified for the same message and public key, effectively violating BIP 340’s objective of

signature non-malleability.

Timing Variability in ECDSA Signature Generation where a benign timing variability may

complicate the detection of other timing side-channels that leak secret values.

Inexact Secret Key Deserialization that introduces validation complexity along with

potential issues involving malleability and interoperability.

Square Root Computation is not Constant Time which may lead to the leakage of

secret material.

The project concluded with a retest phase that confirmed all findings except two were

fixed. These remaining low-severity findings were marked ‘Risk Accepted’ due to

dependence on external requirements.

1.

2.

3.

•

•

•

•

•

2 / 39 – Executive Summary

https://github.com/RustCrypto/crypto-bigint/tree/fde06616bffa9659cd84754706597a42681d9575
https://github.com/RustCrypto/crypto-bigint/tree/fde06616bffa9659cd84754706597a42681d9575
https://github.com/RustCrypto/crypto-bigint/tree/fde06616bffa9659cd84754706597a42681d9575
https://github.com/RustCrypto/crypto-bigint/tree/ad08a7ea4820ed07c2a7de8bd938c2c6dc1466f3
https://github.com/RustCrypto/crypto-bigint/tree/ad08a7ea4820ed07c2a7de8bd938c2c6dc1466f3
https://github.com/RustCrypto/crypto-bigint/tree/ad08a7ea4820ed07c2a7de8bd938c2c6dc1466f3
https://github.com/RustCrypto/crypto-bigint
https://github.com/RustCrypto/crypto-bigint
https://github.com/entropyxyz/crypto-primes/tree/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9
https://github.com/entropyxyz/crypto-primes/tree/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9
https://github.com/entropyxyz/crypto-primes/tree/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9
https://github.com/entropyxyz/crypto-primes/tree/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c
https://github.com/entropyxyz/crypto-primes/tree/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c
https://github.com/entropyxyz/crypto-primes/tree/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c
https://github.com/entropyxyz/crypto-primes
https://github.com/entropyxyz/crypto-primes
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5
https://github.com/RustCrypto/elliptic-curves/tree/master/k256
https://github.com/RustCrypto/elliptic-curves/tree/master/k256
https://arxiv.org/abs/2006.14425

Strategic Recommendations

NCC Group recommends the prioritization of several emergent themes for future

development efforts, including:

Continue to maintain the current high quality of documentation as new features and

functionality are added over time.

Develop additional detailed documentation for the crypto-bigint functionality that

highlights supported use cases, particularly related to modular arithmetic involving both

compile-time and run-time moduli.

Develop and enable CI/CD test coverage reporting on each repository.

Implement and document a prime-generation mode compliant with FIPS 186-5.

1.

2.

3.

4.

3 / 39 – Executive Summary

2 Dashboard

Target Data Engagement Data

Name Crypto bigInt, crypto

primes and k256 curve

Type Cryptography and

implementation review

Type Source code libraries Method Source code analysis, MCU

timing measurements

Platforms Rust Dates 2023-06-07 to 2023-08-11

Environment Specific repository

commits

Consultants 2

Level of Effort 40 person-days

Targets

github.com/RustCrypto/crypto-bigint Big integer support for cryptographic

applications

github.com/entropyxyz/crypto-primes Prime number generation for cryptographic

applications

github.com/RustCrypto/elliptic-curves/

k256

Secp256k1 elliptic curve support

Finding Breakdown

Critical issues 0

High issues 2

Medium issues 0

Low issues 7

Informational issues 3

Total issues 12

Category Breakdown

Cryptography 3

Data Exposure 4

Data Validation 2

Error Reporting 1

Other 1

Patching 1

 Critical High Medium Low Informational

4 / 39 – Dashboard

https://github.com/RustCrypto/crypto-bigint
https://github.com/entropyxyz/crypto-primes
https://github.com/RustCrypto/elliptic-curves/tree/master/k256
https://github.com/RustCrypto/elliptic-curves/tree/master/k256

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Missing Validation of ‘low s’ ECDSA Signatures Fixed 2VF High

Missing Schnorr Signature Verification Check Fixed CRR High

Missing Minimum max_bit_length Check Fixed K2E Low

Hex Decoding for Uint is not Constant Time Fixed VVV Low

Minor Timing Leak in Saturating Arithmetic

Operations

Fixed HRB Low

Square Root Computation is not Constant Time Fixed K34 Low

Inexact Secret Key Deserialization Risk Accepted FQT Low

Minor Timing Leaks in Wide Scalar Arithmetic Fixed UNR Low

Timing Variability in ECDSA Signature Generation Risk Accepted ENP Low

Missing Toolchain Specification and Outdated

Dependencies

Fixed YTT Info

Silent Overflow/Wrapping Condition Fixed QTR Info

random_mod Tests Expect Incorrect Behavior Fixed NEW Info

5 / 39 – Table of Findings

4 Finding Details

Missing Validation of ‘low s’ ECDSA Signatures

Overall Risk High

Impact Medium

Exploitability High

Finding ID NCC-E008526-2VF

Component k256

Category Cryptography

Status Fixed

Impact

An API (and implemented functionality) that does not fully handle ‘low s’ signature

verification constraints may introduce application incompatibilities stemming from

inherently malleable ECDSA signatures.

Description

ECDSA signatures consist of two scalars r and s (both mod n , where n is the order of

the underlying elliptic curve). Each valid signature r, s has a counterpart r, -s mod n

that is also valid. The second signature can be derived from the first by any party without

knowing the secret key (and only on the same message). This malleability has caused

issues with consensus systems such as Bitcoin

1

 in the past. As a result, some systems

restrict the range of s to be the smaller of s and -s mod n during signature generation

and also validate this constraint during signature verification

2

.

The k256 signature generation process utilizes the normalize_s() helper function from

within the ecdsa.rs source file

3

 to perform this range adjustment. This code is partially

excerpted in finding "Timing Variability in ECDSA Signature Generation". As a result, all

signatures produced are of the restricted ‘low s’ form.

However, the k256 signature verification process accepts both forms of signature and does

not have a simple way of validating the range of s if desired. This was confirmed by a

short fuzz-type test where the normalize_s() function was eliminated during signature

generation without any issues encountered in signature verification. Accepting the broader

range of s contradicts the k256 README.md documentation

4

, as it states:

Support for ECDSA/secp256k1 signing and verification, applying low-s

normalization (BIP 0062) as used in consensus-critical applications, and

additionally supports secp256k1 public-key recovery from ECDSA signatures (as

used by e.g. Ethereum)

This situation likely stems from the specialized requirements of Bitcoin on k256 and their

non-applicability to the other (predecessor) curves. While the user may be able to perform

this check outside of the library, the documentation suggests they would not need to, they

may not know how, and they may be time pressured. Additionally, some applications may

not want to enforce this constraint on signature verification.

High

1. https://eklitzke.org/bitcoin-transaction-malleability

2. https://github.com/bitcoin-core/secp256k1/blob/2bd5f3e6184f1a4cfaed910ab74269fb6ab635be/

src/secp256k1.c#L455

3. https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d8

9a/k256/src/ecdsa.rs#L224

4. Item 2 of https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d1426

88c89d89a/k256#supported-algorithms

6 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/README.md
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/README.md
https://eklitzke.org/bitcoin-transaction-malleability
https://github.com/bitcoin-core/secp256k1/blob/2bd5f3e6184f1a4cfaed910ab74269fb6ab635be/src/secp256k1.c#L455
https://github.com/bitcoin-core/secp256k1/blob/2bd5f3e6184f1a4cfaed910ab74269fb6ab635be/src/secp256k1.c#L455
https://github.com/bitcoin-core/secp256k1/blob/2bd5f3e6184f1a4cfaed910ab74269fb6ab635be/src/secp256k1.c#L455
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs#L224
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs#L224
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs#L224
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs#L224
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256#supported-algorithms
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256#supported-algorithms
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256#supported-algorithms
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256#supported-algorithms

As a result, systems built with the k256 implementation will always produce low-s

signatures but may unintentionally (and silently) accept both varieties. The latter case may

introduce signature malleability incompatibilities, particularly in consensus-oriented

systems where messages may be identified by the signature byte string.

Recommendation

Adapt the API to incorporate validation of the low-s constraint. Alternatives include: A)

validate the low-s form in all cases, B) add a boolean flag to enable validation of the low-s

form, C) add a separate API that includes low-s validation.

Location

The verifying_key.verify() API ultimately resolves to the verify_prehashed() function

implemented in RustCrypto/signatures/ecdsa/src/hazmat.rs.

Retest Results

2023-07-31 – Fixed

NCC Group reviewed changes to k256/src/ecdsa.rs present in commit 5c829a4 and

observed a new validation check that throws an error when sig.s().is_high().into() .

This is aligned with the recommendation. As such, this finding has been marked ‘Fixed’.

7 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/elliptic-curves/tree/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256
https://github.com/RustCrypto/signatures/blob/ecdsa/v0.16.7/ecdsa/src/hazmat.rs#L160-L180
https://github.com/RustCrypto/signatures/blob/ecdsa/v0.16.7/ecdsa/src/hazmat.rs#L160-L180
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5
https://github.com/RustCrypto/elliptic-curves/tree/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5

Missing Schnorr Signature Verification Check

Overall Risk High

Impact High

Exploitability High

Finding ID NCC-E008526-CRR

Component k256

Category Cryptography

Status Fixed

Impact

A missing validation check allows two valid signatures to be verified for the same message

and public key, effectively violating BIP 340’s objective of signature non-malleability.

Description

The Schnorr signature verification algorithm defined in BIP 340 is shown below. Note the

three checks implemented as steps 7, 8 and 9.

The k256 Schnorr verify_prehash() function implemented in the verifying.rs source file is

shown below. Lines 69-75 of the implementation align with step 5 above, lines 77-83 align

with step 6, and lines 85-87 align with steps 8 and 9. While the to_affine() function on

line 83 is able to return the AffinePoint::IDENTITY value, there is no check corresponding

to step 7 above.

High

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

1. The algorithm Verify(pk, m, sig) is defined as:

2. Let P = lift_x(int(pk)); fail if that fails.

3. Let r = int(sig[0:32]); fail if r ≥ p.

4. Let s = int(sig[32:64]); fail if s ≥ n.

5. Let e = int(hashBIP0340/challenge(bytes(r) || bytes(P) || m)) mod n.

6. Let R = s⋅G - e⋅P.

7. Fail if is_infinite(R).

8. Fail if not has_even_y(R).

9. Fail if x(R) ≠ r.

10. Return success iff no failure occurred before reaching this point.

impl PrehashVerifier<Signature> for VerifyingKey {

fn verify_prehash(

&self,

prehash: &[u8],

signature: &Signature,

) -> core::result::Result<(), Error> {

let prehash: [u8; 32] = prehash.try_into().map_err(|_| Error::new())?;

let (r, s) = signature.split();

let e = <Scalar as Reduce<U256>>::reduce_bytes(

&tagged_hash(CHALLENGE_TAG)

.chain_update(signature.r.to_bytes())

.chain_update(self.to_bytes())

.chain_update(prehash)

.finalize(),

);

let R = ProjectivePoint::lincomb(

&ProjectivePoint::GENERATOR,

s,

&self.inner.to_projective(),

&-e,

8 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/schnorr/verifying.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/schnorr/verifying.rs

As a result, two signatures for the same message and public key will pass verification. The

first signature is a correctly generated (r

1

, s

1

) pair. The second (r

2

, s

2

) pair is generated as

follows:

Set r
2
 to 0 .

Recalculate e by performing step 5.

Set s
2
 = e ⋅ sk

Given P = sk⋅G, note that step 6 now becomes R = e⋅sk⋅G - e⋅sk⋅G

R will be the point at infinity; internally, this is AffinePoint { x=0, y=0, infinity=1 } .

Since step 7 is not present, steps 8 and 9 will both pass and step 10 will incorrectly

return success.

Thus the second signature is (0, e ⋅ sk). Both signatures will verify for the same message m

and public key P. Admittedly, the adversary has effectively disclosed their sk (as it can be

easily derived from s

2

). This disclosure may be worthwhile if it causes the victim to make a

high-value decision incorrectly.

As an informational aside, the validation step 4 above allows for s=0 but the code puts this

into a NonZeroScalar (which disallows 0) resulting in a minor mismatch between algorithm

and implementation. Note that the deserialization of r as a FieldElement does indeed

correctly allow a value of 0. Additionally, the deserialization process correctly checks the

upper limits of step 4 and 5.

Recommendation

Implement a check for the AffinePoint::IDENTITY corresponding to step 7 just prior to (or

on) line 85.

Location

RustCrypto/elliptic-curves/k256/src/schnorr/verifying.rs

Retest Results

2023-08-01 – Fixed

NCC Group reviewed changes to k256/src/schnorr/verifying.rs present in commit 9e905f0

and observed a new validation check involving R.is_identity().into() . This is aligned

with the recommendation. As such, this finding has been marked ‘Fixed’.

82

83

84

85

86

87

88

89

90

91

1.

2.

3.

4.

5.

)

.to_affine();

if R.y.normalize().is_odd().into() || R.x.normalize() != *r {

return Err(Error::new());

}

Ok(())

}

}

9 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5/k256/src/schnorr/verifying.rs#L60-L91
https://github.com/RustCrypto/elliptic-curves/blob/5c829a47c076ff9df4fc790f7bb14c2ccf73a5a5/k256/src/schnorr/verifying.rs#L60-L91
https://github.com/RustCrypto/elliptic-curves/pull/916/commits/9e905f0ae57aba6b792430ac238db6f49f376322
https://github.com/RustCrypto/elliptic-curves/pull/916/commits/9e905f0ae57aba6b792430ac238db6f49f376322
https://github.com/RustCrypto/elliptic-curves/pull/916/commits/9e905f0ae57aba6b792430ac238db6f49f376322
https://github.com/RustCrypto/elliptic-curves/pull/916/commits/9e905f0ae57aba6b792430ac238db6f49f376322
https://github.com/RustCrypto/elliptic-curves/pull/916/commits/9e905f0ae57aba6b792430ac238db6f49f376322

Missing Minimum max_bit_length Check

Overall Risk Low

Impact Low

Exploitability High

Finding ID NCC-E008526-K2E

Component crypto-primes

Category Data Validation

Status Fixed

Impact

When the hazmat::Sieve::new() function is called with a max_bit_length() of 0usize ,

the user may encounter an overflow, uncontrolled panic or compilation issue.

Description

The publicly visible hazmat::random_odd_uint() function implemented in sieve.rs checks

that its target bit length parameter is nonzero. However, the sibling and publicly visible

hazmat::Sieve::new() function does not have this check. If the latter function were

supplied with an argument of 0usize , then subtracting 1 on line 92 would cause an

overflow, panic or compilation issue (depending upon context).

Note that logic subsequent to that shown above handles a number of other corner cases. It

appears that only this condition can cause an issue prior to the handling logic.

Recommendation

In the hazmat::Sieve::new() function, validate that the supplied max_bit_length is non-

zero (near line 87).

Location

crypto-primes/src/hazmat/sieve.rs

Retest Results

2023-07-31 – Fixed

NCC Group reviewed changes to crypto-primes/src/hazmat/sieve.rs present in commit

7d95cf6 and observed a new validation check that panics when max_bit_length == 0 .

This is aligned with the recommendation. As such, this finding has been marked ‘Fixed’.

Low

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

pub fn new(start: &Uint<L>, max_bit_length: usize, safe_primes: bool) -> Self {

if max_bit_length > Uint::<L>::BITS {

panic!(

"The requested bit length ({}) is larger than the chosen Uint size",

max_bit_length

);

}

// If we are targeting safe primes, iterate over the corresponding

// possible Germain primes (`n/2`), reducing the task to that with `safe_primes =

false`.

let (max_bit_length, base) = if safe_primes {

(max_bit_length - 1, start >> 1)

} else {

(max_bit_length, *start)

};

...

10 / 39 – Finding Details

https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L81-L96
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L81-L96
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs

Hex Decoding for Uint is not Constant Time

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008526-VVV

Component crypto-bigint

Category Data Exposure

Status Fixed

Impact

Decoding of hex bytes is not constant time and the associated functions are not annotated

as vartime within the library, which may lead to unsafe usage by other applications.

Description

The crypto_bigint library provides the function from_be_hex() to construct a Uint from a

hex string. Hex characters are decoded byte-by-byte via the function decode_hex_byte()

in src/uint/encoding.rs:

The match expression represents a conditional branch on the input and will result in a

different number of comparisons based on the values of bytes[i] . According to The Rust

Reference:

If the scrutinee expression is a value expression, it is first evaluated into a

temporary location, and the resulting value is sequentially compared to the

patterns in the arms until a match is found. The first arm with a matching pattern

is chosen as the branch target of the match, any variables bound by the pattern

are assigned to local variables in the arm’s block, and control enters the block.

5

Low

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

/// Decode a single byte encoded as two hexadecimal characters.

const fn decode_hex_byte(bytes: [u8; 2]) -> u8 {

let mut i = 0;

let mut result = 0u8;

while i < 2 {

result <<= 4;

result |= match bytes[i] {

b @ b'0'..=b'9' => b - b'0',

b @ b'a'..=b'f' => 10 + b - b'a',

b @ b'A'..=b'F' => 10 + b - b'A',

b => {

assert!(

matches!(b, b'0'..=b'9' | b'a' ..= b'f' | b'A'..=b'F'),

"invalid hex byte"

);

0

}

};

i += 1;

}

result

}

5. https://doc.rust-lang.org/reference/expressions/match-expr.html

11 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/tree/fde06616bffa9659cd84754706597a42681d9575
https://github.com/RustCrypto/crypto-bigint/tree/fde06616bffa9659cd84754706597a42681d9575
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/encoding.rs#L149-L173
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/encoding.rs#L149-L173
https://doc.rust-lang.org/reference/expressions/match-expr.html
https://doc.rust-lang.org/reference/expressions/match-expr.html
https://doc.rust-lang.org/reference/expressions/match-expr.html

It was also observed that the u8 arithmetic in each branch could be different if the

compiler were unable to optimize the constant portions of 10 + b - b'a' versus

b - b'0' .

The library should make it clear that hex decoding operations are not explicitly constant

time or should adopt a different approach to achieve constant-time decoding. It is likely

that the variance in timing will not enable a meaningful attack, but it is nevertheless

recommended to err on the side of caution. The rust-ct-codecs crate appears to provide

an alternative approach to hex decoding with stronger timing guarantees

6

. This library was

not reviewed as part of this engagement, and is being linked for reference purposes only.

Similarly, the Constant-Time Toolkit (CTTK)

7

 provides reference implementations for hex

decoding that may be readily translated from C to Rust.

Recommendation

Ensure that hex byte decoding does not rely on conditional branches, or annotate the

function as vartime and ensure this is clearly communicated to users of the library.

Location

src/uint/encoding.rs

Retest Results

2023-08-02 – Fixed

As part of PR #254, commit 73e82bd , the non-CT match statement was replaced in favor

of the new constant-time approach implemented with the helper function

decode_nibble() :

The revised approach no longer depends on the value of each byte, and therefore

addresses the issue; as such, this finding has been marked ‘Fixed’.

const fn decode_nibble(src: u8) -> u16 {

let byte = src as i16;

let mut ret: i16 = -1;

// 0-9 0x30-0x39

// if (byte > 0x2f && byte < 0x3a) ret += byte - 0x30 + 1; // -47

ret += (((0x2fi16 - byte) & (byte - 0x3a)) >> 8) & (byte - 47);

// A-F 0x41-0x46

// if (byte > 0x40 && byte < 0x47) ret += byte - 0x41 + 10 + 1; // -54

ret += (((0x40i16 - byte) & (byte - 0x47)) >> 8) & (byte - 54);

// a-f 0x61-0x66

// if (byte > 0x60 && byte < 0x67) ret += byte - 0x61 + 10 + 1; // -86

ret += (((0x60i16 - byte) & (byte - 0x67)) >> 8) & (byte - 86);

ret as u16

}

6. https://github.com/jedisct1/rust-ct-codecs/tree/master

7. https://github.com/pornin/CTTK

12 / 39 – Finding Details

https://github.com/pornin/CTTK
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/encoding.rs
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/encoding.rs
https://github.com/RustCrypto/crypto-bigint/pull/254
https://github.com/RustCrypto/crypto-bigint/pull/254/commits/73e82bd9ecbc93fbda25b2691e35d5375e392451
https://github.com/RustCrypto/crypto-bigint/pull/254/commits/73e82bd9ecbc93fbda25b2691e35d5375e392451
https://github.com/RustCrypto/crypto-bigint/pull/254/commits/73e82bd9ecbc93fbda25b2691e35d5375e392451
https://github.com/jedisct1/rust-ct-codecs/tree/master
https://github.com/pornin/CTTK

Minor Timing Leak in Saturating Arithmetic

Operations

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008526-HRB

Component crypto-bigint

Category Data Exposure

Status Fixed

Impact

A conditional branch on the result of an arithmetic operation may introduce a subtle timing

attack based on the result of the operation.

Description

The crypto-bigint library provides saturating arithmetic operations, where integer overflow

is addressed by returning the maximum or minimum value for the underlying type, rather

than silently wrapping or returning an error. The following code pattern is used across the

implementations for saturating_add , saturating_sub , and saturating_mul ; see uint/

add.rs, for example:

Here, the adc function performs addition with a tracked “carry” value, and the saturating

operation simply checks if a carry/overflow occurred and returns the appropriate value.

The underlying implementation of == (PartialEq) for Limb provides a constant-time

comparison. However, the highlighted conditional will use at least one additional instruction

to jump to the else case if overflow occurs.

The crate implements CtChoice for performing certain constant-time comparison

operations, including a constant-time select function in src/ct_choice.rs:

The functions saturating_add , saturating_sub , and saturating_mul could be updated to

leverage the constant-time select function to eliminate the minor timing difference

identified above.

Recommendation

Update the identified saturating arithmetic operations to leverage the constant-time

select function, or an alternative constant-time approach.

Low

24

25

26

27

28

29

30

31

32

33

40

41

42

43

/// Perform saturating addition, returning `MAX` on overflow.

pub const fn saturating_add(&self, rhs: &Self) -> Self {

let (res, overflow) = self.adc(rhs, Limb::ZERO);

if overflow.0 == 0 {

res

} else {

Self::MAX

}

}

/// Return `b` if `self` is truthy, otherwise return `a`.

pub(crate) const fn select(&self, a: Word, b: Word) -> Word {

a ^ (self.0 & (a ^ b))

}

13 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/tree/fde06616bffa9659cd84754706597a42681d9575
https://github.com/RustCrypto/crypto-bigint/tree/fde06616bffa9659cd84754706597a42681d9575
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/add.rs#L24-L33
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/add.rs#L24-L33
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/add.rs#L24-L33
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/add.rs#L24-L33
https://github.com/RustCrypto/crypto-bigint/blob/a02c5054774695345319b7f00f6608d272bdff2b/src/ct_choice.rs#L40-L43
https://github.com/RustCrypto/crypto-bigint/blob/a02c5054774695345319b7f00f6608d272bdff2b/src/ct_choice.rs#L40-L43

Location

uint/add.rs

uint/mul.rs

uint/sub.rs

Retest Results

2023-08-02 – Fixed

As part of PR #256, commit cf08c2e , the saturating_add() and saturating_sub()

functions were updated to use ct_select() instead of an if statement. The issue with

saturating_mul() was fixed independently as part of PR #253. As such, this finding has

been marked ‘Fixed’.

•

•

•

14 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/add.rs
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/add.rs
https://github.com/RustCrypto/crypto-bigint/blob/a68fe3b09fc9438cbc201f7b7d6c765ecdc9b0b7/src/uint/mul.rs
https://github.com/RustCrypto/crypto-bigint/blob/a68fe3b09fc9438cbc201f7b7d6c765ecdc9b0b7/src/uint/mul.rs
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/sub.rs
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/sub.rs
https://github.com/RustCrypto/crypto-bigint/pull/256
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/cf08c2eccb08eb46ebf669777e0492f100853995
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/cf08c2eccb08eb46ebf669777e0492f100853995
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/cf08c2eccb08eb46ebf669777e0492f100853995
https://github.com/RustCrypto/crypto-bigint/pull/253

Square Root Computation is not Constant Time

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008526-K34

Component crypto-bigint

Category Data Exposure

Status Fixed

Impact

The sqrt function leverages an iterative approach that is not constant time, thereby

leading to a timing leak based on the input value.

Description

The sqrt function uses a numerical approach to refine estimates of an integer square root.

Each iteration moves closer to the correct result until no closer integer result can be

achieved. The initial estimate is based on the maximum number of bits needed to represent

the value of the input, not on the maximum value of the input. Therefore, the expected

runtime of the implementation will be based on the value of self . The function is not

annotated with _vartime , suggesting it is intended to be constant time in its execution.

The complete sqrt() function in uint/sqrt.rs is as follows:

Low

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

/// Computes √(`self`)

/// Uses Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.13

///

/// Callers can check if `self` is a square by squaring the result

pub const fn sqrt(&self) -> Self {

let max_bits = (self.bits_vartime() + 1) >> 1;

let cap = Self::ONE.shl_vartime(max_bits);

let mut guess = cap; // ≥ √(`self`)

let mut xn = {

let q = self.wrapping_div(&guess);

let t = guess.wrapping_add(&q);

t.shr_vartime(1)

};

// If guess increased, the initial guess was low.

// Repeat until reverse course.

while Uint::ct_lt(&guess, &xn).is_true_vartime() {

// Sometimes an increase is too far, especially with large

// powers, and then takes a long time to walk back. The upper

// bound is based on bit size, so saturate on that.

let le = Limb::ct_le(Limb(xn.bits_vartime() as Word), Limb(max_bits as Word));

guess = Self::ct_select(&cap, &xn, le);

xn = {

let q = self.wrapping_div(&guess);

let t = guess.wrapping_add(&q);

t.shr_vartime(1)

};

}

// Repeat while guess decreases.

while Uint::ct_gt(&guess, &xn).is_true_vartime() &&

xn.ct_is_nonzero().is_true_vartime() {

guess = xn;

15 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/sqrt.rs#L8-L48
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/sqrt.rs#L8-L48

The function was modified to locally track the number of iterations of the two while loops

while executing the provided simple() test, which validates the result for the first 13

perfect squares:

Input: 4 , total loops: 1

Input: 9 , total loops: 1

Input: 16 , total loops: 2

Input: 25 , total loops: 1

Input: 36 , total loops: 1

Input: 49 , total loops: 1

Input: 64 , total loops: 2

Input: 81 , total loops: 2

Input: 100 , total loops: 2

Input: 121 , total loops: 1

Input: 144 , total loops: 1

Input: 169 , total loops: 1

The total number of loop iterations varies based on even small changes to the input value,

violating any constant-time guarantees.

No direct usage of sqrt or the related functions wrapping_sqrt and checked_sqrt were

observed within the crate (outside of tests), so the immediate impact of the finding is low.

However, the library conventions suggest that this function should be marked _vartime to

ensure it is used safely outside of the crate.

Recommendation

Adopt a constant-time square root computation, or mark the function _vartime to clearly

communicate its behavior.

Location

uint/sqrt.rs

Retest Results

2023-08-02 – Fixed

As part of PR #256, commit 17c4358 , the various sqrt functions are now deprecated, e.g.:

This update is consistent with the recommendations and serves to notify users that the

function is not constant time.

40

41

42

43

44

45

46

47

48

•

•

•

•

•

•

•

•

•

•

•

•

xn = {

let q = self.wrapping_div(&guess);

let t = guess.wrapping_add(&q);

t.shr_vartime(1)

};

}

Self::ct_select(&Self::ZERO, &guess, self.ct_is_nonzero())

}

/// See [`Self::sqrt_vartime`].

#[deprecated(

since = "0.5.3",

note = "This functionality will be moved to `sqrt_vartime` in a future release."

)]

16 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/sqrt.rs#L8-L48
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/sqrt.rs#L8-L48
https://github.com/RustCrypto/crypto-bigint/pull/256
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/17c4358d50d9f5f62fcb345ed398e06ab5b59dc0
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/17c4358d50d9f5f62fcb345ed398e06ab5b59dc0
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/17c4358d50d9f5f62fcb345ed398e06ab5b59dc0

Inexact Secret Key Deserialization

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008526-FQT

Component k256

Category Data Validation

Status Risk Accepted

Impact

Allowing any variability in the deserialization of cryptographic material introduces

validation complexity along with potential issues involving malleability and interoperability.

Description

The SecretKey type declared in elliptic-curves/k256/src/lib.rs utilizes the from_slice()

deserialization trait functionality implemented in elliptic-curve/src/secret_key.rs (note the

former path is plural, while the latter is singular and from a traits crate). This function is

partially excerpted below and allows for variability in the input slice length.

As indicated in the code comments above, the function allows somewhat variable input

length and performs zero-padding as needed. This increases the complexity of validation

performed in the enclosing scope, introduces malleability into any enclosing structures,

and may impact interoperability. Past experience with Ed25519

8,9

 suggests that variability

is to be avoided (albeit references are more pertinent to signatures than secret keys). The

related from_bytes() deserialization function requires an exact input length.

Recommendation

Require and validate an exact length input prior to starting deserialization. Update the

docstrings to indicate the required byte-array sizes for deserializing other structs such as

the Schnorr SigningKey and VerifyingKey (for ease of use).

Low

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

/// Deserialize secret key from an encoded secret scalar passed as a

/// byte slice.

///

/// The slice is expected to be at most `C::FieldBytesSize` bytes in

/// length but may be up to 4-bytes shorter than that, which is handled by

/// zero-padding the value.

pub fn from_slice(slice: &[u8]) -> Result<Self> {

if slice.len() > C::FieldBytesSize::USIZE {

return Err(Error);

}

/// Maximum number of "missing" bytes to interpret as zeroes.

const MAX_LEADING_ZEROES: usize = 4;

let offset = C::FieldBytesSize::USIZE.saturating_sub(slice.len());

if offset == 0 {

Self::from_bytes(FieldBytes::<C>::from_slice(slice))

} else if offset <= MAX_LEADING_ZEROES {

8. https://github.com/dalek-cryptography/ed25519-dalek/issues/20

9. https://eprint.iacr.org/2020/1244.pdf

17 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/lib.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/lib.rs
https://github.com/RustCrypto/traits/blob/1164e44383c2517ce1ce35bf0331d681d4093362/elliptic-curve/src/secret_key.rs
https://github.com/RustCrypto/traits/blob/1164e44383c2517ce1ce35bf0331d681d4093362/elliptic-curve/src/secret_key.rs
https://github.com/dalek-cryptography/ed25519-dalek/issues/20
https://eprint.iacr.org/2020/1244.pdf

Location

RustCrypto/elliptic-curves/k256/src/lib.rs

RustCrypto/traits/elliptic-curve/src/secret_key.rs

RustCrypto/elliptic-curves/k256/src/schnorr/signing.rs

RustCrypto/elliptic-curves/k256/src/schnorr/verifying.rs

Retest Results

2023-07-31 – Not Fixed

NCC Group has reviewed discussion in issue 1330 of RustCrypto/traits which indicates

intentional support for a legacy corner-case described in issue 769. Thus, this finding was

not fixed and is considered ‘Risk Accepted’.

•

•

•

•

18 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/lib.rs#L146
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/lib.rs#L146
https://github.com/RustCrypto/traits/blob/1164e44383c2517ce1ce35bf0331d681d4093362/elliptic-curve/src/secret_key.rs#L155
https://github.com/RustCrypto/traits/blob/1164e44383c2517ce1ce35bf0331d681d4093362/elliptic-curve/src/secret_key.rs#L155
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/schnorr/signing.rs#L44-L48
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/schnorr/signing.rs#L44-L48
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/schnorr/verifying.rs#L38-L44
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/schnorr/verifying.rs#L38-L44
https://github.com/RustCrypto/traits/issues/1330
https://github.com/RustCrypto/traits/issues/1330
https://github.com/RustCrypto/elliptic-curves/issues/769

Minor Timing Leaks in Wide Scalar Arithmetic

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E008526-UNR

Component k256

Category Data Exposure

Status Fixed

Impact

The compiler may optimize the ct_less() function such that its usage may allow a subtle

timing attack based on the result of the arithmetic comparison.

Description

The ct_less() function implemented in the wide64.rs source file is excerpted below. The

first code comment and function name indicate the function is constant time, while the

second code comment and actual implementation (correctly) reflect the function not being

constant time as it omits Choice . Note that an optimization barrier is not inserted and the

function is to be inlined.

The muladd() function excerpted below utilizes ct_less() in two highlighted locations.

The compiler will attempt to inline the ct_less() logic and optimize across the function in

totality. This may introduce subtle timing differences involving overflows based upon

secret data.

This scenario is also present in the sumadd_fast() and muladd_fast() functions, as well

as the same four functions within the wide32.rs source file.

Recommendation

A constant-time implementation of the carry propagation logic should be achievable with

chained overflowing_add() 10

 operations. Alternatively, a constant-time Choice operation

Low

420

421

422

423

424

425

426

445

446

447

448

449

450

451

452

453

454

455

456

457

/// Constant-time comparison.

#[inline(always)]

fn ct_less(a: u32, b: u32) -> u32 {

// Do not convert to Choice since it is only used internally,

// and we don't want loss of performance.

(a < b) as u32

}

/// Add a*b to the number defined by (c0,c1,c2). c2 must never overflow.

fn muladd(a: u32, b: u32, c0: u32, c1: u32, c2: u32) -> (u32, u32, u32) {

let t = (a as u64) * (b as u64);

let th = (t >> 32) as u32; // at most 0xFFFFFFFFFFFFFFFE

let tl = t as u32;

let new_c0 = c0.wrapping_add(tl); // overflow is handled on the next line

let new_th = th + ct_less(new_c0, tl); // at most 0xFFFFFFFFFFFFFFFF

let new_c1 = c1.wrapping_add(new_th); // overflow is handled on the next line

let new_c2 = c2 + ct_less(new_c1, new_th); // never overflows by contract (verified in

the next line)

debug_assert!((new_c1 >= new_th) || (new_c2 != 0));

(new_c0, new_c1, new_c2)

}

19 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs

could be inserted into ct_less() (and used comprehensively across each of the

functions). Address instances across both wide64.rs and wide32.rs.

Location

RustCrypto/elliptic-curves/k256/src/arithmetic/scalar/wide64.rs

RustCrypto/elliptic-curves/k256/src/arithmetic/scalar/wide32.rs

Retest Results

2023-08-02 – Fixed

NCC Group reviewed changes present in k256/src/arithmetic/scalar/wide64.rs and

wide32.rs for PR #917 and observed that the relevant carry chain propagation is now

implemented with overflowing_add() and wrapping_add() exclusively. This is aligned

with the recommendation. As such, this finding has been marked ‘Fixed’.

•

•

10. https://doc.rust-lang.org/std/primitive.u32.html#method.overflowing_add

20 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs
https://github.com/RustCrypto/elliptic-curves/pull/917/files#diff-13df8f0aae452b37b5ff55c43a2ee5089d1ea7628eda5315befb23bfe71ba9f3
https://github.com/RustCrypto/elliptic-curves/pull/917/files#diff-13df8f0aae452b37b5ff55c43a2ee5089d1ea7628eda5315befb23bfe71ba9f3
https://github.com/RustCrypto/elliptic-curves/pull/917/files#diff-1b4f671b6e3d794ade1173bd145c73d23a8245077fa5ab38ad21fbc8542b1798
https://github.com/RustCrypto/elliptic-curves/pull/917/files#diff-1b4f671b6e3d794ade1173bd145c73d23a8245077fa5ab38ad21fbc8542b1798
https://github.com/RustCrypto/elliptic-curves/pull/917/files
https://doc.rust-lang.org/std/primitive.u32.html#method.overflowing_add

Timing Variability in ECDSA Signature

Generation

Overall Risk Low

Impact Medium

Exploitability None

Finding ID NCC-E008526-ENP

Component k256

Category Cryptography

Status Risk Accepted

Impact

A benign timing variability in the signature generation process may complicate the

detection of other timing side-channels that leak secret values.

Description

As the signature generation process involves a secret key, it is generally required to

operate in constant time. This prevents the possibility of secret leakage from timing side-

channels. While it is common to increase confidence in constant-time operation via

statistical means

11

 on full-featured desktop/server systems

12

, a complementary technique

involves running on deterministic (embedded) hardware. The k256 signature generation

process exhibits approximately 280 cycles of timing variability when running on a Cortex-

M4 MCU.

The try_sign_prehashed() function implemented in the ecdsa.rs source file makes use of

a normalize_s() helper function on line 224 as excerpted below.

The normalize_s() helper function is implemented in the ecdsa dependency crate as

shown below. This is clearly not a constant-time implementation as the amount of

calculation following the conditional test on line 303 is unbalanced.

Low

219

220

221

222

223

224

225

226

227

228

296

297

298

299

300

301

302

303

304

305

306

...

let signature = Signature::from_scalars(r, s)?;

let is_r_odd = R.y.normalize().is_odd();

let is_s_high = s.is_high();

let is_y_odd = is_r_odd ^ is_s_high;

let signature_low = signature.normalize_s().unwrap_or(signature);

let recovery_id = RecoveryId::new(is_y_odd.into(), false);

Ok((signature_low, Some(recovery_id)))

}

/// Normalize signature into "low S" form as described in

/// [BIP 0062: Dealing with Malleability][1].

///

/// [1]: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

pub fn normalize_s(&self) -> Option<Self> {

let s = self.s();

if s.is_high().into() {

let mut result = self.clone();

result.s = ScalarPrimitive::from(-s);

Some(result)

11. https://crates.io/crates/dudect-bencher

12. https://github.com/RustCrypto/crypto-bigint/blob/master/dudect/src/main.rs

21 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs
https://crates.io/crates/dudect-bencher
https://github.com/RustCrypto/crypto-bigint/blob/master/dudect/src/main.rs

As the above timing variability does not involve secret data, this finding severity has been

rated ‘Low’. However, it may obscure the presence and detection of additional timing side-

channels that do involve secret data.

Recommendation

The normalize_s() function may already be utilized by other applications, which increases

the impact of its variability and makes the function signature hard to change. Nonetheless,

several approaches are possible, including:

Introduce a sibling function alongside normalize_s() that returns a conditional

selection in constant time

13

 rather than an Option . Adapt existing callers to utilize this

function as possible. Mark the original function as deprecated.

As an initial pragmatic step that does not require changes in dependencies, replace the

call to normalize_s() on line 224 with the following:

This was implemented and the signing process confirmed to be constant time on the

Cortex-M4. However, this may be a brittle solution for other architectures and compiler

versions. Note that the overall signing process takes several million cycles, so the

relative overhead is negligible as from_scalars does not perform any point operations.

It could be argued that non-secret related timing variability is actually a good thing as it

makes an adversary’s task of secret-related recovery harder. However, the non-secret

variability can easily be removed in this instance since it is deterministic based on s .

Location

elliptic-curves/k256/src/ecdsa.rs

RustCrypto/signatures/blob/ecdsa/v0.16.7/ecdsa/src/lib.rs

Retest Results

2023-08-08 – Not Fixed

NCC Group has reviewed this finding with the development team and agreed on the proper

path forward. As the fix involves API compatibility logistics with an external dependency,

this work has been scheduled on the near-term roadmap. Thus, this finding was not fixed

at retest time and is considered ‘Risk Accepted’.

307

308

309

310

1.

2.

3.

•

•

} else {

None

}

}

let signature = Signature::from_scalars(r, s)?;

let signature2 = Signature::from_scalars(r, -s)?;

let signature_low = if is_s_high.into() {signature2} else {signature};

13. https://docs.rs/subtle/2.5.0/subtle/trait.ConditionallySelectable.html#tymethod.conditional_select

22 / 39 – Finding Details

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs#L189-L229
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs#L189-L229
https://github.com/RustCrypto/signatures/blob/ecdsa/v0.16.7/ecdsa/src/lib.rs#L296-L310
https://github.com/RustCrypto/signatures/blob/ecdsa/v0.16.7/ecdsa/src/lib.rs#L296-L310
https://docs.rs/subtle/2.5.0/subtle/trait.ConditionallySelectable.html#tymethod.conditional_select
https://docs.rs/subtle/2.5.0/subtle/trait.ConditionallySelectable.html#tymethod.conditional_select

Missing Toolchain Specification and Outdated

Dependencies

Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E008526-YTT

Component crypto-bigint, crypto-primes,

k256

Category Patching

Status Fixed

Impact

An unspecified minimum toolchain version may allow code to build on an unsupported

version with unexpected results. Attackers may attempt to identify and utilize publicly

known vulnerabilities in outdated dependencies to exploit the functionality of the target

code.

Description

The crypto-bigint/Cargo.toml and elliptic-curves/k256/Cargo.toml manifest files specify

the minimum supported toolchain version via the [package] rust-version = “1.65”

clause

14

, which corresponds to their repository README.md files and documentation on

https://docs.rs/. However, the crypto-primes/Cargo.toml manifest file is missing this clause

and the corresponding README.md and documentation are silent. As a result, there is no

guidance/restrictions on the minimum toolchain version when using this code.

The crypto-bigint/Cargo.toml manifest file specifies a dependency on subtle version 2.4 .

The latest version of this dependency is 2.5 which is approximately 3 months old.

The crypto-primes/Cargo.toml manifest file specifies a dependency on rug version 1.18 .

The latest version of this dependency is 1.19.2 which is approximately 3 months old.

The elliptic-curves/k256/Cargo.toml manifest file specifies a dependency on signature

version 2. This does not include a minor or patch value which is inconsistent with the

others.

Other dependencies are essentially current. Note that cargo audit did not find any

vulnerable (functional) dependencies.

Recommendation

Include the [package] rust-version = “1.65” clause into the crypto-primes/Cargo.toml

manifest file along with the corresponding README.md file and documentation on https://

docs.rs/.

Update the noted dependencies to the latest version (including minor value) suitable for

deployment. Add a periodic gating milestone to the project plan that involves reviewing all

dependencies for outdated or vulnerable versions.

Location

RustCrypto/crypto-bigint/Cargo.toml

entropyxyz/crypto-primes/Cargo.toml

RustCrypto/elliptic-curves/k256/Cargo.toml

Info

•

•

•

14. https://blog.rust-lang.org/2021/10/21/Rust-1.56.0.html#cargo-rust-version

23 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/blob/fde06616bffa9659cd84754706597a42681d9575/Cargo.toml
https://github.com/RustCrypto/crypto-bigint/blob/fde06616bffa9659cd84754706597a42681d9575/Cargo.toml
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/Cargo.toml
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/Cargo.toml
https://docs.rs/
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/README.md
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/README.md
https://github.com/RustCrypto/crypto-bigint/blob/fde06616bffa9659cd84754706597a42681d9575/Cargo.toml
https://github.com/RustCrypto/crypto-bigint/blob/fde06616bffa9659cd84754706597a42681d9575/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/Cargo.toml
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/README.md
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/README.md
https://docs.rs/
https://docs.rs/
https://github.com/RustCrypto/crypto-bigint/blob/fde06616bffa9659cd84754706597a42681d9575/Cargo.toml
https://github.com/RustCrypto/crypto-bigint/blob/fde06616bffa9659cd84754706597a42681d9575/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/Cargo.toml
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/Cargo.toml
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/Cargo.toml
https://blog.rust-lang.org/2021/10/21/Rust-1.56.0.html#cargo-rust-version

Retest Results

2023-08-21 – Fixed

NCC Group reviewed changes to crypto-primes/Cargo.toml present in commit 6b069b6 and

observed the addition of rust-version = "1.65" on line 10. This is aligned with the

recommendation. As such, this finding has been marked ‘Fixed’. Entropy notes that the

maintenance of dependency patch versions is the responsibility of the end user.

24 / 39 – Finding Details

https://github.com/entropyxyz/crypto-primes/blob/6b069b6d8e4a82de6e66224afdcd46f2048683ec/Cargo.toml
https://github.com/entropyxyz/crypto-primes/blob/6b069b6d8e4a82de6e66224afdcd46f2048683ec/Cargo.toml

Silent Overflow/Wrapping Condition

Overall Risk Informational

Impact Undetermined

Exploitability None

Finding ID NCC-E008526-QTR

Component crypto-primes

Category Error Reporting

Status Fixed

Impact

Execution would continue beyond a silent overflow condition resulting in undesired

behavior.

Description

The maybe_next() function excerpted below as implemented in the sieve.rs source file is

intended to optionally return the next non-composite number (with respect to the 2048

small primes) to the sieve iterator’s next() function. This may involve adding the

self.incr value to the base value as highlighted on line 209 below. An overflow resulting

from this addition operation would represent an error condition.

The above highlighted wrapping_add() function will wrap on overflow and thus silently

suppress the error condition.

A second instance of this observation is present on line 151 of the same source file. A third

instance of this (involving wrapping subtraction) is present on line 105 of miller-rabin.rs.

The current code does not appear to be able to trigger this condition, so this finding is

marked ‘Informational’. However, if the code were to evolve in future, this error condition

may become reachable. Additionally, note that the iterator is available to the external user.

Recommendation

Consider detecting this error condition and handling appropriately. This may involve A) a

checked_add() operation, B) an adc() operation followed by an assertion, or C) adding a

code comment documenting the potential for a silent error.

Location

entropyxyz/crypto-primes/src/hazmat/sieve.rs

entropyxyz/crypto-primes/src/hazmat/miller_rabin.rs

Info

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

•

•

// Returns the restored `base + incr` if it is not composite (wrt the small primes),

// and bumps the increment unconditionally.

fn maybe_next(&mut self) -> Option<Uint<L>> {

let result = if self.current_is_composite() {

None

} else {

let mut num = self.base.wrapping_add(&self.incr.into());

if self.safe_primes {

num = (num << 1) | Uint::<L>::ONE;

}

Some(num)

};

self.incr += 2;

result

}

25 / 39 – Finding Details

https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/miller_rabin.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/miller_rabin.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L203-L218
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L203-L218
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/miller_rabin.rs#L105
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/miller_rabin.rs#L105

Retest Results

2023-08-02 – Fixed

NCC Group reviewed changes to crypto-primes/src/hazmat/sieve.rs present in commit

7d95cf6 and observed the use of checked_add() on line 221 (originally line 209). This is

aligned with the recommendation. As such, this finding has been marked ‘Fixed’.

26 / 39 – Finding Details

https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs
https://github.com/entropyxyz/crypto-primes/blob/7d95cf6d1c00c201d39889a0cb3543a27a0aea3c/src/hazmat/sieve.rs

random_mod Tests Expect Incorrect Behavior

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008526-NEW

Component crypto-bigint

Category Other

Status Fixed

Impact

Existing test suites will fail if run on different valid inputs, suggesting that test coverage

may not be as complete as intended.

Description

The crypto_bigint crate provides the function random_mod() to “generate a

cryptographically secure random Uint which is less than a given modulus”. The provided

function appears to be correct, but corresponding test will not pass universally; see src/

uint/rand.rs:

The test seeds a random number generator with the fixed seed 1 and proceeds to

generate a random value modulo 42 . The highlighted assertion enforces that the resulting

random number is non-zero. However, zero is a valid output of the random_mod() function,

and the result is expected to be zero with probability 1 in 42, or approximately 2.3% of the

time. Because a fixed seed is used, this condition is not currently hit. The second test case

has a similar issue but will fail with a substantially lower probability.

The issue can be triggered by wrapping the test case in a loop until the randomly chosen

result is 0 :

Info

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

#[test]

fn random_mod() {

let mut rng = rand_chacha::ChaCha8Rng::seed_from_u64(1);

// Ensure `random_mod` runs in a reasonable amount of time

let modulus = NonZero::new(U256::from(42u8)).unwrap();

let res = U256::random_mod(&mut rng, &modulus);

// Sanity check that the return value isn't zero

assert_ne!(res, U256::ZERO);

// Ensure `random_mod` runs in a reasonable amount of time

// when the modulus is larger than 1 limb

let modulus = NonZero::new(U256::from(0x10000000000000001u128)).unwrap();

let res = U256::random_mod(&mut rng, &modulus);

// Sanity check that the return value isn't zero

assert_ne!(res, U256::ZERO);

}

fn random_mod() {

let mut rng = rand_chacha::ChaCha8Rng::seed_from_u64(1);

for _ in 1..100 {

// Ensure `random_mod` runs in a reasonable amount of time

let modulus = NonZero::new(U256::from(42u8)).unwrap();

let res = U256::random_mod(&mut rng, &modulus);

27 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/rand.rs#L54-L77
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/rand.rs#L54-L77
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/rand.rs#L54-L77
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/rand.rs#L54-L77

Running the above results in the following test failure, despite the random_mod() behavior

being correct:

It is not clear what the referenced sanity check is intended to enforce, as a zero result is

valid. The modulus cannot be zero, and the NonZero trait enforces this on creation, but it

might make sense to sanity check this in a test where the modulus is generated randomly.

Given that the test is currently incorrect, but the issue is not triggered in the current

configuration, the test may not be exercising the underlying code sufficiently.

Recommendation

Remove the invalid check that the result is 0 , or revise it to test a correct property.

Consider iterating the test over multiple random values instead of a single sample with a

fixed seed.

Location

src/uint/rand.rs

Retest Results

2023-08-02 – Fixed

As part of PR #256, commit be9aa47 , the affected tests were revised to check that the

result of random_mod() falls within the appropriate range, instead of checking that the

result is non-zero. This revision better reflects the intended behavior of the function. As

such, this finding has been marked ‘Fixed’.

•

•

// Sanity check that the return value isn't zero

assert_ne!(res, U256::ZERO);

}

}

running 1 test

thread 'uint::rand::tests::random_mod' panicked at 'assertion failed: `(left != right)`

left: `Uint(0x00)`,

right: `Uint(0x00)`',

src\uint\rand.rs:67:13

28 / 39 – Finding Details

https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/rand.rs
https://github.com/RustCrypto/crypto-bigint/blob/c7f5f405e648917b217390984b1a991bdcd6ba01/src/uint/rand.rs
https://github.com/RustCrypto/crypto-bigint/pull/256/
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/be9aa477149250bf724fe1b3904d0134e0ea4d64
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/be9aa477149250bf724fe1b3904d0134e0ea4d64
https://github.com/RustCrypto/crypto-bigint/pull/256/commits/be9aa477149250bf724fe1b3904d0134e0ea4d64

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium

29 / 39 – Finding Field Definitions

Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

30 / 39 – Finding Field Definitions

6 Appendix: Project Notes and Observations

This informal section contains notes and observations generated throughout the

engagement. The content below may be relevant to code improvement opportunities,

observations that were noted but not necessarily in scope, and providing supporting

information for subsequent analysis. The material is not intended to be comprehensive.

1.0 The crypto-bigint Repository

1.1 Code Organization

The src/boxed subdirectory contains a relatively small amount of code for fixed-precision

heap-allocated unsigned integers (which will wrap rather than grow). Similarly, the src/limb

subdirectory contains code supporting arithmetic and bitwise logical operations on

individual CPU word-sized integers called limbs; checked and unchecked variants are

implemented and arithmetic may either wrap or saturate.

The src/uint subdirectory contains the bulk of functionality supporting big integers. For

modular operations in unit/modular, the odd modulus may be fixed at compile-time or

calculated during run-time; this is supported by impl_modulus! then const_residue!

macros. Standard arithmetic and bitwise operations are implemented, along with several

modular inverse, random, resize and encoding functions.

1.2 Overflow vs Underflow

The term overflow is used to refer to integer operations whose result does not fit into the

allocated amount of memory. An overflowing operation in Rust “wraps around” to one that

will fit in the allocated type. Wrapping addition on a type T will overflow from T::MAX to

T::MIN , and wrapping subtraction will overflow from T::MIN to T::MAX .

The library was observed to use the term “underflow”, both in comments and in code, to

refer to integer overflow in the negative direction. While the meaning is understood in

context, underflow is most commonly used to refer to a loss of precision when computing

over small floating point values. For example, Wikipedia provides the following:

Storing values that are too low in an integer variable (e.g., attempting to store −1

in an unsigned integer) is properly referred to as integer overflow, or more broadly,

integer wraparound. The term underflow normally refers to floating point numbers

only, which is a separate issue. It is not possible in most floating-point designs to

store a too-low value, as usually they are signed and have a negative infinity

value.

15

1.3 Non-Constant-Time Cmp in Ord Trait

The Limb and Uint types implement the Cmp operator, which returns one of

Ordering::Less , Ordering::Greater , or Ordering::Equal . As seen in the following two

implementations, the selection of the output value uses a match statement or a series of

conditional statements whose runtime will depend on the relative values of the left hand

and right hand operands; see limb/cmp.rs:

93

94

95

96

97

98

99

impl Ord for Limb {

fn cmp(&self, other: &Self) -> Ordering {

let mut n = 0i8;

n -= self.ct_lt(other).unwrap_u8() as i8;

n += self.ct_gt(other).unwrap_u8() as i8;

match n {

15. https://en.wikipedia.org/wiki/Arithmetic_underflow

31 / 39 – Appendix: Project Notes and

Observations

https://en.wikipedia.org/wiki/Arithmetic_underflow
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/limb/cmp.rs#L93-L109
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/limb/cmp.rs#L93-L109
https://en.wikipedia.org/wiki/Arithmetic_underflow
https://en.wikipedia.org/wiki/Arithmetic_underflow

As well as uint/cmp.rs:

The above is not necessarily an issue, as the public interface to the above is provided via a

function marked _vartime in limb/cmp.rs:

Similarly, the inv_mod2k() function in the src/uint/inv_mod.rs source file is constant-time in

self but not in k . This has been addressed in pull 263. Note that the following function

inv_odd_mod_bounded() in the same source file is variable time in bits and modulus_bits ,

but is documented as such.

No finding was created for the above non-constant-time code instances, but their

existence is being documented as a potential risk for accidental misuse within the crate in

the future.

1.4 Debug Mode

The library contains several debug_assert! macros which may not enforce constant-time

operations. Indeed, several instances explicitly utilize _vartime operations or PartialOrd

comparisons which, as described in the previous subsection, are not constant time. It is

likely that such choices are intentional, and the library does not aim to provide constant-

time behavior in debug mode; however, it may be prudent to make this assumption explicit

in the documentation to ensure the library is used safely.

100

101

102

103

104

105

106

107

108

109

106

107

108

109

110

111

112

113

114

115

116

117

118

119

15

16

17

18

19

20

21

-1 => Ordering::Less,

1 => Ordering::Greater,

_ => {

debug_assert_eq!(n, 0);

debug_assert!(bool::from(self.ct_eq(other)));

Ordering::Equal

}

}

}

}

impl<const LIMBS: usize> Ord for Uint<LIMBS> {

fn cmp(&self, other: &Self) -> Ordering {

let is_lt = self.ct_lt(other);

let is_eq = self.ct_eq(other);

if is_lt.into() {

Ordering::Less

} else if is_eq.into() {

Ordering::Equal

} else {

Ordering::Greater

}

}

}

/// Perform a comparison of the inner value in variable-time.

///

/// Note that the [`PartialOrd`] and [`Ord`] impls wrap constant-time

/// comparisons using the `subtle` crate.

pub fn cmp_vartime(&self, other: &Self) -> Ordering {

self.0.cmp(&other.0)

}

32 / 39 – Appendix: Project Notes and

Observations

https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/cmp.rs#L106-L119
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/uint/cmp.rs#L106-L119
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/limb/cmp.rs#L15-L21
https://github.com/RustCrypto/crypto-bigint/blob/4a252a36ff0f783e6532ce506733434d72597ad4/src/limb/cmp.rs#L15-L21
https://github.com/RustCrypto/crypto-bigint/blob/ad08a7ea4820ed07c2a7de8bd938c2c6dc1466f3/src/uint/inv_mod.rs#L16
https://github.com/RustCrypto/crypto-bigint/blob/ad08a7ea4820ed07c2a7de8bd938c2c6dc1466f3/src/uint/inv_mod.rs#L16
https://github.com/RustCrypto/crypto-bigint/pull/263

1.5 Test Coverage

Overall unit-test coverage is robust, though several exceptions can be seen below. The

repository does not have a CI/CD test coverage workflow.

2.0 The crypto-primes Repository

The crypto-primes crate exposes a straightforward API

16

 consisting of:

The generate_prime_with_rng() , generate_safe_prime_with_rng() ,

is_prime_with_rng and is_safe_prime_with_rng() functions.

1.

16. https://docs.rs/crypto-primes/latest/crypto_primes/index.html

33 / 39 – Appendix: Project Notes and

Observations

https://docs.rs/crypto-primes/latest/crypto_primes/index.html

The generate_prime() , generate_safe_prime() , is_prime() and is_safe_prime()

functions, which are essentially wrappers that call the above corresponding functions

with OsRng utilized as the random number generator.

Additionally, the library exposes functionality under the hazmat 17

 qualifier. Potential primes

are of type Uint<L> from the crypto-bigint crate. The generate* functions allow the target

bit length to be optionally specified, where None will correspond to the full length of the

returned value Uint<L> . The small size and targeted nature of the APIs are conducive to

describing the general execution flow below.

The generate_prime() function implemented in the presets.rs source file simply calls gene

rate_prime_with_rng() with OsRng . The latter function first confirms the target bit length

(if specified) is larger than 2 before entering a (near) infinite loop{} . This loop involves

generating a random odd unsigned integer, setting that integer as the start value for a new

sieve iterator which will generate values not divisible by the first 2048 small primes,

followed by another inner for{} loop over all returned sieve values/iterations. Each of

these latter values is tested for primality via is_prime_with_rng() and the enclosing

function exits while returning this value. If the sieve becomes ‘empty’ as it reaches a value

beyond the target bit length, the (near) infinite loop is repeated starting with another

random odd integer. The only way the function exits is with a value that tests prime.

The generate_safe_prime() functionality has a matching structure, but checks the target

bit length is larger than 3 , uses an extra flag when creating the sieve and uses is_safe_pr

ime_with_rng() for primality testing.

The is_prime() function similarly calls the is_prime_with_rng() function, which returns

true for an input of 2 then validates an odd input before calling _is_prime_with_rng() .

This latter function performs a Miller-Rabin base-2 test, a Strong Lucas test and a final

Miller-Rabin test on a random base. When a composite number is detected, the function

returns false immediately; when the function successfully completes, it returns true .

Note that all non-hazmat API are hardcoded to involve a Strong Lucas test. As such, the

execution description content below will primarily focus on this case, with the other cases

considered separately.

2.1 sieve.rs

The random_odd_uint() function implemented in the sieve.rs source file first tests that the

target bit length is non-zero and not larger than the output type Uint<L> . It then generates

a full-width random number and optionally shifts it right to trim to the desired bit length.

Both the LSB and MSB (based on target bit length) is set and the result returned. The

potential to return a fixed value for bit lengths of 1 or 2 is as intended.

The Sieve::new() function implemented in the sieve.rs source file performs some input

validation (see finding "Missing Minimum `max_bit_length` Check") and adjusts the bit

length and starting value based on the safe_primes flag. The produces_nothing flag is

calculated based on input corner cases and stored in the struct. Similarly, the condition of

starting from a base of 2 or less is handled by setting base to 3 and starts_from_except

ion to true . An empty (but properly sized) vector of residues is allocated upon function

exit.

The next() function of the sieve iterator returns None if the produces_nothing flag has

been set, then returns either (a safe) 5 or 2 if the starts_from_exception flag is set.

2.

17. https://docs.rs/crypto-primes/latest/crypto_primes/hazmat/index.html

34 / 39 – Appendix: Project Notes and

Observations

https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/presets.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/presets.rs
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L11-L40
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L11-L40
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L69-L87
https://github.com/entropyxyz/crypto-primes/blob/c6bbdf3931de007e8fe8b379a8cce0f5f77099e9/src/hazmat/sieve.rs#L69-L87
https://docs.rs/crypto-primes/latest/crypto_primes/hazmat/index.html

Otherwise a while loop is entered which is controlled by the returned value from

update_residues() . Inside the loop, the function may return maybe_next() or simply

continue.

The update_residues() function will return false when on the last round and true when

a nonzero incr_limit is larger than incr . Execution will fall through these cases A) upon

initialization, or B) upon a needed increase of bit width. When it does, the base is

incremented, the reciprocals of the small primes are recalculated via

ct_div_rem_limb_with_reciprocal() from the crypto-bigint crate. Finally, the incr_limit

is calculated to stay within current bit width.

The maybe_next() function uses current_is_composite() to check whether base + incr

is divisible by any of the relevant small primes. If it is, the function returns None to the

while loop inside next() , which will then cycle to the next candidate. If the candidate is

‘not’ composite, a Some() is constructed which holds base + incr or that value divided by

two plus one. The incr is updated and result returned.

The current_is_composite() function checks for divisibility by all small primes. Any

remainder of 0 will be reported as composite. If the safe_primes flag is set, an additional

check on r == (d - 1) >> 1 is performed (and potentially reported as composite). If both

equality tests fail on all small primes, then false is returned (indicating probably prime).

2.2 hazmat/miller_rabin.rs

The new() function for an instance of the Miller-Rabin test confirms the candidate is odd,

and determines the constants necessary for conversion to/from Montgomery form along

with one and minus_one . The values of s and d are determined such that candidate - 1

= 2
s

 * d . These values are stored in the struct.

The test_base_two() function simply calls test() with a base of 2 .

The test() function converts the supplied base into Montgomery form and then

exponentiates it to the power d . The result is tested against ± 1 as an early indication of

probable primality. The result (test) is further squared 1..s times, and if A) any instance

is one then Composite is returned, B) if any instance is minus one then ProbablyPrime is

returned. If the loop completes, then Composite is returned. This aligns with the

requirement that either A) a

d

 = 1, or a

d*2^r

 = -1 for some 0 ≤ r ≤ s.

The test_random_base() function confirms the bit length is 3 or larger, constructs a

random base less than (between 0 and) candidate-4 then adds 3 , then calls test() .

2.3 lucas.rs

The lucas_test() function, when given the Strong variant as is default, (nearly) follows

section 3 of “Strengthening the Baillie-PSW primality test”

18

 (which provides good

background material covering the original primality test). If the candidate is even, return

Composite . Otherwise, p and q are chosen in the generate() function using the Selfridge

base (method A not A*). The execution path continues after generate() is briefly

described.

The generate() function associated with the Selfridge base initializes a few constants

before entering an attempt-limited loop{} containing a threshold-triggered square check.

The loop calculates the Jacobi symbol and breaks on MinusOne while returning the proper

18. Baillie2021: https://arxiv.org/abs/2006.14425

35 / 39 – Appendix: Project Notes and

Observations

https://arxiv.org/abs/2006.14425

p and q . Alternatively, when the loop continues, it calculates the next d and tries again.

Note that q = -1 when n ≡ ±3 (mod 10).

The execution path of lucas_test() continues by preparing several values for use in

calculating the Lucas sequence next following Baillie2021. The individual bits of d are

iterated through while calculating U

2k

 and V

2k

 per equations 13 and 14 respectively, while

optionally calculating U

k+1

 and V

k+1

 per equations 16 and 17 respectively (as needed).

Condition 11 is tested near line 402, while condition 12 requires more calculation performed

on lines 439-457. If neither condition succeeds, a Composite indicator is returned.

2.4 jacobi.rs

The jacobi_symbol() function first validates that the lower argument is odd and the upper

argument is not i32::MIN (this second check is not necessary and has been fixed). A

negative upper argument is then handled via Fact 2.146 (ii) and (i) from The Handbook of

Applied Cryptography. Both arguments are then normalized to fit into a Word. The

reduce_numerator() function follows the latter portion of Fact 2.148 (vii). Once the wider

Uint<L> is the upper argument, a division can be performed. A loop{} performing the

reduce and swap operations repeats until the numerator becomes 1.

2.5 gcd.rs

This source file implements a helper function to calculate the greatest common

denominator of a Uint<L> and u32 . The logic is standard and well documented. Note that

it is not constant-time with respect to its operands.

2.6 Observations

While the top-level API is targeted, straightforward and documented, there are several

subjective gaps.

The technique the implementation uses to choose the parameters P and Q is known as

Method A. However, it appears the Strong check defined in section 2.4 of

“Strengthening the Baillie-PSW Primality Test”

19

 and originally from page 22 (1412) of

“Lucas Pseudoprimes”

20

 favors Method A*. The former reference suggests they are

effectively equivalent. The implementation includes code for Method A*.

FIPS 186-5

21

 places the focus of primality testing on the number of Miller-Rabin tests

with Lucas tests in the background – this may make the implementation non-compliant.

The other checks were reviewed separately for compliance to expectations. The LucasChec

k::ExtraStrong variant checks A) that any of V

d*2^r

 == 0 for 0 ≤ r < s on lines 439-457, or

B) U

d

 == 0 and V

d

 == ±2 on line 418. The LucasCheck::AlmostExtraStrong variant checks

A) that any of V

d*2^r

 == 0 for 0 ≤ r < s on lines 439-457 or B) V

d

 == ±2 on line 425. The

LucasCheck::LucasV variant checks If V

n+1

 == 2 * Q on line 465. Note that the terms

supporting V

d*2^r

 == 0 for 0 ≤ r < s are still calculated, but ignored. Since prime generation

is a probabilistic process, constant-time operation is not exhibited.

3.0 The elliptic-curves/k256 Repository

The material here is describe from the perspective of both A) base functionality, and then

B) scenario-driven execution flow.

1.

2.

19. https://arxiv.org/pdf/2006.14425.pdf

20. http://mpqs.free.fr/LucasPseudoprimes.pdf

21. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

36 / 39 – Appendix: Project Notes and

Observations

https://arxiv.org/pdf/2006.14425.pdf
http://mpqs.free.fr/LucasPseudoprimes.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

3.1 arithmetic/field/*

The field_5x52.rs and field_10x26.rs source files implement the field elements on a 5-limb

52/48/…/48 struct and 10-limb 22/26/…/26 struct respectively. Each follows the approach

in the bitcoin-core/secp256k1/src/field_* source files. These files include constants,

several (precise) serdes functions, constant-time arithmetic, several logical tests, and a

variety of functions to handle the lower-level limb element discontinuities (e.g.,

normalize_weak() and normalize()). Note that functions such as add() do not perform

modular reduction on their results (which in this instance arguably contradicts its code

comment on line 253 of field_5x52.rs) – this is handled at the enclosing scope. Additionally,

only a few functions require constant-time CtOption<Self> or Choice .

The field_impl.rs source file contains a debug layer for checking lazy reductions that

largely corresponds to and wraps the functionality described above.

3.2 arithmetic/scalar/*

The wide64.rs and wide32.rs source files implement functionality for wide scalars on 64-

bit and 32-bit limbs respectively. Most of the functionality and line count involves

multiplication mul_wide() , mul_shift_vartime() , muladd() and muladd_fast() that does

not perform modular reduction on the result. A separate function reduce_impl() performs

the reduction. Note that the ct_less() function does not utilize constant-time constructs

to introduce an optimization barrier; see finding "Minor Timing Leaks in Wide Scalar

Arithmetic".

3.3 arithmetic/field.rs and arithmetic/scalar.rs

These two files wrap the limb-specific functionality described above into a uniform type.

Note that the configuration process/style is not consistent between the two files.

In field.rs (for example), the double() , pow2k() , invert() and sqrt() (using the (p+1)/4-

th power of a) functions are implemented, and randomness is rejection sampled.

Straightforward implementations of the Field and PrimeField traits are present, among

other more basic supporting traits.

In scalar.rs (for example) values are modulo the curve order and follows a similar structure.

There are two functions to generate randomness – one is slightly biased but constant time,

and the other uses rejection sampling. The latter is used as the default. The sqrt()

function uses a variant of the Tonelli-Shanks algorithm with a constant number of iterations

and conditional selection. There are also two functions to calculate a scalar inversion – one

constant time and another marked _vartime .

3.4 arithmetic/affine.rs and arithmetic/projective.rs

These two source files implement functionality for affine and projective points respectively.

The affine mul() point is converted to Projective coordinates, multiplied by the scalar, and

returned as a Projective result. Affine addition is not implemented. Most of the functionality

here is to support helper traits and serdes functionality.

Projective points have similar functionality but also include add() , add_mixed() ,

double() , neg() and sub() . The mul() -related operations resolve to lincomb_generic()

implemented in mul.rs.

3.5 arithmetic/hash2curve.rs

While the code does not indicate the intended version of IRTF CFRG hash-to-curve

specification, the osswu() function follows the simplified SWU method described in

appendix F.2. The isogeny() functionality makes use of the elliptic-curve (singular) crate

with the coefficients sourced from lines 172 - 256 of hash2curve.rs.

37 / 39 – Appendix: Project Notes and

Observations

https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_5x52.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_5x52.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_10x26.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_10x26.rs
https://github.com/bitcoin-core/secp256k1/blob/master/src/field_5x52_impl.h
https://github.com/bitcoin-core/secp256k1/blob/master/src/field_5x52_impl.h
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_5x52.rs#L253
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_5x52.rs#L253
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_impl.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field/field_impl.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide64.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar/wide32.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/field.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/scalar.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/hash2curve.rs#L172-L256
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/hash2curve.rs#L172-L256

3.6 arithmetic/mul.rs

The first multiplication function mul() takes a scalar and a projective point, is implemented

for a variety of traits, and ultimately resolves to lincomb_generic() which takes arrays of

(length 1 in this instance) scalars and projective points. This latter function first maps the

array of scalars across the decompose_scalar() function.

The MINUS_LAMBDA , MINUS_B1 , MINUS_B2 , G1 and G2 constants were validated against the

output of sage https://github.com/bitcoin-core/secp256k1/blob/master/sage/gen_split_lam

bda_constants.sage and the latter four also against https://github.com/bitcoin-core/

secp256k1/blob/master/src/scalar_impl.h#L127-L142 among others. The constants are

used within the decompose_scalar() function.

The decompose_scalar() function is ‘inspired’ by Algorithm 3.4 in the Guide to Elliptic

Curve Cryptography (page 127) steps 4 onwards. The G1 and G2 constants correspond to

the precomputed estimates noted at the top of page 129. The c1 and c2 variables in the

code include multiplication by -B1 and -B2 respectively. The r1 and r2 values are

calculated and returned. This would be a good opportunity to insert debug_assert

validating that r1 + r2 * lambda == k mod n , along with the bit length constraints of r1

and r2 (although the latter are checked during radix-16 decomposition). This function

appears to operate in constant time.

After decomposing the array of scalars, the lincomb_generic() function continues by

separating the decomposed r1 and r2 elements then mapping the array of projective

points across the endomorphism() function. This latter function simply multiplies the point’s

x-coordinate by the ENDOMORPHISM_BETA constant. Next, the r1 and r2 magnitudes (signs)

are tested against n/2 and the values remapped such that they are below n/2 (the

shorter representation) and the sign of the corresponding points are flipped as needed.

The r1s_c and r2s_c arrays are then mapped across the Radix16Decomposition::new()

function. The remainder of lincomb_generic() is double() and add() . These latter

functions are found in projective.rs and are constant time.

Note that lincom_generic() is never utilized (nor tested) with more than 2 scalars and 2

points.

The second multiplication function mul_by_generator() is somewhat more straightforward.

The scalar is decomposed via the same Radix16Decomposition::new() function and a

lazily initialized lookup table is referenced (containing points derived from the generator).

Two accumulators are initialized, the decomposed digits are iterated across, after which a

small doubling patch up loop is executed, and the result returned.

3.7 schnorr/signing.rs and schnorr/verifying.rs

Schnorr signatures are implemented according to BIP 340

22

 and implement the Signer

trait functions try_sign() and try_sign_digest() , as well as several other lower-level

functions supporting different combinations of pre-hashed data and auxiliary randomness.

The signature itself is computed in sign_prehash_with_aux_rand() . The signature

generation process is mostly straightforward, provided the relevant safety checks are

performed alongside each computation:

Constraints on the signing key d are enforced by the underlying NonZeroScalar type.

Similarly, constraints on the ephemeral signing key k are also enforced by

NonZeroScalar .

•

•

22. https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

38 / 39 – Appendix: Project Notes and

Observations

https://github.com/bitcoin-core/secp256k1/blob/master/sage/gen_split_lambda_constants.sage
https://github.com/bitcoin-core/secp256k1/blob/master/sage/gen_split_lambda_constants.sage
https://github.com/bitcoin-core/secp256k1/blob/master/sage/gen_split_lambda_constants.sage
https://github.com/bitcoin-core/secp256k1/blob/master/sage/gen_split_lambda_constants.sage
https://github.com/bitcoin-core/secp256k1/blob/master/src/scalar_impl.h#L127-L142
https://github.com/bitcoin-core/secp256k1/blob/master/src/scalar_impl.h#L127-L142
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/projective.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/arithmetic/projective.rs
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

When debug assertions are enabled, the function will also ensure that the produced

signature will correctly verify prior to returning. This check is not performed otherwise,

which is allowed, but remains a recommendation in BIP 340:

Verifying the signature before leaving the signer prevents random or attacker

provoked computation errors. This prevents publishing invalid signatures which

may leak information about the secret key. It is recommended but can be omitted

if the computation cost is prohibitive.

Signing tests are provided in k256/src/schnorr.rs implementing 4 known answer tests from

BIP 340.

Corresponding verification functions are provided using the Verifier trait, with the actual

verification logic implemented in verify_prehash() . Validation of public key, and the

signature (r,s) is enforced by the underlying types, and the necessary checks on the

computed signature are correctly enforced. Similar to the signing case, several test cases

are provided, including several negative test cases that ensure the following errors are

caught:

Invalid public key,

has_even_y(R) is false,

negated message and negated s value,

computed signature is even: has_even_y(R) == true ,

x-coordinate for r is not on the curve or is equal to field size,

s is equal to the curve order.

3.8 ecdh.rs and ecdsa.rs

The ecdh.rs source file provides the secp256k1 interface to elliptic_curve support. Note

that line 43 contains a copy/paste typo referring to P-256 .

The ecdsa.rs source file contains the try_sign_prehashed() function which follows step 4

onwards of FIPS 186-5

23

. Note that line 216 checks for s==0 but not r==0 . This is

acceptable as the latter is unreachable since there is no valid point with x=0 or x=p mod p

as 7 has no root. However, a code comment noting this situation may be useful. This

function additionally calculates and returns a small amount of recoverId information to

support subsequent key recovery. Hashing is done outside of this function.

•

•

•

•

•

•

•

23. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

39 / 39 – Appendix: Project Notes and

Observations

https://github.com/RustCrypto/elliptic-curves/blob/e38513e7c519b5391199e62cfd233225638352c6/k256/src/schnorr.rs#L217-L264
https://github.com/RustCrypto/elliptic-curves/blob/e38513e7c519b5391199e62cfd233225638352c6/k256/src/schnorr.rs#L217-L264
https://github.com/RustCrypto/elliptic-curves/blob/e38513e7c519b5391199e62cfd233225638352c6/k256/src/schnorr.rs#L308-L430
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs
https://github.com/RustCrypto/elliptic-curves/blob/0f27814b47f4ea2a43f2958e91d142688c89d89a/k256/src/ecdsa.rs
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Missing Validation of ‘low s’ ECDSA Signatures
	Missing Schnorr Signature Verification Check
	Missing Minimum max_bit_length Check
	Hex Decoding for Uint is not Constant Time
	Minor Timing Leak in Saturating Arithmetic Operations
	Square Root Computation is not Constant Time
	Inexact Secret Key Deserialization
	Minor Timing Leaks in Wide Scalar Arithmetic
	Timing Variability in ECDSA Signature Generation
	Missing Toolchain Specification and Outdated Dependencies
	Silent Overflow/Wrapping Condition
	random_mod Tests Expect Incorrect Behavior

	Finding Field Definitions
	Risk Scale
	Category

	Appendix: Project Notes and Observations
	1.0 The crypto-bigint Repository
	2.0 The crypto-primes Repository
	3.0 The elliptic-curves/k256 Repository

