

© Copyright 2013 NCC Group

An NCC Group Publication

Bypassing Windows AppLocker using a Time of

Check Time of Use vulnerability

Prepared by:

Ollie Whitehouse

NCC Group | Page 2 © Copyright 2013 NCC Group

Contents

1 Introduction and executive summary .. 3

1.1 Research findings overview .. 3

1.2 Microsoft’s response ... 3

2 An introduction to Time of Check Time of Use race conditions... 3

3 Bypassing Windows AppLocker with TOCTOU ... 4

3.1 History behind the attack hypothesis .. 4

3.2 Research environment configuration .. 4

3.3 Observing program loading behavior .. 5

3.4 Validating and exploiting ... 7

3.5 USB attack scenario applicability .. 8

4 Mitigation advice when using AppLocker ... 8

5 Mitigation advice to software architects and developers.. 8

6 Further areas of research ... 9

7 Conclusions ... 9

8 References & further reading ... 9

9 Acknowledgements ... 10

NCC Group | Page 3 © Copyright 2013 NCC Group

1 Introduction and executive summary

1.1 Research findings overview
Windows AppLocker [1] [2] is Microsoft’s replacement to Software Restriction Policies [3] [4] [5] in

Windows 7, Windows 8, Server 2008 and Server 2012. Windows AppLocker has been promoted by

several government agencies such as the National Security Agency [6] [7] and the New Zealand

National Cyber Security Center [8] as an effective mechanism to combat the execution of

unauthorized code on modern Microsoft Windows based systems. AppLocker has previously been

shown to suffer other means of subversion [21] [22], although no out the box universal technique is

currently publically known.

This paper presents the findings from research conducted by NCC Group into a way to bypass

Windows AppLocker to allow unauthorized code to execute on a system. For the attack outlined in

this paper to be effective the following dependencies exist:

 Windows AppLocker is not configured to only use Path based restrictions on the local

machine, i.e. only allowing files stored on local hard drive to execute. Instead AppLocker

should be configured to use some combination of Path, Signature and Hash based

restrictions.

 An attacker can execute a file from a network share on a host which they control or can

perform a Man-in-the-Middle attack on.

If these conditions can be met then an attacker can bypass Windows AppLocker to execute code of

their choice.

1.2 Microsoft’s response

“We appreciate the security researchers at NCC Group for coordinating their disclosure with us. We

have investigated this potential scenario and determined this is not a security vulnerability because it

requires a third-party to persuade the customer to run a malicious program; a situation that does not

cross a security boundary. AppLocker is designed to help organizations with compliance

requirements, reduce administrative overhead and help control which applications are in use in their

environments. AppLocker can also help prevent the execution of some malware in the enterprise.

We encourage customers to configure their AppLocker policy to avoid running executables from

remote network shares. For more information about AppLocker, please see the AppLocker

Overview.”

2 An introduction to Time of Check Time of Use race conditions
A Time of Check Time of Use (TOCTOU) race condition [9] [10] describes a class of vulnerability

where between the process of ‘checking’ and ‘using’ data, that data can change. This change in data,

if controllable by an attacker has a number of potential impacts on the security of a system. This

class of vulnerability is catalogued by Mitre in the Common Weakness Enumeration under CWE-367

[24].

This class of vulnerability is surprisingly relevant to modern day systems security. A recent example

of published work in this area is the paper titled ‘Read It Twice! A mass-storage-based TOCTOU

attack‘ by Mulliner and Michele from 2012 [11].

http://technet.microsoft.com/en-us/library/hh831440.aspx
http://technet.microsoft.com/en-us/library/hh831440.aspx

NCC Group | Page 4 © Copyright 2013 NCC Group

3 Bypassing Windows AppLocker with TOCTOU

3.1 History behind the attack hypothesis
TOCTOU vulnerabilities have been known about as a class of issue for a significant amount of time.

The particulars behind targeting Windows AppLocker build upon previous work by the author

exploiting a specific TOCTOU vulnerability in Windows UAC.

In this previous attack the concept was simple. The secure desktop and the user’s execution of a

program involved two different file handles. Due to this fact the file could be replaced between the

dialogue showing the vendors details being displayed and the process being created in the user’s

context.

The attack outlined in this paper builds upon this work and applies it to (in the author’s opinion) other

security critical functionality within the Microsoft Windows operating system. The key difference

being the same handle to the file is maintained but due to multiple reads a TOCTOU vulnerability

exists that can be exploited when accessing files over the network.

3.2 Research environment configuration
Before describing the attack in detail it’s useful to understand the environment configuration that

NCC assessed. For the purposes of this research project NCC only focused on executable rule

enforcement and not Windows Installer, Script and DLL enforcement as this configuration was

thought sufficient for the purposes of the research project.

NCC configured a Windows 7 32bit Enterprise edition virtual machine (fully patched as of November

13, 2012) with Executable rule enforcement:

NCC then configured a number of rules:

 Everyone can execute anything signed by anyone (Publisher)

 Everyone can execute anything in the Program Files directory (Path)

 Everyone can execute anything in the Windows folder (Path)

 Everyone can execute two files based on their hash (File Hash)

o Allowed.exe

o SRPFun.exe

NCC Group | Page 5 © Copyright 2013 NCC Group

This configuration is show below:

This configuration was then validated by placing two unsigned files in C:\Test and executing them.

These two files were:

 Allowed.exe – allowed to be executed due to its file hash.

 Notallowed.exe – not allowed to execute due to its file hash not being included in the rule.

These programs were then executed as a non-administrative user to validate the configuration as

shown in the following screenshot.

This configuration formed the basis of NCC’s research environment.

3.3 Observing program loading behavior
Windows AppLocker is implemented in the CreateProcess [12] function call using code located in

a variety of DLLs including KERNEL32.DLL and ADVAPI32.DLL.

If we observe the execution of Notallowed.exe, which is blocked, with Microsoft SysInternals

Process Monitor [13], we see the following activity:

NCC Group | Page 6 © Copyright 2013 NCC Group

We can see in the boxed area in the above image that first a file handle is obtained via CreateFile

[14] and the CreateFileMapping [15] is used. The use of CreateFileMapping during the

loader process is interesting as this function call is typically coupled with MapViewOfFile [16] to

create memory-mapped files. Microsoft even touches on this fact when discussing a previous non-

security related bug in the Software Restriction Policy implementation [17].

“I reviewed the source code and found that this is the code that performs Software Restriction Policy

checking. Specifically, we are attempting to map the executable into memory to perform hash

checking on it. Since there isn’t 1.8 GB of contiguous available memory, it failed.”

To validate the fact that multiple reads occur of the source binaries NCC placed the Allowed.exe

and Notallowed.exe executables on a remote SMB file share and observed the loading process

with WireShark.

During the loading process of both executables three reads using a variety of different offsets and

sizes were observed. These are showing in the following table.

Note: Both files were 6,656 bytes in size

Read Offset Size

1 0 4096

1 6114 512

1 3584 1536

1 5632 512

2 0 6656

3 0 4096

3 4096 2560

In the case where a binary was allowed to execute there was a final read, which was not evident

where execution was blocked:

Read Offset Size

4 5120 512

NCC Group | Page 7 © Copyright 2013 NCC Group

This behavior indicated to NCC that there was a high probability of a TOCTOU vulnerability due to

multiple reads in Windows AppLocker allowing the execution of modified unauthorized code.

However in order to exploit this vulnerability the handle returned by the original CreateFile

function call cannot be invalidated due to an underlying file change. In order to successfully

demonstrate this vulnerability a Man in the Middle (MitM) style attack was decided as the most

convenient method to validate the hypothesis.

3.4 Validating and exploiting
To validate if modification of a binary was possible, pass the hash validation and still have it run the

following environment was configured:

The binaries Allowed.exe and Notallowed.exe were placed on the Windows Server host with

Canape [18] configured as a manipulating proxy. The binaries were then run as a non-administrative

user to validate the configuration as shown below:

NCC then configured Canape to flag SMB packets for editing those that contained the text ‘I’m

allowed to run’ as this was contained in the .text segment of the binary (i.e. where the binary code

exists). As expected this data filtering rule was triggered a total of three times during the execution.

In each case the text was modified from ‘I’m allowed to run’ to ‘I’m allowed to pwn’ to test the ability

to modify the .text segment. Each of these SMB packets was modified in turn to observe the

behavior of the loading process.

Trigger Packet Result of Modification

1 No change in program output – program executes

2 Change in program output – program executes < vulnerable

3 Hash validation failure – program fails to run

Windows 7 x86
Enterprise VM with

AppLocker

Linux
with RINETD

redirecting port 445
to port 10000

Windows 7 x64
With Canape

proxying port 10000
to 445

Windows Server

NCC Group | Page 8 © Copyright 2013 NCC Group

The output for each of these modifications can be seen below, the second showing the vulnerability:

This change in behavior demonstrates that NCC was able to successfully modify a program, have it

execute without triggering a hash validation failure and thus Windows AppLocker’s susceptibility to

the TOCTOU vulnerability class was proven. These results also showed that it is the third read of the

binary in the case of hash based rules which is used validate the binary. NCC also confirmed

AppLocker’s susceptibility to the same vulnerability when using digitally signed binaries and rules

based on publisher. However in this case the first read is used to validate the binary.

3.5 USB attack scenario applicability
During the course of this research NCC attempted to replicate this attack locally over USB using a

Facedancer [19] [20] board configured to emulate a mass storage device.

This attack scenario was unsuccessful with the following the behavior observed:

 An initial single read is performed on the binary on first execution.

 Each subsequent execution occurs from a local cache resulting in no further USB access.

4 Mitigation advice when using AppLocker
For organizations that deploy Windows AppLocker as part of their defense in depth strategy NCC

recommends the following mitigations to minimize the likelihood of exploitation of this or any other

similar issues in the future:

 Deploy SMBv2 packet signing to mitigate Man in the Middle style attacks.

 Restrict paths that binaries can be executed from to local non-removable media sources

where possible.

5 Mitigation advice to software architects and developers
For software architects and developers considering this type of threat as part of their Secure

Development Lifecycle the following mitigation advice is provided:

 Where an attacker controls the source of data or can intercept and modify traffic then only

data that is validated should be used i.e. multiple reads should be avoided. These sources

can include network based sources as well as physical medium sources.

 Where a single read cannot be used then source data could be copied or cached to a local

source where multiple reads can occur without risk of modification.

NCC Group | Page 9 © Copyright 2013 NCC Group

6 Further areas of research
The base technique outlined this paper may potentially have applicability to similar solutions both on

Microsoft Windows and other operating systems.

NCC Group did for example attempt to obtain to an evaluation copy of Bit9 [23] but were unable too

prior to publication.

NCC sees that the following as possible areas for future research in order to understand the

applicability of this base technique:

 Any operating system that loads large files over remote file a system that performs input

validation to mitigate memory corruption and then subsequently reads data from these

remote sources after successful validation.

 Bit9 and competing software restriction enforcement products on Microsoft Windows when

loading binaries over SMB.

 Linux binary signing when loading binaries over SMB, NFS or similar remote file systems.

7 Conclusions
This paper has summarized NCC’s research into and successfully demonstrated Windows

AppLocker’s susceptibility to a TOCTOU vulnerability. Of particular note is the risk of data

modification where file handles are not invalidated because an attacker controls the source of data or

has the ability to perform Man in the Middle style attacks. NCC believes that this style of logic

vulnerability will become increasingly popular with researchers and attackers alike as existing

classes of vulnerability become harder to exploit or less common.

8 References & further reading
The following material was used during the course of this research project.

1. Windows AppLocker – Technet

http://technet.microsoft.com/en-us/library/dd759117.aspx

2. Windows AppLocker – Technet (Video)

http://technet.microsoft.com/en-us/windows/applocker.aspx

3. Windows Software Restriction Policies

http://technet.microsoft.com/en-us/library/dd349795(v=ws.10).aspx

4. Using Software Restriction Policies to Protect Against Unauthorized Software

http://technet.microsoft.com/en-us/library/cc507878.aspx

5. How Software Restriction Policies Work

http://technet.microsoft.com/en-us/library/cc786941(v=ws.10).aspx

6. National Security Agency – Application Whitelisting Using SRP

http://www.nsa.gov/ia/_files/os/win2k/Application_Whitelisting_Using_SRP.pdf

7. National Security Agency - Mitigation Monday #3: Defense against Malware on Removable

Media

http://www.nsa.gov/ia/_files/factsheets/Mitigation_Monday_3.pdf

8. New Zealand Nation Cyber Security Centre – Application Whitelisting with Windows

AppLocker

http://www.ncsc.govt.nz/sites/default/files/articles/NCSC%20Applocker-public%20v1.0.5.pdf

9. CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

http://cwe.mitre.org/data/definitions/367.html

10. Time of Check Time of Use

http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

11. Read It Twice! A mass-storage-based TOCTOU attack – Collin Mulliner and Benjamin

Michele

https://www.usenix.org/system/files/conference/woot12/woot12-final28.pdf

http://technet.microsoft.com/en-us/library/dd759117.aspx
http://technet.microsoft.com/en-us/windows/applocker.aspx
http://technet.microsoft.com/en-us/library/dd349795(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc507878.aspx
http://technet.microsoft.com/en-us/library/cc786941(v=ws.10).aspx
http://www.nsa.gov/ia/_files/os/win2k/Application_Whitelisting_Using_SRP.pdf
http://www.nsa.gov/ia/_files/factsheets/Mitigation_Monday_3.pdf
http://www.ncsc.govt.nz/sites/default/files/articles/NCSC%20Applocker-public%20v1.0.5.pdf
http://cwe.mitre.org/data/definitions/367.html
http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
https://www.usenix.org/system/files/conference/woot12/woot12-final28.pdf

NCC Group | Page 10 © Copyright 2013 NCC Group

12. CreateProcess – MSDN

http://msdn.microsoft.com/en-gb/library/windows/desktop/ms682425(v=vs.85).aspx

13. Microsoft System Internals – Process Monitor

http://technet.microsoft.com/en-gb/sysinternals/bb896645.aspx

14. CreateFile – MSDN

http://msdn.microsoft.com/en-gb/library/windows/desktop/aa363858(v=vs.85).aspx

15. CreateFileMapping – MSDN

http://msdn.microsoft.com/en-gb/library/windows/desktop/aa366537(v=vs.85).aspx

16. MapViewOfFile – MSDN

http://msdn.microsoft.com/en-gb/library/windows/desktop/aa366761(v=vs.85).aspx

17. Case Study - Software Restriction Policies and Large EXE Files

http://blogs.msdn.com/b/ntdebugging/archive/2010/01/18/safer-and-large-exes.aspx

18. Canape by ContextIS

http://www.contextis.co.uk/research/tools/canape/

19. Facedancer 11

http://goodfet.sourceforge.net/hardware/facedancer11/

20. Emulating USB Devices with Python

http://travisgoodspeed.blogspot.co.uk/2012/07/emulating-usb-devices-with-python.html

21. You can circumvent AppLocker rules by using an Office macro on a computer that is running

Windows 7 or Windows Server 2008 R2

http://support.microsoft.com/kb/2532445

22. Circumventing SRP and AppLocker, By Design – Didier Stevens

http://blog.didierstevens.com/2011/01/24/circumventing-srp-and-applocker-by-design/

23. Bit9 Endpoint and Server Security

https://www.bit9.com/

24. CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

http://cwe.mitre.org/data/definitions/367.html

9 Acknowledgements
The author wishes to thank his colleagues Matt Lewis, David Wood, Richard Turnball and Sharique

Shaikh of NCC Group for their peer review. The author also wishes to thank Andy Davis of NCC

Group for this input on the USB attack scenario.

The author would like to thank James Forshaw for releasing Canape which significantly expedited

the validation of the original hypothesis.

Finally we’d like to thank Jeremy Tinder and Katie Moussouris of Microsoft for facilitating the release

of this white paper.

http://msdn.microsoft.com/en-gb/library/windows/desktop/ms682425(v=vs.85).aspx
http://technet.microsoft.com/en-gb/sysinternals/bb896645.aspx
http://msdn.microsoft.com/en-gb/library/windows/desktop/aa363858(v=vs.85).aspx
http://msdn.microsoft.com/en-gb/library/windows/desktop/aa366537(v=vs.85).aspx
http://msdn.microsoft.com/en-gb/library/windows/desktop/aa366761(v=vs.85).aspx
http://blogs.msdn.com/b/ntdebugging/archive/2010/01/18/safer-and-large-exes.aspx
http://www.contextis.co.uk/research/tools/canape/
http://goodfet.sourceforge.net/hardware/facedancer11/
http://travisgoodspeed.blogspot.co.uk/2012/07/emulating-usb-devices-with-python.html
http://support.microsoft.com/kb/2532445
http://blog.didierstevens.com/2011/01/24/circumventing-srp-and-applocker-by-design/
https://www.bit9.com/
http://cwe.mitre.org/data/definitions/367.html

