NCCQroup”

End-to-End Encrypted Backups Security
Assessment

WhatsApp
October 27, 2021 - Version 1.2

Prepared by
Gérald Doussot
Marie-Sarah Lacharité
Eric Schorn

©2021 - NCC Group

Prepared by NCC Group Security Services, Inc. for WhatsApp. Portions of this document and the
templates used in its production are the property of NCC Group and cannot be copied (in full or in
part) without NCC Group's permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group's services does not guarantee the security of a
system, or that computer intrusions will not occur.

Table of Contents nccgroupe

0o N o un A W N

Table Of CoONteNtS ... oo 2
EXECULIVE SUMIMIAIY ... e e e e e e 3
WhatsApp Encrypted Backups Secrets Management Solution Architecture 6
Generic Attacks 0N OPAQUEo 12
Trusted Setup CeremMIONYttt et e e e 16
Table of FINAINGS ..o e e e e 21
WhatsApp's Response to NCC Group Findings ... 22
Finding Field Definitions o i e e 24

2 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

Executive Summary ﬂCCQ(OUpe

Synopsis

During the summer of 2621, WhatsApp engaged NCC Group's Cryptography Services team to conduct an independent
security assessment of its End-to-End Encrypted Backups project. End-to-End Encrypted Backups is an hardware
security module (HSM) based key vault solution that aims to primarily support encrypted backup of WhatsApp user
data. This assessment was performed remotely, as a 35 person-day effort by three NCC Group consultants over the
course of five weeks. NCC Group and the WhatsApp team scheduled the retesting of findings, and preparation of this
public report a few weeks later, following the delivery of the initial security assessment.

Project Scope and Approach
This assessment was part of a larger program of work, articulated around five phases:

* Phase 1: End-to-End Encrypted Backups review:
- Overall architecture review, with a focus on the cryptographic implementation.
* Phase 2: “opaque-ke” open-source library review:
- Review of the server-side cryptographic implementation of the OPAQUE protocol.
* Phase 3: HSM and key management:
- HSM consensus protocol review.
- Key management implementation review.
- Key ceremony guidance.
* Phases 4 and 5: Retesting and public report creation:
- Testing of any gaps from earlier rounds of testing, to ensure completeness of coverage.
- Retesting of any recommended fixes, mitigations, or improvements.
- Public reports:
o End-to-End Encrypted Backups report.
o “opaque-ke” report.

This public report discusses WhatsApp's End-to-End Encrypted Backups only. The implementation of the server-
side OPAQUE protocol by the “opaque-ke” library will be covered separately. For the End-to-End Encrypted Backups
assessment phases, NCC Group's evaluation included:

* End-to-End Encrypted Backups HSM Secure Execution Environment (SEE): Embedded, custom security software
that runs within an HSM.

* End-to-End Encrypted Backups Server: Thrift server colocated on an HSM host. The server connects SEE to the
world outside the HSM.

* HSM common utilities: Used by SEE and End-to-End Encrypted Backups server.

* HSM configuration: HSM initialization scripts.

* Chatd End-to-End Encrypted Backups module: Relay between external mobile clients and internal End-to-End
Encrypted Backups Server endpoints.

+ WA-MSYS: OPAQUE protocol client library.

* WhatsApp iOS and Android Clients End-to-End Encrypted Backups interface: Mobile client interface to End-to-
End Encrypted Backups service.

* Merkle library interface: Library used by End-to-End Encrypted Backups to protect data hosted on untrusted
storage.

The consultants reviewed the above components starting at fbsource changeset D28877521, which included End-to-
End Encrypted Backups related changeset D28875781.

The WhatsApp team further requested NCC Group to identify any gaps between the End-to-End Encrypted Backups
whitepaper’ technical claims, and its actual implementation, for the components in scope at the end of the project.
NCC Group delivered this additional scope item as part of phase 5 of the program of work.

Thttps://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf

3 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

NCC Group assessed End-to-End Encrypted Backups for common cryptographic and software vulnerabilities using
mostly code review; the consultants performed some dynamic testing, leveraging existing unit test cases.

Limitations

The following components were not in scope; NCC Group was therefore unable to evaluate and identify issues with
them:

* Third-party and proprietary HSM vendor implementation.

* Backup encryption implementation.

* Side-channels in the access, creation, maodification and deletion of backup data on third-party cloud storage.
* End-to-End Encrypted Backups Reverse Proxy.

* OPAQUE security protocol.

Nevertheless, NCC Group provided good test coverage of all the components in scope for this review, as listed in the
previous section, in the context of the End-to-End Encrypted Backups service.

Key Findings
The assessment uncovered a number of common cryptography and application flaws. The most notable findings were:

* Weak 512 bits RSA key signing key, allowing attackers to impersonate the HSM and OPAQUE services, and to
decrypt user backups.

+ Insufficient validation of OPAQUE protocol data, that may permit attackers, in the worst case, to recover a user's
WhatsApp password and encrypted backup information.

+ Key material in lower integrity environment, may facilitate a complete bypass of the HSM and thus of the End-to-
End Encrypted Backups service security assurances that the HSM provides.

* Several weaknesses in the handling of passwords, which may allow an attacker in general to more easily brute-
force user passwords.

+ Insufficient access controls for the End-to-End Encrypted Backups service from the internal WhatsApp infrastruc-
ture may permit unauthorized large scale operation on user data such as account deletion. This issue also results
in an increase in the attack surface of the End-to-End Encrypted Backups service in general.

+ Denial of service attacks potential due to the lack of enforcement of certain limits.

NCC Group also compared the technical claims stated in the WhatsApp End-to-End Encrypted Backups whitepaper
version 1.0 with its implementation for the components in scope for this review, and found no discrepancies at the
time of the assessment.

Retest Summary

The WhatsApp team implemented a number of changes to address NCC Group's findings. NCC Group retested these
changes at the end of August 2021. During the assessment, NCC Group identified:

* one (1) high severity vulnerability;

* nine (9) medium severity vulnerabilities;
* seven (7) low severity vulnerabilities;

* six (6) informational findings.

Upon completion of the assessment, all findings were reported to WhatsApp, along with recommendations. After
retesting, and before the solution was rolled out to users, fifteen findings were found to be fully fixed. There were
eight remaining findings, which NCC Group reported to WhatsApp. WhatApp provided details about these findings
and their response to them in WhatsApp's Response to NCC Group Findings on page 22 of this report.

Other Remarks

All findings are listed in Table of Findings on page 21, along with their retest status. WhatsApp's response to several
findings can be found in WhatsApp's Response to NCC Group Findings on page 22. NCC Group also provided a high-

4 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

level security evaluation of the End-to-End Encrypted Backups architecture design in WhatsApp Encrypted Backups
Secrets Management Solution Architecture on the next page including key design security assumptions, and recom-
mendations for establishing and managing key ceremonies in Trusted Setup Ceremony on page 16. An interesting
attack, generalizable to any consumers of the OPAQUE protocol, was described in some details in Generic Attacks on
OPAQUE on page 12. Finding details and other informational sections were omitted from the public document. Note
that missing finding numbers in Table of Findings on page 21 are an artefact of NCC Group's internal reporting tools
and do not imply missing findings; NCC Group did not omit any findings from this report.

5 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

(3
WhatsApp Encrypted Backups Secrets Management Solution Architecture nCCQFOUp

Introduction

WhatsApp is a cross-platform messaging and calling service, with more than 2 billion users in over 180 countries.
WhatsApp claims? that its application is end-to-end encrypted (E2EE), thus ensuring that only intended senders and
recipients can access the contents of their communication. E2EE was born out of the need to prevent infrastructure
and service providers from reading or tampering with user messages, especially in the case where communications
are terminated at a third-party server and meddling-in-the-middle is trivial.

E2EE protects data “in-flight”; any E2EE mobile application may further process exchanged messages present on the
device for various purposes, including re-sharing received messages’ media contents on social networks, or exporting
them to other applications. When messages are processed outside of the original E2ZEE channel in which they were
sent or received, users may lose some of the security and privacy guarantees that they enjoyed so far. One such
scenario is the backup of messages to a third-party cloud service, where the service can read, tamper with, or share
the messages in the absence of other security controls.

WhatsApp designed and implemented an encrypted backup solution to prevent third-party cloud services, and itself,
from accessing the contents of WhatsApp messages backed-up to their infrastructure, under the umbrella of the End-
to-End Encrypted Backups project. This section describes the WhatsApp encrypted backup solution that came out of
this project. It first presents its security architecture at a high level, then analyzes its prominent security and privacy
features.

This review focused on the secure management of secrets underpinning the encrypted backup solution, including
user passwords, and symmetric and asymmetric cryptographic keys. Actual encryption and decryption of backup data
on mobile clients was not in scope, as the focus of the project was mostly key storage; however, NCC Group captured
several notes and findings in relation to the underlying cipher primitives.

Encrypted Backup Architecture

Goals

WhatsApp provides end-to-end encryption for all messages, thus only users and their interlocutors can read what is
sent. This same protection does not apply to a user’s message backups. If a user chooses to backup their messages,
the backups are stored on a third-party cloud service where there is a risk that the backups can either be read or
tampered with, or shared with other parties.

The goal of this project is to extend WhatsApp's commitment to privacy to the user’s backup. This project enables
users to encrypt their backups in such a way that nobody, including WhatsApp, can access their data.

Overview

Users can choose to enable encrypted backups. When they do, the WhatsApp mobile client generates a random
backup key K. K is stored locally on the device for future encryption/decryption of user backup data. Nobody can
decrypt message backups without access to the plaintext backup key K.

Backup key K is itself backed-up outside of the device, in case the user loses access to it (e.g. lost mobile device).
To achieve that, backup key K is stored in encrypted form by the WhatsApp service; however controls are in place to
prevent the service from decrypting the backup key. The following is a high level description of how the backup key K
is protected from WhatsApp, and third-party cloud services.

Users are asked to provide a PIN or passphrase. This user secret is mixed with a per-user hardware security module
secret derived from a secret seed (oprf_seed), to produce an export key, using the OPAQUE?3 asymmetric PAKE
protocol. The export key is known by the WhatsApp client only, and is created during registration, and regenerated at
login time; it can only be regenerated with the knowledge of the PIN/passphrase and with contribution from the HSM
secret seed.

2https://www.whatsapp.com/security/
3https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-05

6 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

Backup key K is first encrypted using the user export key to produce aes_k. aes_k is then encrypted using the
HSM public key, along with other required information, to produce an encrypted registration payload. This encrypted
registration payload is stored server-side. Decrypting the backup key stored server-side would require the user PIN/
passphrase, the secret seed and the HSM private key. The last two cannot be accessed outside of the HSM. aes_k
can only be decrypted by the HSM upon a successful OPAQUE login from the client. Furthermore, the HSM limits the
amount of incorrect login attempts using the user PIN/passphrase to ten, at which point the account is irremediably
locked by the HSM software, and the backup data cannot be retrieved in plaintext. Once deployed to production, the
HSM code becomes immutable, thus limiting the ability to tamper with the HSM code incorrect login counter and logic,
in the absence of vulnerabilities.

A Merkle tree, with the root hash stored in the HSM, ensures that encrypted registration payloads cannot be tampered
with, e.g., one payload cannot be replaced with another perhaps older but valid payload.

Security Assumptions
Below is a list of key security assumptions that underpin the security of the overall architecture:

1. After destroying the hardware security module* (HSM) and management cards, it is impossible to extract HSM
managed secrets. Specifically, there is no API or management functionality to expose and extract these secrets.
There are no vulnerabilities in the third-party HSM implementation that allows extracting these secrets.

2. The End-to-End Encrypted Backups service is authenticated by clients against a public key obtained when the app is
first downloaded, or when updated (e.g. when the baked-in HSM fleet keys are installed). The End-to-End Encrypted
Backups project service was originally trusted on first use® (TOFU), specifically at registration time, to a large extent
(but controls existed to make the security of this process harder to circumvent). The change happened as a result
of the security assessment.

3. HSM release management, configuration and key ceremony processes produce an immutable HSM configuration
that does not permit exfiltration of HSM managed secret material before, during or after commissioning the devices
to production.

4. WhatsApp configuration and release management processes produce a client build that only trusts securely com-
missioned HSMs.

5. Compromise of any aspect of a client device or software (e.g. operating system), is out of scope.

6. The Chatd service component adequately extracts and annotates client user ID when forwarding requests from
clients to the End-to-End Encrypted Backups project service.

7. Side-channels in transmitting, accessing, creating, modifying or deleting encrypted backup information on cloud
services are out of scope.

8. There are processes in place to continuously ensure that the WhatsApp mobile application does not include any
malicious code or data, including but not limited to rogue HSM certificates or PIN exfiltration code.

“https://en.wikipedia.org/wiki/Hardware_security_module
>https://en.wikipedia.org/wiki/Trust_on_first_use

7 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccgroup”

Components Landscape
Below is an illustration of the main components of the encrypted backups solution.

<:>
/ Storage

Services

“—>r

N\

Figure 1: Encrypted Backups Architecture Components

4

Storage
Services

We describe the role and security features of these components in the following sections.

Hardware Security Module

The HSM (hardware security module) is foundational to the security of the solution. It is composed of a hardware
module performing cryptographic operations, and custom embedded software code developed by WhatsApp that
underpins many of the security features of the encrypted backups solution. The custom embedded software code
is written in @ memory-safe language in order to reduce risks of catastrophic vulnerabilities in that component. It
exposes an API via host shared memory to register and delete accounts and to authenticate users via the OPAQUE
protocol.

The HSM manages and does not externally expose the OPAQUE opr f_seed secret, used to randomize the user PIN/
passphrase using OPAQUE. It encrypts/decrypts registration payloads, including the client-encrypted backup key aes
_k, using its own non-exportable asymmetric keys (HK_pub).

It enforces a maximum number of user login attempts, in order to prevent brute-force of a user PIN/passphrase; after

8 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

ten unsuccessful attempts to log into an account, the account is locked and the backup data is irremediably lost.

It stores registration payloads, including keys, in an encrypted format on external untrusted storage. It verifies that ex-
ternally stored data is not compromised, using a Merkle tree, whose root hash is maintained within the HSM embedded
software and whose leaves are hashes of the registration payloads.

Communication to the HSM is performed via shared memory from the host. HSMs are organized into islands that
share state using the Raft® consensus algorithm for redundancy and performance reasons. Once commissioned
to production, it is not possible to add more, potentially malicious, nodes to an island. HSM management cards are
destroyed during the key ceremony, thus making alterations to the HSM configuration and embedded code impossible,
in the absence of vulnerabilities.

End-to-End Encrypted Backups Server

The End-to-End Encrypted Backups Server is a server software component that provides an interface between the
HSM embedded software, the WhatsApp mobile clients and internal resources such as storage services. It resides
on the same machine as the HSM card and communicates with the HSM using shared memaory. It is designed to not
provide critical security and privacy guarantees by delegating these features to a hardened HSM, to resist internal
compromises of the infrastructure.

The End-to-End Encrypted Backups Server is accessed over HTTPS. It exposes APIs to register and delete End-to-End
Encrypted Backups user accounts, and to authenticate users.

End-to-End Encrypted Backups Storage Services

The End-to-End Encrypted Backups Storage Services stores HSM managed and encrypted information. The HSM is the
only component that can decrypt this information. As explained above, information contained in End-to-End Encrypted
Backups Storage Services is hashed and added to a Merkle tree managed by the HSM. Tampering with the End-to-End
Encrypted Backups Storage Services data is detected by the HSM.

Chatd

Chatd is the main WhatsApp server which handles all external client requests. Chatd forwards requests from clients to
the End-to-End Encrypted Backups service and can be considered as a simple relay. Of note, it extracts authenticated
user IDs from client requests and provides these to the End-to-End Encrypted Backups Server APIs, along with the
actual client requests.

iOS/Android Clients

The WhatsApp client runs on iOS and Android devices. It stores the encryption key K, which is established when
enabling encrypted backups, and then used to encrypt backups before they are sent to cloud services. The WhatsApp
client also contains HSM public key material, critical in establishing a trust relationship with legitimate HSMs. IfK is
lost, it can only be retrieved from WhatsApp and decrypted with knowledge of the user PIN/passphrase and the HSM
secret seed.

OPAQUE Security Protocol Usage

The design relies on a number of common security controls and protocols, such as TLS and the Noise protocol
framework. The OPAQUE protocol is utilized to create a trust relationship between HSMs and WhatsApp mobile clients
upon registration, then use it for mutual authentication upon ulterior login. OPAQUE is an asymmetric password-
authenticated key exchange (aPAKE), that provides a number of interesting features, such as the ability to hide the
user password from the server, even during password registration. The solution employs two implementations of the
protocol, opaque-ke which is open-source and runs on the WhatsApp HSM embedded environments, and a proprietary
implementation that runs on potentially resource-constrained mobile devices. NCC Group reviewed the opaque-ke
implementation, as part of a separate project.

Typically, the OPAQUE protocol requires the server secret to be split so that a compromise of one server does not allow

Ohttps://raft.github.io/

9 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

brute-forcing users’ credentials in an offline manner. The encrypted backup solution entrusts HSMs to ensure that the
server secret does not leak. WhatsApp staff and “traditional” hosts do not have access to this per-user secret.

The OPAQUE protocol does not prevent online brute-force attacks. End-to-End Encrypted Backups mitigates such
attacks through the HSM embedded code, which implements an unsuccessful login maximum count, leading to
permanent account lockout when reached.

OPAQUE registration must be performed over a secure channel. In this solution, this secure channel uses the Noise
protocol framework from the mobile clients to Chatd, then TLS to the End-to-End Encrypted Backups Server.

Design Security Analysis

This section considers the security design and not the implementation of the encrypted backups solution. Implemen-
tations issues were reported separately and highlighted in Table of Findings on page 21.

* The compromise of an HSM would allow performing a number of damaging attacks, including brute-force of user
PIN/passphrase. The efficiency of such attacks would be roughly correlated to the strength of the PIN/passphrase.
Recovery of the PIN/passphrase would in turn permit to decrypt aes_k to obtain K, and decrypt user backups.
More powerful attacks may be possible in the presence of other vulnerabilities, which may for instance force the
OPAQUE export key to a known value. The primary defense is the assumption that HSMs are secure. WhatsApp
takes additional steps to reduce risks, including forcing the immutability of the HSM devices and embedded custom
software, and ensuring a reduced attack surface at the service and API level.

* Acompromised End-to-End Encrypted Backups Server on its own cannot decrypt user backups or encrypted backup
keys K. Attackers may at most pre-register, delete or lock large numbers of user accounts (denial of service attack).

* A compromise of End-to-End Encrypted Backups Server Storage Services would at most result in the inability to
access backup data. Attackers may at most delete data or change data causing the HSM to stop processing requests
(denial of service attack).

* A compromise of the Chatd component may result at most in the inability to retrieve or store backup data. Attackers
may at most pre-register, delete or lock large numbers of user accounts (denial of service attack).

* A compromise of a client platform would result in the ability to obtain its backup key, and to decrypt its backup data.
WhatsApp cannot address all client threats, especially with regard to mobile device platform security. It uses secure
mobile device platform security APIs when available, such as iOS' keychain.

* A compromise of WhatsApp client source or binary files at any point of the software lifecycle may allow an attacker
to ultimately retrieve users’ backups and possibly users' PINs/passphrases in a number of ways, e.g. capturing PINs,
pushing rogue HSM certificates, etc. It is assumed there are controls in place to mitigate this risk.

* A compromise of a user PIN/passphrase, including via the reuse of credentials across different services, would result
in the ability to obtain the user’s backup key and to decrypt the corresponding backup data.

Conclusion

The design provides strong privacy guarantees for backup data stored in third-party cloud storage services from
compromised or malicious third-party service providers who manage them. It provides a number of controls to strongly
reduce the risk that WhatsApp accesses user backup data and/or PIN/passphrase, especially after HSMs have been
deployed to production.

WhatsApp encrypted backups' security and privacy controls are based on the assumptions that HSMs are hard to
compromise and that there are processes in place to ensure that HSM custom embedded code, and WhatsApp mobile
app code, are free of malicious code. The design relies on these premises to provide a strong level of assurance that
most compromise scenarios do not affect the privacy of backup data and of the user PIN/passphrase. Note that the
third-party HSM platform was not in scope for this review, because it is a proprietary vendor solution. However, NCC
Group reviewed the HSM End-to-End Encrypted Backups code developed by WhatsApp, which implements the APIs
supporting encrypted backups.

WhatsApp cannot and does not make claims about the security of backup data and user credentials, when aspects
that are not under its control are compromised, such as the mobile application operating platform.

10 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

The design initially assumed that the registration process had to be trusted, as it established the relationship between
an HSM and the mobile application. During the security assessment, it was decided to bundle the HSM public keys
with the app when installing or updating the app. This thus removed the need to trust the registration process, but
one still needs to trust the client application to handle data, be it for day-to-day use or backup purposes.

The solution is more forgiving of weak PIN/passphrase in most compromise scenarios, when compared to typical
password-based authentication implementations. However, in this design, users should still ensure that their PIN or
passphrase cannot be guessed too easily (i.e. within the ten attempts allowed by the service).

11 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

Generic Attacks on OPAQUE nccgroup%

The OPAQUE protocol is central to WhatsApp's End-to-End Encrypted Backups solution. While NCC Group's security
assessmentdid notinclude analyzing the OPAQUE protocolitself, it did include analyzing WhatsApp's use of OPAQUE. In
particular, NCC Group assessed how known, generic attacks on OPAQUE impact the security of WhatsApp's End-to-End
Encrypted Backups solution. Three such attacks are summarized in this section. The third attack, server impersonation
during credential retrieval, is presented in detail along with a discussion of how OPAQUE could be made more resistant
toit.

Background

Augmented password-authenticated key exchange (APAKE) protocols like OPAQUE are inherently (and unavoidably)
vulnerable to certain classes of attacks due to their reliance on passwords. For a PAKE to be considered “secure” given
this limitation, it must be designed such that an adversary needs to interact with an honest client or server in order to
check every single password guess. (For a discussion of the security of PAKES, see RFC 8125, section 4.7)

Afew of these attacks are described here in terms of generic OPAQUE as specified in the draft® The discussion about
the third attack expands upon a class of attack described in Finding 20: Compromised Backend or Infrastructure Can
Force Non-Randomized Client Password Value and Weak OPAQUE Keys. (This finding's details are not included in this
public report.)

1. Honest-but-Curious Server Attack

The credential file is made of a number of records with primary keys of the format credential_identifier and
records of the format (client_public_key, masking_key, envelope=(nonce, inner_env, auth_tag)). The
server knows the opr f_seed value, therefore it can re-derive the OPRF key for a specific user's credential _identifi
er, evaluate the OPRF at the guessed password, derive the hardened randomized_pwd, and then derive the masking
_key. If the derived masking_key matches the stored masking_key for that credential_identifier’s record, then
their guess of the password was correct. This attack requires knowing the opr f_seed value, obtaining the credential
file, and computing the hardened randomized password once per client_identity-guessed password pair.

2. Client Impersonation Attack during Credential Retrieval

The adversary pretends to be the client with some identity client_identity and performs the OPAQUE log-in/
credential retrieval protocol with a guess of that client's password. The adversary is able to recover the enveloped
credentials (the client’s private keys) if and only if their guess of the password was correct. This attack requires
interacting with the server and computing the hardened randomized password once per client_identity-guessed
password pair.

3. Server Impersonation Attack During Credential Retrieval

The server is not authenticated during OPAQUE log-in/credential retrieval. Since client records are derived entirely
from a client’s identity and their password, an adversary could craft a record corresponding to a client_identity
-guessed password pair and use it to impersonate the server when that particular client initiates OPAQUE log-in/
credential retrieval. The adversary can then monitor the client's behavior to determine whether the MAC check involved
in credential recovery was successful or not. It is expected that this is easy to do, since if the check passed, the client
proceeds with the protocol, while if the check failed, then the client aborts and/or re-starts log-in/credential retrieval.
This attack is slightly cheaper than the client impersonation attack: while it still requires an honest client to initiate
OPAQUE log-in/credential retrieval, it requires only one hardened randomized password computation per guessed
password (not per client-guessed password pair).

In more detail, the server impersonation attack involves the following steps.

First, the attacker chooses a commonly used, low-entropy password — common_password. It performs a one-time
computation to craft a log-in/credential retrieval response, then monitors the network for log-in/credential retrieval
requests. Next, every time it observes a credential request, it simply responds with the pre-computed response.

’https://datatracker.ietf.org/doc/html/rfc8125#section-4
8https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-06

12 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

Essentially, the adversary behaves like a server that uses an OPRF private key of 1 and has stored the credential
envelope of a client whose password is common_password. Finally, it monitors the client’s behavior to determine
whether the MAC check in step 6 of RecoverEnvelope (OPAQUE draft section 4.2°) was successful or not.

Note: There is nothing special about using an OPRF key of 1; it simply makes the adversary’s one-time computation
easier. It could pretend to have an OPRF key k and the attack would work with one additional scalar inversion and
scalar multiplication in the first step: the adversary would simply computey' = Finalize(common_password, k/(
-1), GG.SerializeElement(GG.HashToGroup(common_password))), since Finalize internally calls Unblind(kA
(-1), GG.SerializeElement(GG.HashToGroup(common_password))).

In response to a CredentialRequest struct request, the adversary responds with the following CredentialRespon
se struct:

{ data: request.data, // copied from the request
masking_nonce: masking_nonce,
masked_response: masked_response

}

Re-using exactly the same masked_response requires that client_identitys are not used and that their default
value of being equal to client_public_key is used instead. If client_identitys are used, then the adversary has
to compute a MAC tag over the CleartextCredentials struct including this client_identity value, so some per-
client computation is necessary, but computing the hardened randomized password is still done only once.

The adversary's steps to craft masked_response (when client_identitys are not used) are the following:

1. Computey' = Finalize(common_password, 1, GG.SerializeElement(GG.HashToGroup(common_password
))) (as the client does in step 1 of RecoverCredentials).
2. Compute randomized_pwd' = Extract("", Harden(y', params)) (as the client does in step 2 of RecoverCre
dentials).
Pick at random a nonce random_envelope_nonce (as the client does in step 1 of CreateEnvelope).
4. (For external mode) Compute an inner envelope inner_env (as the client does in BuildInnerEnvelope in draft
section 4.3.219):
* Pick at random an AKE private key client_private_key and compute its corresponding client_public_key.
+ Compute pseudorandom_pad = Expand(randomized_pwd', concat(random_envelope_nonce, "Pad"), 1
en(client_private_key)).
* Compute inner_env as the InnerEnvelope struct { encrypted_creds: xor(client_private_key, pseudo
random_pad) }.
5. (For internal mode) Compute the client keys (as the client does in BuildInnerEnvelope in draft section 4.3.1™"):
+ Compute seed = Expand(randomized_pwd', concat(random_envelope_nonce, "PrivateKey"), Nsk).
* Compute (client_private_key, client_public_key) = DeriveAuthKeyPair(seed).
* Setinner_env = { } tobeempty.
6. Compute auth_key = Expand(randomized_pwd', concat(random_envelope_nonce, "AuthKey"), Nh).
Pick at random an AKE public key random_server_public_key.
8. Compute a cleartext_creds struct (as in CreateCleartextCredentials in draft section 4'2):

w

~

{ server_public_key: random_server_public_key,
server_identity: random_server_public_key, // or any domain name
client_identity: random_client_public_key // separate client_identity must not be used
}
9. Compute auth_tag = MAC(auth_key, random_envelope_nonce || inner_env || cleartext_creds).

°https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-86#section-4.2
"@https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-06#section-4.3.2
" https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-86#section-4.3.1
2https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-@6#section-4

13 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

10. Compute envelope = random_envelope_nonce || inner_env || auth_tag.

11. Compute masking_key' = Expand(randomized_pwd', "MaskingKey", Nh) (as the client would have done in
step 4 of CreateEnvelope).

12. Pick at random a masking_nonce (as the server would do in step 4 of CreateCredentialResponse).

13. Computecredential _response_pad' = Expand(masking_key', concat(masking_nonce, "CredentialRes
ponsePad"), Npk + Ne).

14. Computemasked_response = xor(credential_response_pad', random_server_public_key || envelope

).

The adversary sends the CredentialResponse struct{ request.data, masking_nonce, masked_response }.The
client proceeds with RecoverCredentials (as in draft section 6.1'3). If the adversary correctly guessed the client’s

password, then the client will derive the samey = y', randomized_pwd = randomized_pwd', masking_key = ma

sking_key', and credential_response_pad = credential_response_pad' (steps 1-4 of RecoverCredentials)

as the adversary. Hence, if the adversary correctly guessed the client’s password, then when the client calls Recover

Envelope (step 6 of RecoverCredentials), the MAC verification will succeed and the client will proceed with the AKE

protocol.

How to Address the Properties that Enable the Attack on Generic OPAQUE

A few properties separately make this very cheap attack possible. They are explored in turn here, and the trade-offs
involved in addressing them are briefly discussed. Addressing some properties makes the attack impossible, while
addressing other properties makes the attack at least as expensive as other generic attacks on OPAQUE.

1. The server's OPRF output is not verifiable. This means that the client has no reason to believe that the OPRF
element it received in the data field of the CredentialResponse struct is the correct output of the OPRF function.
That is, the client does not know whether the response includes the value of the OPRF evaluated at the blinded
point they sentin the CredentialRequest with the private key derived from the server's OPRF seed and the client's
credential_identifier. Thisiswhat allows the adversary to send aCredentialResponse struct where the OPRF
element is the same as what the client sent.

Modifying OPAQUE's use of OPRF to be verifiable would be complex; the VOPRF specified in a separate draft
document ' is not directly applicable to OPAQUE. Since OPAQUE's OPRF uses different keys for each client, it would
be necessary to design a new proof that (i) the OPRF output is correct with respect to the server's OPRF public key,
and (ii) the OPRF public key was derived from the server’s seed and the client's identity or their credential identifier.
Designing such a zero-knowledge proof should be possible and it could guarantee that the server’s response is
correct and authentic.

This approach was suggested by NCC Group in the initial recommendation for Finding 20, because it would com-
pletely rule out the possibility of carrying out this attack. However, it is unclear whether the proof could be designed
in away thatis compatible with OPAQUE's goal of a “PKI-free” log-in/credential retrieval process where the client does
not need to store any server public keys after registration. In particular, it is unclear whether it would be sufficient
for the OPRF proof verification to use a public key that the server provides as part of the CredentialResponse
message itself. If this were not sufficient for security, then this solution would not be in line with OPAQUE's goal to
be PKl-free after registration, as the only alternative appears to be that the client stores the server's OPRF public
key after registration.

2. The client_identity component of the CleartextCredentials struct is only optional; when it is not used,
the client_public_key is used in its place. This means that during log-in/credential retrieval, when the client
calls RecoverEnvelope (draft section 4.2), the MAC check is completely independent of the client_identity;
the MAC covers a CleartextCredentials struct that includes only the client's client_public_key, which the
client gets from the adversary. This makes the attack very cheap, as the same auth_tag can be used for different

3https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-@6#section-6.1
4https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-67

14 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

client_identitys.

If the use of aclient_identity were not optional (i.e. clients were responsible for remembering their password
and their identity, and had to use their identity in the CleartextCredentials struct), then the adversary would not
be able to re-use the same masked_response for every request it intercepted. Instead, it would have to (i) know the
client_identity associated with the request and (ii) compute a different MAC tag for each client. Nevertheless,
the attack would still be cheap (the adversary would still need to call the memory-hard function only once per
guessed password), but not very cheap (since the adversary would have to compute a different MAC tag for each
client). Thus, simply enforcing the inclusion of the client’s identity would not be sufficient.

3. The client does not incorporate theirclient_identity into the hardened OPRF output randomized_pwd; only
the server is responsible for doing this (by deriving the OPRF key from the credential_identifier, which the
server derives from the client_identity). So, during log-in/credential retrieval, when the server is unauthen-
ticated, an adversary can craft a response that has a valid MAC tag if and only if they have guessed the client's
password.

If the clients were responsible for inputting their client_identity to the Harden function used to construct the
randomized_pwd, then the attack would be more expensive, as the adversary would have to (i) know the clien
t_identity, (ii) compute a different hardened randomized_pwd for each client, and (iii) compute a different MAC
tag for each client.

4. The server is unauthenticated during log-in/credential retrieval. This is what allows an adversary to respond to
a client's log-in/credential retrieval request.

Not requiring the server to be authenticated during log-in/credential retrieval is one of the major goals/features of
OPAQUIE: it is a "PKI-free” protocol, i.e. server authentication is required only during registration. Authenticating the
server during log-in/credential retrieval would not be in line with the “spirit” of OPAQUE. However, if the client
could obtain an authentic copy of the OPAQUE server’s public key, and that key remains secure, then this could rule
out the attack.

15 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

Trusted Setup Ceremony nccgroup%

The customer team requested guidance in relation to implementing Trusted Setup Ceremonies. The NCC Group
team provided the contents below. It is presented for information purposes only. The customer team evaluated
the guidance, and stated that they implemented the guidance below as appropriate. Some initial observations from
the NCC Group team no longer apply; WhatsApp implemented changes to the solution in several areas, following
feedback from the consultants during the course of the project. In particular, the server signing keys used in the initial
commissioning process were later replaced with native HSM keys, and the public counterparts of these HSM keys are
now hardcoded into the client.

The security of the HSMs, cryptographic key material, and user data stored in the HSMs, are crucial to End-to-End
Encrypted Backups security: their access must be tightly controlled from provisioning to decommission for security,
transparency, and auditability.

As another example, the SEE code running within the HSMs must not be modifiable, as replacing this code could
compromise security in a number of ways. For instance, if the derivation of the OPRF key from the OPRF seed were
changed to be universal rather than client-specific, then the protocol would be susceptible to pre-computation attacks
based on common passwords, as two clients with the same password would obtain the same “randomized_pwd" after
OPREF evaluation and consequently derive the same “masking_key” (OPAQUE draft 84 and later only).

WhatsApp provided NCC Group with HSM setup scripts and access to a page on the internal wiki about HSM fleet
setup “HSM prod setup (fleet commission)’. These materials did not address procedures around the server signing
key (used for issuing certificates the HSMs, so that clients may authenticate legitimate HSMs during registration).

This section suggests best practices for End-to-End Encrypted Backups trusted setup and HSM fleet commissioning
ceremonies. It is organized as follows:

* Trusted Setup General Advice
 Trusted Setup Examples

* HSM Configuration and Island Creation
* Server Signing Keys

Trusted Setup General Advice
The End-to-End Encrypted Backups trusted setup ceremonies should address the following items:

+ Ceremony participants. Formalize a set of roles for participants in the ceremony, e.g., ceremony administrator,
trusted participants, internal witnesses, external witnesses, auditors. See https://www.iana.org/help/key-ceremony-
roles for more possible roles. Involving trusted participants external to WhatsApp may help strengthen user confi-
dence in the service. In particular, since End-to-End Encrypted Backups is designed to protect user data even from
WhatsApp itself, it is recommended that the ceremony participants not consist solely of engineers involved in its
design and implementation.

+ Ceremony script and procedure. Write a detailed script for the ceremony administrator to read during the cere-
mony. The administrator can annotate each step with their initials and the current time as it is completed. Writing
such a script before the ceremony allows performing a “test run” of the ceremony, which may help identify otherwise
unforeseen issues. Maintain revision history of all documents.

+ Ceremony recordings. Record a video of the ceremony from multiple angles. Consider live-streaming it. Ensure
that entering passphrases is not captured on video.

* Handling of HSMs, cards, and card readers. Perform all unboxing of HSMs and related hardware during the
ceremony. Inspect each item for evidence of tampering. These devices should have a chain of custody beginning
with the manufacturer and ending at the data centers in which they will reside for daily operations.

* Hosts and operating environment. Where possible, all systems involved should be hardened machines that are
running trusted operating system images on read-only media and are isolated from public networks. This also
applies to the system on which the SEE binary is built.

* Availability of ceremony materials. Collect all logs, scripts, annotated documents, audio-visual recordings, atten-
dance sheets, etc. into a package of ceremony materials. Inviting the public to review these artifacts can strengthen

16 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

users' confidence in the service.

Trusted Setup Examples

This section summarizes public trusted setup ceremonies. Although not all of them are similar to End-to-End Encrypted
Backups (e.g., not all include HSMs), they can be useful as references regarding how to conduct, record, and share the
ceremony, as well as for how to improve the public's confidence in the ceremony.

Example: DNSSEC Key Signing Ceremonies

One of the responsibilities of the Internet Assigned Numbers Authority (IANA) is managing the DNS root zone. This
includes responsibility for all operations involving the root zone's Zone Signing Key (ZSK) and Key-Signing Key (KSK).
The root KSK'is the trust anchor for DNSSEC and signs all top-level domains' ZSKs. It is generated and stored in an
HSM, and used every three months in a root KSK ceremony. The following quote from the IANA ceremonies webpage
(the first bullet point in the list after the quote) describes these ceremonies:

Ceremonies are usually conducted four times a year to perform operations using the Root Key
Signing Key, and involving Trusted Community Representatives. In a typical ceremony, the KSK is
used to sign a set of operational ZSKs that will be used for a three month period to sign the DNS
root zone. Other operations that may occur during ceremonies include installing new cryptographic
officers, replacing hardware, or generating or replacing a KSK.

* Materials of past KSK ceremonies: https://www.iana.org/dnssec/ceremonies
* Policies and procedures: https://www.iana.org/dnssec/procedures

Example: Zcash Public Parameter Ceremonies

The zero-knowledge proofs used in Zcash require a set of public parameters. Zcash designed a one-time multi-party
trusted setup ceremony to collaboratively generate these public parameters and to ensure that any sensitive values
involved in their generation (“toxic waste”) are destroyed. The ceremony involved five main participants in different
locations and was designed to be secure as long as at least one participant was not compromised. The ceremony
was preceded by three “dress rehearsals,” which uncovered issues that were addressed with changes to the protocol
software before the actual ceremony. The ceremony was video recorded and witnessed by a journalist at one of the
locations and the public was invited to review ceremony details and assets after it happened.

* Overview of Zcash parameter generation: https://z.cash/technology/paramgen/

* Zcash ceremony details and assets: https://github.com/zcash/mpc#zcash-ceremony

* External blog post criticizing requirement of at least one non-compromised participant:
https://blog.okturtles.org/2016/09/how-to-compromise-zcash-and-take-over-the-world/

Example: WebTrust Certification Authority Audits

As roots of trust for the web PKI, Certification Authorities (CAs) must safely handle signing keys. For example, com-
mercial CAs wishing to be considered trusted roots by Microsoft must undergo yearly audits by qualified, independent
auditors.™ Similarly, audits are required by Mozilla's CA Certificate Program, which governs which root CAs are trusted
by the Firefox browser.’® One major audit framework is WebTrust for CAs, managed by Chartered Professional Ac-
countants of Canada. It covers, among other aspects, key lifecycle management, certificate lifecycle management,
and environmental controls. The following quote from the main WebTrust webpage (the first bullet point in the list
after the quote) describes the program:

The WebTrust for Certification Authorities program was developed to increase consumer confidence
in the Internet as a vehicle for conducting ecommerce, and to increase consumer confidence in the
application of PKI technology. This program, which was originally developed jointly by the AICPA
and CICA, is now managed by Chartered Professional Accountants of Canada. Public accounting

"5https://www.docs.microsoft.com/en-us/security/trusted-root/audit-requirements
6 https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/#3-documentation

17 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

firms and practitioners who are enrolled by CPA Canada, can provide assurance engagements to
report on the disclosure of relevant policies and effectiveness of controls by a certification authority
(CA) using the relevant principles and criteria.

* WebTrust seal program for Certification Authorities:
https://www.cpacanada.ca/en/business-and-accounting-resources/audit-and-assurance/overview-of-webtrust-services

* WebTrust Principles and Criteria for Certification Authorities, Version 2.2.1:
https://www.cpacanada.ca/-/media/site/operational/ms-member-services/docs/webtrust/wt100awebtrust-for-ca-221-
110120-finalaoda.pdf

* Sample WebTrust CA audit report:
https://www.cpacanada.ca//GenericHandlers/CPACHandler.ashx?AttachmentID=257007

HSM Configuration and Island Creation

The End-toEnd Encrypted Backups architecture includes a number of islands. An “island” is a group of 5 HSMs that
are configured to access the same cryptographic material. In the HSM manufacturer’s terminology, this “island” is a
set of HSMs that share the same “Security World”. HSMs in the same Security World can be administered by the same
Administrator Card Set (ACS) and share the same Security World Key, which encrypts all key material produced by the
HSMs and stored on their host(s). In End-to-End Encrypted Backups, each HSM in an island has its own host, that
handles storage of data (in encrypted format).

The main steps of HSM configuration and island creation are discussed in the following subsections.

1. Configuring the Security World

The commands for the creation of one island are gathered in the script setup_security_world.rs, including Security
World creation, provisioning of Administrator Card Set (ACS) cards, and provisioning of Operator Card Set (OCS) cards.
At the time of review, this script had not been updated to reflect changes in the “HSM prod setup (fleet commission)”
wiki page. For instance, the wiki page describes the ACS and OCS requiring quorums of 3 of 5 users, while the script
says 1 of 1.

A number of configuration options are passed to the new-wor1d utility, which creates the Security World and ACS and
sets the quorum numbers. The Security World is configured to require ACS authorization to allocate NVRAM regions,
set the real-time clock, and enable foreign token operations.

* Recommendation: The new-wor1d utility could have the ——no-recovery option set, which prevents a quorum of
ACS cards from authorizing the recovery of lost or damaged OCS and softcards. Currently, since the recovery=no
option is also passed to generatekey for the two OCS-protected keys, setting this property at the world level would
not change their recoverability. However, setting it at the world level offers protection in the case of accidental
omission of the recovery=no option when creating OCS-protected keys.

* Recommendation: The new-wor1d command could use the -—pp-min=X option to set a non-zero default passphrase
length for ACS and OCS cards. The default minimum is @, which allows cards to have no passphrase protection.
Currently, all ACS and OCS cards are wiped at the end of the ceremony, so this minimum passphrase length is not
very important. Also note that, according to the nShield Solo User Guide, the length specified here is used only to
warn users when they are using short passphrases (and ultimately does not prevent their use).

Next, the OCS is created with the create-ocs utility, which sets its quorum numbers and gives the cardset the name
“codesign.”

* Recommendation: The create-ocs utility could have the ——no—pp-recovery option set, which prevents a quorum
of ACS cards from authorizing the recovery of lost or damaged OCS cards.

* Recommendation: The create-ocs utility could have the timeout=X option set, which automatically removes the
OCS after a specified time period.

Then, the generatekey utility is used to create two 3072-bit RSA signing keys of type “seeinteg” (key size is defined as

18 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

RSA_LENGTH_BITS inopaque.rs.). Oneis used for signing the SEE binary (“seesign”) and the other is used for signing
“userdata” (“configsign”).

* Recommendation: The generatekey utility could have the cardset=codesign option set, which explicitly specifies
the OCS that protects the key, rather than the default of using the OCS of the card currently in the slot.

2. Generating Island Keys

The commands for generating an island’s RSA key pair, OPAQUE key pair, and AES key are also in the script setup_se
curity_world.rs. However, they are not created with command-line utilities, but through a C program (key_gen.c)
using the nCore API provided by the HSM manufacturer.

The OPAQUE key (“opaque”) is an X25519 key. Its Access Control List (ACL) specifies that it is module protected (rather
than cardset protected, which would require cards to be inserted for every operation) and configured to be accessible
only by SEE code signed with the “configsign” key, identified by its key hash retrieved with get_codesign_cert()
. The ACLs of the public and private components also specify that they can be exported in plaintext and used as a
blob key. These permissions seem necessary to allow the OPAQUE key to be exported as a keypair blob and stored
on the host. The keypair blob's creation has an identseeinteg parameter that appears to limit its access to only SEE
programs signed by the “configsign” key.

The island AES key (“islandaes”) is a 128-bit AES key (length is hardcoded on line 180 of key_gen.c). Its ACL also
specifies thatit is module protected, accessible only by SEE code signed with the “configsign”key, and can be exported
in plaintext and used as a blob key. The AES key is exported as a key blob and stored on the host, with the same
identseeinteg parameter set to “configsign.”

The island’s RSA key (“islandrsa”) is 3072 bits (hardcoded on line 294 of key_gen.c). Its ACL also specifies that it is
module protected and accessible only by SEE code signed with the “configsign” key. The RSA key is exported as a
keypair blob and stored on the host, with the same identseeinteg parameter set to “configsign.”

* Note: According to the nCore Developer Tutorial, the NFKM_NKF _SEEAppKey flag, which is set for all three keys, has
been superseded by the NFKM_NKF_SEEAppKeyHashAndMech flag.

* Recommendation: The ACL of the RSA private key specifies that it can be used to sign and decrypt; the RSA
public key, to verify and encrypt. The key pair should be used either for signing and verification, or encryption
and decryption, but not both, and the public and private ACLs should be changed to reflect this. (See lines 256-265
of key_gen.c.)

3. Adding HSMs to the Island

Once the keys have been generated on the host of the HSM used to create the Security World, the key directory on
the host must be copied to all other HSM hosts. The ceremony script should specify exactly how these keys are copied
and transferred. Each HSM is then joined to the same Security World as the first, which requires ACS authorization.
The NVRAM allocation script (allocate_nvram_regions.rs) is run on each HSM host. It uses the nvram-sw utility,
for which no detailed documentation was available, and passes the ——key=seeinteg, configsign parameter, which
is expected to restrict access to the configured NVRAM regions to only the signed SEE binary.

The "HSM prod setup (fleet commission)” wiki page mentions that an HSM configuration verification script (not available
at the time of NCC Group's review) will then be run.

4. Building, Signing, and Loading the SEE binary

The five ceremony participants each build the SEE binary on their own machine and compute its SHA-256 hash. This
computation of the expected hash could be done before the ceremony, as soon as there is agreement on which version
of the SEE to build.

During the ceremony, on one of the HSM hosts, the SEE binary is built. Next, the script create_sar_files.rs is
run, which calls the tct2 Trusted Code Tool utility to create the SEE binary (signed by the seesign key) and config

19 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

file (signed by the configsign key, and accessible only to SEE machines signed by the seesign key). This will require
authorization from the OCS.

* Recommendation: The “HSM prod setup (fleet commission)” wiki page describes verifying the SHA-256 hash after
the binary is signed. This hash should be verified before.

* Note: The "HSM prod setup (fleet commission)” wiki page states that the OCS cardset has size 5 and that fleet
commissioning should be “robust to a minority [...] of the 5 commissioners,” which implies that the quorum is set to
3 of 5. However, the page also states that all commissioners should sign the SEE binary. If enforcing this is desirable,
consider raising the quorum when creating the OCS.

Lastly, ACS and OCS cards are wiped by formatting them with the slotinfo —-format utility.

* Recommendation: If there is any doubt about whether the slotinfo utility truly zeroizes the key material on ACS
and OCS cards, the smartcards’ chips should be physically destroyed (e.g., using a hammer, scissors, or shredder).

Server Signing Keys

If the End-to-End Encrypted Backups server private key were compromised, it could be used to create certificates for
non-legitimate HSMs. End users, who authenticate HSMs by verifying certificates issued (signed) by the server key
on the HSMs' public keys, would not distinguish compromised or fake HSMs from legitimate End-to-End Encrypted
Backups HSMs, and may proceed to register with them. To restrict use of the server private key, it is destroyed after
the HSM fleets are commissioned during a “trusted setup ceremony.” This is described in the Threat Model page of an
internal WhatsApp wiki.

No material was provided around the handling of the End-to-End Encrypted Backups server keys that sign the HSMs'
keys.

* Recommendation: Document the policies and procedures in place around the server signing key.

Miscellaneous Resources
This section contains some additional resources that may facilitate a smooth trusted setup ceremony.

+ Tamper-evident bags. Note that smartcards require additional protection, as it may be possible to read a smartcard
through such plastic tamper-resistant bags."’

* Verbal hash comparison. Hashes or long strings of binary data are easier to share and compare as words. One
utility is sha2wordlist,'® which translates a SHA-256 hash to a list of words from the PGP wordlist.

* Read-only storage media. “R" format DVDs (not “RW") are writable only once.

7 https://www.kumari.net/index.php/projects/random-projects/105-reading-a-smart-card-through-a-tamper-evident-bag
8https://www.github.com/kirei/sha2wordlist

20 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

2

Table of Findings nccoroup”

For each finding, NCC Group uses a composite risk score that takes into account risk severity, application exposure,
user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group's risk rating and
finding categorization, see Finding Field Definitions on page 24. A response from WhatsApp on each of the remaining
“Reported” findings can be found in WhatsApp's Response to NCC Group Findings on the next page.

Title Status ID Risk
Weak 512 bits RSA Key Signing Key Fixed 10 High
Overly Permissive Remote Access Controls for Vesta HSM Server Fixed 3 Medium
Weak Password Complexity Requirements Fixed 4 Medium
Missing Unicode Normalization on Password Fixed 5 Medium
Key Signing File Accessibility In Lower Integrity Environment May Facilitate Fixed 7 Medium
Complete HSM Bypass

Insufficient Input Validation During OPRF Group Element Deserialization Fixed 13 Medium
Compromised Backend Can Force the Computation of a Known Backup Export Fixed 14 Medium
and Other Keys in WhatsApp Clients

Unlimited Raft Max Message Size Limit Fixed 19 Medium
Compromised Backend or Infrastructure Can Force Non-Randomized Client Fixed 20 Medium
Password Value and Weak OPAQUE Keys

Missing Bincode Deserialization Limits on Maximum Size Fixed 22 Medium
Non Constant-Time GHASH Operation in WhatsApp iOS Encrypted Backup Reported 2 Low
Implementation

Weak Password Hashing Reported 6 Low
Weak Error Handling via Panic Fixed 8 Low
Vesta Server Containerized Process Runs With Root Privileges Reported 9 Low
User Account Enumeration and Disabling Reported 15 Low
One-Time Device Compromise Results in Irreparable Loss of Confidentiality Reported 16 Low
Insufficient Protection of Backup Key on Device Reported 18 Low
OPREF Blinding Scalar Can Be Chosen At Random To Be The Zero Element In GF(p) Fixed 1 Informational
Non Constant-Time MAC Comparisons of Envelope Auth Tag and Protocol Fixed 17 Informational
Transcript

Brittle Use of 18 and 116 Types in Restore History Involving Signature Generation Reported 21 Informational

Non Constant-Time Registration Challenge Comparison Fixed 23 Informational
Potential for Unsigned Overflow on Subtraction Fixed 24 Informational
HSM Firmware and SEE Code and Configuration Updates Impossible Once Reported 25 Informational

Commissioned in Production (as Designed and Intended)

21 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

WhatsApp’'s Response to NCC Group Findings nccgroupe

WhatsApp provided a response for each of NCC Group's findings, whose status is “Reported” in the Table of Findings
on the preceding page. WhatsApp's responses are reproduced below as-is:

Name

ID Risk

WhatsApp Response

Non Constant-Time GHASH Operation in
WhatsApp iOS Encrypted Backup
Implementation

Weak Password Hashing Risk

Vesta Server Containerized Process Runs With
Root Privileges Risk

User Account Enumeration and Disabling Risk

One-Time Device Compromise Results in
Irreparable Loss of Confidentiality Risk

2 Low

6 Low

9 Low

15 Low

16 Low

WhatsApp did not deem this to be an issue
because the impact and likelihood of any
attack is very low and WhatsApp has built other
ways of mitigating this denial of service attack
should it happen. WhatApp did report this
upstream to the library owner in hopes that
they will update their library accordingly.

WhatsApp uses 100,000 iterations of PBKDF2
as a password hashing algorithm, as part of
the password protections, which is industry
standard. We don't use a memory hard
algorithm because many of our users have
phones with low memory and storage. We
thought carefully about the trade off for
reliability, user experience and security, and in
this case believe that we provided reasonable
algorithmic protections with these tradeoffs in
mind.

WhatsApp's system is designed to protect the
confidentiality of user keys even against
attackers with full internal system access -
including full root access to the server hosting
the HSM. It is necessary to run this
configuration to talk to the HSM and we have
other controls in place to manage escalation of
privilege attacks.

API access for WhatsApp's backend is
appropriately restricted through standard
internal ACL mechanisms, and so the risk of an
internal attacker abusing this API to disable or
delete user accounts en masse is limited to a
very small set of system administrators.

There is a way for a user to change the key:
disable encryption and enable it back.
WhatsApp didn't want to provide an easier way
to do this because key change will result in a
whole backup reupload which could create
additional financial costs for WhatsApp users
who may pay for network bandwidth to upload
information.

22 | WhatsApp End-to-End Encrypted Backups

WhatsApp / NCC Group

nccoroup”

Name

Insufficient Protection of Backup Key on Device

Brittle Use of i8 and i16 Types in Restore
History Involving Signature Generation Risk

HSM Firmware and SEE Code and
Configuration Updates Impossible Once
Commissioned in Production (as Designed and
Intended

ID
18

21

25

Risk

Low

Informational

Informational

WhatsApp Response

On device protection for end-to-end encrypted
backups is secure and relies on operating
system storage for protections. WhatsApp uses
the Keychain on iOS, which is backed by Apple's
Secure Enclave hardware key manager on
supported devices. WhatsApp has found that
secure enclave storage for Android users is not
available on all Android devices that WhatsApp
supports. As it becomes available and reliable
on all Android devices that we support, we will
consider implementing this solution.

WhatsApp appreciates NCC Group bringing
this to our attention. The standard internal
APIs limit us from using unsigned types
ubiquitously. All casts are guaranteed to fall
within the corresponding numeric limits, and
thus pose no risk to the system.

WhatsApp is intentionally limiting our access to
these systems once deployed so that we can
uphold the end-to-end encryption guarantees.

23 | WhatsApp End-to-End Encrypted Backups

WhatsApp / NCC Group

Finding Field Definitions nccgroup”

The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group's estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

24 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

nccoroup”

Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.
Access Controls Related to authorization of users, and assessment of rights.
Auditing and Logging Related to auditing of actions, or logging of problems.
Authentication Related to the identification of users.
Configuration Related to security configurations of servers, devices, or software.
Cryptography Related to mathematical protections for data.
Data Exposure Related to unintended exposure of sensitive information.
Data Validation Related to improper reliance on the structure or values of data.
Denial of Service Related to causing system failure.
Error Reporting Related to the reporting of error conditions in a secure fashion.
Patching Related to keeping software up to date.
Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

25 | WhatsApp End-to-End Encrypted Backups WhatsApp / NCC Group

	Table of Contents
	Executive Summary
	WhatsApp Encrypted Backups Secrets Management Solution Architecture
	Generic Attacks on OPAQUE
	Trusted Setup Ceremony
	Table of Findings
	WhatsApp's Response to NCC Group Findings
	Finding Field Definitions

