
RESEARCH
INSIGHTS
Exploitation Advancements

www.nccgroup.trust

CONTENTS
Author 3

Introduction 4

Modern Exploitation 6

Advanced Exploitation 8

Future Exploit Techniques 12

Conclusions 13

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 2

AUTHOR
AARON ADAMS

Aaron is a security researcher at NCC Group,
where he researches exploit development
techniques and builds tools to assist internal
consultants.

He has experience with exploit development on
numerous platforms. Prior to NCC he worked
doing mobile security research at BlackBerry, and
threat analysis and reverse engineering for
Symantec.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 3

INTRODUCTION
For over forty years the computer industry has been engaged in a
cat and mouse game of defensive and offensive techniques and
countermeasures. Traditionally, the offensive side almost always
has a technological and time advantage.

Exploits are among the primary tools of the offensive side. An
exploit is typically a piece of software, or some logic used by an
attacker, which takes advantage of a bug or behaviour in the
targeted software or hardware. Use of the exploit allows the
target to be manipulated in ways unintended by the designer.
This manipulation can in turn allow security bypasses, such as
executing arbitrary code when only strict program interaction was
intended or extracting sensitive data without authentication.

A person writing an exploit only needs to spend as much time as
it takes to find the one way in through the various defences in
place, whereas a person writing the defence has to spend as much
time as it takes to think of every possible logical way around what
they’re building. This gave exploit writers an edge for a very long
time, as writing exploits was often not as complex as one might
expect; but it is always becoming more difficult.

This arms race exists in all facets of technology, from hardware to
software, from C to Python, but the fiercest competition continues
in memory corruption exploitation, typically against software
written in C and C++.

Historically, exploit writers and offensive researchers tend to be
aware of a significant number of techniques that could be used to
overcome future defence technology and mitigations. With many
of the waves of defensive mitigations introduced by operating
systems, exploit writers immediately knew how to overcome the
defences without even doing any new research. The tricks to
overcome the defences might have been considered advanced
when first discovered, but once the mitigation was in place, the
technique would quickly become the norm and well understood by
many.

In the last decade and a half, we have seen a significant shift in
the defensive realm, with the introduction of many mitigations
into mainstream compilers and operating systems, and into their
services and applications. This increase in defences has led exploit
writers to start leveraging new techniques, along with many that
were previously known but considered advanced and unnecessary,
in order to achieve a successful compromise.

The defences that attackers will now, depending on the scenario,
routinely bypass, circumvent, or purposefully avoid dealing with
during exploitation include:

•	 Address space layout randomisation (ASLR)
•	 Non-executable memory
•	 Executable but non-readable memory
•	 Stack cookies and variable reordering
•	 Heap metadata hardening
•	 Heap layout randomisation
•	 Delayed heap freeing
•	 Object allocation partitioning
•	 Exception handling: SafeSEH, SEHOP
•	 Pointer encoding
•	 Sandboxing
•	 Input filtering
•	 Supervisor Mode Execution Prevention
•	 Vtable integrity
•	 Control flow guard

Not all of these mitigations have an easy workaround for an
attacker, so often the situations in which they would pose a
problem are simply avoided. Take stack cookies and variable re-
ordering as a prime example. Without an information leak (a way to
retrieve information from the target process either locally or over
a network before exploitation), these mitigations can make many
stack overflows difficult, if not impossible, to exploit. However,
following the path of least resistance means that attackers spend
their time trying to exploit other bug classes like type confusion,
heap-based buffer overflows, or use after frees, as an alternative.

At one point it was considered advanced to understand these
defensive technologies and be able to defeat, circumvent, or
avoid them while still leveraging a bug. As more and more exploit
techniques are used routinely, the techniques start to lose their
advanced status and new, more esoteric, tricks take their place, as
we see with many of the zero-day exploits discovered recently.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 4

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 6

Modern Exploitation

What many people think of as advanced exploitation techniques
have in fact often been known and even practically deployed for
over a decade. The differentiating factor is that the techniques
weren’t necessary for everyday exploitation scenarios. A variety of
techniques have moved from the advanced category to the normal
category, to the point where we see them in almost every major
attack.

Information leaks

It is largely accepted by exploit writers that information leaks have
become the most important part of a successful attack; some have
even dubbed it the information leak era. In the past, because of
failure to implement ASLR effectively, there was often no need
for information leak to achieve successful exploitation. Now that
ASLRd processes, especially on 64-bit operating systems, have
reasonably random memory layouts, exploit writers must resort
to leaking addresses from the process to inform the rest of the
exploit. Almost every major memory-based exploit now relies on
some form of information leak.

ASLR is not the only reason one might need an information leak.
You might need one for finding executable modules in memory
to facilitate return oriented programming (ROP), determining the
layout of objects in memory to know where to corrupt, reading
secret cookie values to bypass mitigations; finding key data
structures to continue a process cleanly after exploitation has
completed, and many more reasons.

These leaks are typically used in two ways:

1. An exploit writer leverages the original vulnerability they want
to exploit in order to build what is called a leak primitive. This
will often result in triggering the vulnerability many times in
order to leak various areas in memory.

2. A separate vulnerability is used for the information leak.
Sometimes a bug that lets you eventually gain code execution
isn’t sufficient for leaking information, so you are forced to use
a separate bug.

Sandbox escapes

Sandbox escapes are among the areas that have seen the most
advancement in recent years. The general idea of this is quite old,
as exploit writers have been breaking out of primitive chroot jails
for a long time. But as sandbox technology has advanced and
arrived on the desktop, so too have the techniques required to
break out of them on more modern operating systems.

In client-side exploitation scenarios, sandbox breakouts have
become a necessity for exploit writers, as almost all mainstream
browsers and document-parsing tools use some form of sandbox.
One point worth mentioning, however, is that breaking out of
the sandboxes themselves doesn’t always involve some new
or advanced exploit techniques; it simply involves an additional
exploit. The requirement of chaining multiple, often completely
unrelated, exploits in a single attack at a more abstract level
represented major sophistication in the past, but again has now
become fairly commonplace.

The purpose of a sandbox is to limit the environment in which
an attacker finds themselves after the first stage of successful
exploitation. Were a browser compromised and an exploit to
obtain arbitrary code execution carried out, the attacker might
be executing in an environment with no meaningful network,
filesystem, or system access. This forces them to resort to
breaking out of the sandbox. The most common approach to this is
to use a second exploit that targets the operating system kernel.

Almost every major
memory-based exploit now
relies on some form of
information leak.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 7

Depending on the design, other breakout exploits, which target the
sandbox broker processes or, if present, the hypervisor, are also
seen. Many interesting and sophisticated techniques have come
out of these breakouts; some of the most notable being from
exploit competitions, game console hacking and jailbreaks, rather
than malicious exploitation. We do still see new and interesting
attacks in this space, such as leveraging an identical bug in
different privilege contexts to achieve both client-side exploitation
and sandbox breakout.

Malleable bugs

Much of modern exploitation involves attacking very specific bug
classes because they exhibit properties that facilitate bypassing
many mitigations. Although exploit writers create innovative ways
to leverage restrictive bugs to do what they need, there is an
increasing requirement for a bug to exhibit certain behaviors to
facilitate bypassing all of the modern mitigations. If it doesn’t, it will
either be ignored in favor of a more malleable bug, or be put to use
as one of a collection of bugs used to leverage an attack.

At one point, before ASLR became so effective, a bug that allowed
an arbitrary write to any location in memory was often seen as
favorable. There was almost a simple recipe one could employ to
exploit it. However, in the modern age in which no static addresses
are known in advance, this type of bug isn’t always ideal. Instead,
small linear overwrites, with minimal data restrictions, have become
much more favorable than arbitrary writes. This is not to say that
the eventual goal isn’t to construct an arbitrary write; however, in
modern exploitation scenarios a smaller controlled linear overwrite
in combination with heap feng shui (massaging) can give you a
much more favorable starting position that lets you slowly build up
a collection of exploit primitives. It’s worth noting that heap feng
shui is also an exploit technique that used to be considered quite
advanced, but has just become part of the modern toolset.

Exploit releases from malware

In the past there was a fairly vibrant community of exploit writers
who would release their work to the public. We’ve now seen this
habit change, and malware will now leverage zero-day exploits,
exploits for bugs that had yet to be proven exploitable publicly, or
for known exploitable bugs for which no public exploit had been
available. The reason for this shift is at least in part due to the
exploit community largely withdrawing from the public eye, leading
to malware developers needing to develop their own private
exploits. Another likely cause is the ongoing monetisation of
malware and exploit technology, which allows malware authors to
purchase exploits to plug into their software as needed.

This is possibly evidence that the increased difficulty of
exploitation, which leads to a larger time investment, prevents
some hobbyists from being able to exploit the bugs in a
reasonable amount of time and that they might be less willing to
give away the work for free. On the same note it shows that the
level of sophistication of some malware authors is increasing, in
that many of them no longer rely on adapting publicly-available
exploits. Public research is often enough for them to build upon to
develop their own exploits, and in some cases the malware authors
are now leveraging exploit techniques that had not been shown
publicly at all.

In the past there was a
fairly vibrant community
of exploit writers who
would release their work
to the public. We’ve now
seen this habit change.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 8

Advanced Exploitation

The term “advanced” is subjective and is a window looking out
over a moving landscape. The exploit techniques already described
were once advanced and are now fairly standard. It is interesting
to consider what could currently be considered advanced exploit
techniques.

The exploit techniques
already described were
once advanced, and are
now fairly standard.

One aspect of modern exploitation is that more aggressive
defences, and a better general understanding of low-level
technologies, seem to have pushed research and techniques to
what is almost the fringe of what can be classified as an explicit
hole or flaw. What is especially interesting about these techniques
is that not only do they start to blur the line of traditional
vulnerabilities, but in many cases the vendor response is to not
fix the underlying issue; sometimes software vendors are unable
to even fix the bug, and other steps must be taken to mitigate.
Similarly, some bug classes transcend the thinking of a typical
software vulnerability and exploit a more abstract design as a side
channel.

Although many of the following bugs and exploit techniques
represent areas that are hard to fix, whatever is pushing
researchers and attackers to find such vulnerability classes
could be indicative of vendors starting to succeed in some of
their defences. As a general rule, as bugs get harder to find or
exploit, people are pushed to more obscure and extreme ways of
achieving their end goals. This often results in fascinating research
and new areas for security hardening, but also tangible risks to
those trying to secure their infrastructure.

DRAM row hammering

An interesting physical property of dynamic random access
memory (DRAM) is that the aggressive use of certain rows
of memory cells can result in abnormally fast discharging of
capacitors in the rows of cells adjacent to those being hammered,
which, given the right timing, can corrupt those cells by triggering
what is known as a “disturbance error”: causing bits to flip from
one value to another. This is known simply as row hammering.
In 2015 it was shown that these row hammering disturbances
could be abused reliably by native code, which leveraged specific
cache flushing instructions on some hardware to break out of the
Google Chrome sandbox and to manipulate Linux kernel data in
order to elevate local privileges. Newer research has suggested
that row hammering can be reliably triggered from JavaScript
without even requiring the direct execution of a cache flushing
instruction.

Row hammering exploitation leverages physical properties of
RAM. A software vendor can’t fix this vulnerability, but they
can reduce the availability of certain functionality that can help
exploitation. The Chrome browser sandbox no longer allows
execution of the cache flushing instruction on x86. The Linux
kernel now prevents an unprivileged user from being able to query
the underlying physical frame number for a given allocation, as
this information was used to inform exploitation of row hammering.
These mitigations will help slow down attackers, but in the end
don’t fix the underlying issue. The only solution for users is to buy
higher-end hardware that either has built-in mitigations, such as
more aggressive row refreshing timing, or error correcting codes
to detect unwanted bit flips. Any computer that is not, or cannot
be, physically upgraded is permanently vulnerable. The practical
abuse of this type of vulnerability is a great example of modern
advanced exploitation.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 9

Use MemoryProtect to defeat ASLR

In 2014, Microsoft’s Internet Explorer browser deployed a new
mitigation called MemoryProtector, which is designed to hamper
the exploitation of use-after-free (UAF) vulnerabilities. UAF bugs
have become one of the most popular client-side vulnerabilities to
exploit in recent years.

In 2015 it was shown by researchers at the Zero Day Initiative and
Google Project Zero that this MemoryProtector mitigation could, in
two different ways, be used as an information oracle to bypass the
ASLR mitigation. This scenario presents an interesting problem
for a vendor, because the original mitigation does in fact serve a
purpose -- to hamper the exploitation of certain bug classes -- and
therefore is still a valuable piece of technology. This is another
interesting case of exploit writers pushing advancements towards
the fringes of what constitutes a weakness or vulnerability, where
a vendor must weigh the value of preventing certain bugs versus
enabling the easier exploitation of other bugs. In this case, the
vendor has so far decided that the benefit from MemoryProtector
was more important than the weakness it presents to the ASLR
mitigation.

KASLR timing attacks

Kernel ASLR is a mitigation deployed by a few operating systems
to hamper the ability to exploit vulnerabilities that need to know
where something is located in kernel memory. This might be, for
example, the location of a function pointer to overwrite or the
location of a kernel payload an exploit needs to execute. This has
in turn increased the number of information leak vulnerabilities
being found and fixed in kernels. Not only is this information being
removed in the form of bug fixes, but also sandboxing is being
used to reduce the ability of a compromised process to reveal
information that may be otherwise accessible, even if not as a
direct result of a vulnerability.

Despite all of these efforts, we see another exploitation technique
on the boundary between bug and expected behavior. By
understanding how memory caching works on a processor,
specifically page faults and the resultant translation lookaside
buffer (TLB) caches, it is possible to use subtle timing differences
exhibited by the CPU as an information side channel to discern
between addresses that you can’t even directly access.

Although timing attacks are somewhat probabilistic leaks
compared to an explicit one that might be triggered from a more
traditional software vulnerability, the technique can be perfectly
effective and exists on the fringe of software and hardware. It is
not functionality that can be mitigated through software changes,
unlike a more traditional vulnerability. Currently exploit writers
aren’t leveraging these timing attacks, as it’s typically far easier to
find an information leak bug, but once the bug well dries up, this
more advanced technique might become the norm.

It is not functionality
that can be mitigated
through software
changes, unlike a more
traditional vulnerability.

Self-mapping page table entries

In 2014 increased attention was given to a feature of page table
handling on some operating systems, called self-mapping, in which
a given index within a page table will actually reference back to
the physical address of the page table itself. What this means is
that, given a userland virtual address, you can make some static
modifications to the virtual address to create a new virtual address,
which will only work in kernel mode, but which will resolve to the
physical address of the page table entry that manages the physical
page backing the original virtual address.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 10

Advanced Exploitation
Cont...

Why is this useful? Assume you have an arbitrary write in kernel
space and want to be able to execute an exploit payload in
userland. Also assume that the supervisor mode exploit protection
(SMEP) mitigation prevents you from just jumping directly into
executable memory in userland space. Modern kernel hardening
also means that the locations in kernel memory in which you can
store your payload are non-executable. One option is to use your
arbitrary write to manipulate the page table entry for an address
holding your payload directly, either in userland or in kernel space.
If the payload is in userland an exploit could modify the associated
page table entries to mark the address a supervisor range,
meaning executing data stored at this address from kernel space
will no longer trigger the SMEP mitigation. Similarly, an exploit
could modify the page table entry of a read-write memory location
in kernel space, and mark it as executable. This way execution
could be redirected, without violating SMEP, and the payload can
actually be executed.

Although in theory this problem could be mitigated in some ways,
it is also a legitimate and intended feature of many page table
management designs, and has been for decades, as it allows a
kernel to make changes to page table entries rapidly, without
deploying more expensive table lookups each time.

Virtualisation security introducing insecurities

An increasingly popular form of sandboxing is to leverage
virtualisation technology to keep parts of a system more heavily
isolated. A good example of this is the Qubes OS, which leverages
the Xen hypervisor to run programs within their own isolated
operating system environment.

One interesting aspect of some virtualisation technologies such
as Xen is that they fundamentally change the environment in
which an operating system would normally run, in order to facilitate
certain virtualisation goals. What can happen in translation is that

certain key security technologies available on a non-virtualised
environment, such as the SMEP and supervisor mode access
prevention (SMAP) mitigations on Intel processors, become
unavailable within the virtualised environment. Specifically, in the
case of a paravirtualised Xen guest machine, the entire guest
operating system is run in ring 3, which means that the guest
kernel cannot enforce SMEP or SMAP, as it explicitly requires
running in ring 0 to be effective.

An increasingly popular
form of sandboxing is to
leverage virtualisation
technology to keep
parts of a system more
heavily isolated.

If virtualisation is being used as a hardening measure for a
more complete operating environment, then this might not be
a big problem. However in a cloud environment for instance,
where a customer might simply have no option but to operate
within a virtualised environment, their security is impacted by the
convenience of using the cloud technology. A vulnerability that
might otherwise be unexploitable thanks to SMEP and SMAP
mitigations could still be a perfectly legitimate candidate for
exploitation on virtualised environments, and the users of the
technology might not even realise that they are at increased risk.
Although this has yet to become commonplace, as mitigations
become increasingly difficult to exploit, attackers that have a more
advanced knowledge of system and virtualisation internals may
begin to seek out this type of opportunity.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 11

Abstract interpreter abuse

An interesting case of an ASLR bypass that is more advanced
than the typical information leak, is one that involves leveraging
how an interpreter might store information within data structures.

This idea has been practically demonstrated by researchers,
though it is not yet something people seem to be actively finding
or using in their exploits. The premise is that certain types of data
structure, such as a dictionary, might be sorted using values taken
from the underlying object, and that different object types such
as integer values and pointers to values might be intermixed. This
intermixing of data can actually be used as a side channel to infer
an address, by simply interacting with and inferring properties of
some target object within the data structure, based on data you’re
actively inserting into the same data structure.

...many attackers will
favor leveraging their
corruption bug to build
an information leak, or
stick to path of least
resistance

Although this type of ASLR information bypass hasn’t become
common place yet, as many attackers will favour leveraging their
corruption bug to build an information leak, or stick to path of least
resistance methods such as heap spray, I think eventually this type
of flaw will be used more often. This type of information leak is
much more difficult to find using automated analysis and compiler
checks, as it is a more abstract problem that is not caused by
traditional bad coding practices.

Out of order execution engine side channels

Although CPU-cache-based side channels for data exfiltration
have existed for some time, there is new research being done in
this realm as well. It was recently shown that a processor’s out-of-
order execution engine can be used to exchange data between
two co-resident virtual machines.

The out-of-order execution engine is used by a CPU when it is
processing opcodes, the single machine instructions to which a
native application is compiled down. Typically, a CPU would fetch
each new instruction to be executed and place it into an ordered
pipeline. However, there are inefficiencies with this, as certain
instructions can cause stalls that prevent the next instruction from
being executed immediately. To counter this, many processors will
re-order certain instructions in order to maximise the efficiency of
the pipeline.

In 2015 it was shown that this re-ordering behavior could be
abused by two collaborating systems on the same hardware,
but in different virtual machines with different security policies,
to exchange data that would violate the policies on one system.
Although this is specifically related to data exfiltration, rather than
traditional exploitation, it is another good example of advanced
attacker-oriented research moving towards more obscure, low
level, and fringe areas of research that become increasingly
difficult to address from a defensive standpoint.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 12

Future Exploit
Techniques
We see vendors and researchers increasingly making an effort
to combat popular exploitation techniques and bug classes. In
many cases this new research is simply improving on theoretical
mitigations and security first demonstrated decades ago, but which
were not adopted or suffered from performance issues that are
only now being addressed due to the increased necessity for a
solution.

We see vendors and
researchers increasingly
making an effort
to combat popular
exploitation techniques
and bug classes.

For example, control flow integrity (CFI) will significantly impact
return-oriented programming as a common exploitation technique.
CFI is now being introduced via Control Flow Guard in recent
versions of Microsoft Windows, and the LLVM compiler has also
recently added support for CFI. However, we also see that exploit
writers have already started to find the path of least resistance, as
it has been shown that just-in-time (JIT) compilation engines don’t
work well with effective control flow analysis, and thus an attacker
can bypass control flow mitigations altogether by targeting JIT.

Similarly, some use-after-free and type-confusion attacks are
starting to be targeted by the introduction of vtable cookies. This
prevents one object with a specific vtable from being operated
on when the underlying memory has changed, because the
associated code can tell that the vtable is incorrect. This will likely
lead to increased discovery techniques and bugs that leverage
objects that don’t have such protections, or simply targeting

software that has none of these protections. Eventually it might
cause yet another class of vulnerabilities, the next easiest to
exploit, to surge in popularity.

In general we’ll continue to see exploit writers taking the path of
least resistance as each new mitigation is introduced. If software
X becomes hardened, software Y will become the new target.
Attackers have continued to target Adobe Flash in the last few
years because it’s one of the easiest targets to exploit; before that
Java was a principal target. Flash has recently been hardened
against one of the features that made it so ideal, so perhaps
exploit writers will move on to something new.

As more techniques and bug classes are mitigated completely, we
will start to see a move towards even more of the techniques on
the fringe of software and hardware design. These will not only be
increasingly difficult to fix, but in some cases might not be fixable
at all, because the way in which the flaws can be abused is also an
intrinsic part of what makes the design useful for non-malicious
purposes in the first place.

As more techniques
and bug classes are
mitigated completely, we
will start to see a move
towards even more of
the techniques on the
fringe of software and
hardware design.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 13

The exploits leveraged by attackers are becoming increasingly
sophisticated, but typically only to the minimum level required to
get the job done. The theoretical and esoteric attacks of a previous
era have become the requirements of modern exploitation, and in
many ways they should no longer be considered advanced. In their
place are a new set of theoretical and esoteric attacks waiting in
the wings until the time is necessary for exploit writers to leverage
them more aggressively.

As has always been the case since dawn the of the offense vs
defence dance, the primary key to hampering attackers is to
increase the investment they must make in order to pull off a
successful attack. This means increasing upfront investment in
developing their exploits, by proactively finding bugs and testing
your own software, introducing mitigations to hamper exploitation
of issues you don’t find, and adding layers of security to slow down
the exploitation of bugs that will inevitably be missed. This extends
beyond just the software on external facing systems, into all
software and hardware of the entire infrastructure deployed by a
user or company. Every layer that an attacker encounters must be
a new hurdle to slow them down.

Systems will become harder to exploit, but a determined attacker,
through the exploitation of human error, software bugs, or logical
errors, will always find a way to exploit the security of a system.
It is up to everyone: vendors, software developers, users, and
companies, to ensure that they design, configure, and deploy
their technology in ways that make the attacker’s job as hard
as possible. This should be done in an effort to make the time
investments become discouraging enough to not be worthwhile, or
to make successful attacks result in less exposure of information,
assets, and control than the attacker had hoped to obtain.

Conclusions

CONTACT US

0161 209 5200
response@nccgroup.trust
@nccgroupplc
www.nccgroup.trust

United Kingdom Europe North America Asia Pacific

Manchester - Head office

Basingstoke

Cambridge

Cheltenham

Edinburgh

Glasgow

Leatherhead

Leeds

London

Milton Keynes

Wetherby

Amsterdam

Copenhagen

Luxembourg

Munich

Zurich

Atlanta

Austin

Chicago

New York

San Francisco

Seattle

Sunnyvale

Sydney

All Rights Reserved. © NCC Group 2014

www.nccgroup.trust
@nccgroupplc

