

Caliptra Security Assessment

Microsoft
Version 1.2 – October 13, 2023

© NCC Group 2023

Prepared by NCC Group Security Services, Inc. for Microsoft. Except as otherwise agreed in writing,

NCC Group makes no representations or warranties of any kind, express or implied, about the accuracy

or completeness of the information contained herein. Portions of this document and the original

templates used in its production are the intellectual property of NCC Group and cannot be used or

copied (in full or in part) without NCC Group’s permission.

NCC Group, the publisher and the author(s) assume no liability for errors and/or omissions in this

document, nor are they liable for any loss or damage resulting from the use of the information contained

herein. NCC Group provides no guarantees that its findings will prevent or avoid any future security

breaches or unauthorized access to the networks, systems, or physical locations to which those findings

relate.

Prepared By

Andrew Kisliakov

Domen Puncer Kugler

Jeremy Boone

Chris Bury

Prepared For

Eric Eilertson (Microsoft)

Þórður Björnsson (Google)

1 Table of Contents

1 Table of Contents ... 2

2 Executive Summary .. 3

3 Dashboard ... 11

4 Table of Findings .. 13

5 Finding Details – General ... 15

6 Finding Details – DPE ... 21

7 Finding Details – Drivers .. 42

8 Finding Details – FMC .. 48

9 Finding Details – ROM .. 52

10 Finding Details – libcaliptra .. 67

11 Finding Field Definitions .. 69

12 Provided Materials .. 71

2 / 71 – Table of Contents

2 Executive Summary

Synopsis

During August and September of 2023, Microsoft engaged NCC Group to conduct a security

assessment of Caliptra1, a hardware/firmware IP for datacenter-focused server class ASICs.

The audit was performed per the requirements outlined in the Open Compute Project’s2

Security Appraisal Framework & Enablement (SAFE) program.

Caliptra serves as the internal root-of-trust (iRoT) for both measurement (RTM) and identity

of a system-on-chip (SoC). The main use cases for Caliptra are to assure integrity of

mutable code, to authorize firmware updates, and to support secure platform configuration

and lifecycle state transitions. Following the NIST SP800-1933 guidelines, Caliptra plays a

key role in maintaining resilience of the overall ASIC and the firmware components

contained within it. Notably, Caliptra also implements the TCG DICE4 Protection

Environment5 (DPE) API, enabling other entities within the SoC to leverage the unique

device identity for their own security operations.

The security assessment was performed by two (2) consultants over the course of 30

person-days of testing. Two (2) additional consultants provided support in the form of

technical oversight and shadowing.

Retesting

During the week of October 9th, NCC Group retested and verified fixes for all reported

vulnerabilities. During this time, one new issue (NCC-MSFT283-T3L) was discovered and

promptly reported to the Caliptra team. By October 13th, all findings contained in this report

were correctly fixed.

Scope

NCC Group’s security evaluation of Caliptra spanned the following components:

ROM: The immutable mask ROM, which executes when Caliptra is brought out of reset.

First Mutable Code: Started by the ROM, the FMC is responsible for loading the runtime.

Firmware: The runtime firmware which provides Caliptra’s services to the SoC.

Microsoft furnished NCC Group with several testing objectives and focus areas for this

project. These requirements are, for the most part, related to upholding the desired security

properties of the DICE Protection Environment, including protection of its sensitive assets,

such as the Unique Device Secret (UDS) and Composite Device Identifier (CDI).

Ensure that Caliptra’s firmware loading and validation process cannot be bypassed.

Prevent attacks that undermine DICE initialization and external firmware measurement.

Ensure that measurements cannot be silently dropped or excluded from DPE derivations.

Review DPE signing for side-channel information leakage, impacting the UDS/CDI’s.

Determine whether an attacker can corrupt the DPE context tree structure.

Ensure that cryptographic material is cleared from memory after use.

Under debug, DPE certificates should not chain to vendor-signed DeviceID certificates.

Assess the effectiveness of exploit mitigation technologies.

Assess the soundness of the fault injection countermeasures.

•

•

•

•

•

•

•

•

•

•

•

•

1. The CHIPS Alliance’s Caliptra Project

2. The Open Compute Project

3. NIST Special Publication 800-193 - Platform Firmware Resiliency Guidelines

4. Trusted Computing Group - DICE Specification

5. Trusted Computing Group - DICE Protection Environment Specification

3 / 71 – Executive Summary

https://chipsalliance.github.io/Caliptra
https://www.opencompute.org/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf

Testing was performed on the open-source code hosted in GitHub. Although not explicitly in

scope, when necessary, NCC Group referred to the Caliptra RTL to better understand the

underlying hardware logic (i.e., the mailbox state machine, and ECC signature verification). A

full listing of resources can be found in the Provided Materials section.

Limitations

Only one minor issue arose. That is, the latest revision of DPE specification is currently in

draft and unfortunately is private to Trusted Computing Group (TCG) members. As a result,

NCC Group was forced to audit the Caliptra DPE Profile source code while using outdated

information in an older revision of the specification.

Beyond this, NCC Group’s review of Caliptra was not inhibited by any significant factors

which delayed progress or prevented deep analysis.

Key Findings

The assessment uncovered several noteworthy security flaws related to the DICE Protection

Environment that undermine its properties of integrity, confidentiality and availability:

Changes in one context could impact the measurements included in operations of other

contexts (NCC-MSFT283-6BV)

A context tree could be corrupted in a way that affects parent-child relations on newly

created contexts (NCC-MSFT283-KML)

Sensitive context handles could be exposed to an attacker via a timing side-channel

(NCC-MSFT283-PTP)

The context handle array could be filled by malicious or genuine operations, leading to a

denial of service (NCC-MSFT283-29Q)

A high risk vulnerability was also found in the ROM code that verifies the firmware images. A

malicious SoC could interfere with the SHA-512 Accelerator causing a clean firmware image

to be verified, but a malicious firmware image to be loaded and executed (NCC-MSFT283-

YMG). A related weakness elsewhere in the code could lead to premature release of the

SoC’s SHA Accelerator lock (NCC-MSFT283-3QD), opening up another avenue for these

types of race conditions to occur.

Many reported findings were determined to convey a low overall impact, but it is important

to recognize that even low risk issues can be exploited when combined with other issues as

part of a wider attack. However, in practice, many of these low risk findings are simply

vectors for denial of service attacks (e.g., NCC-MSFT283-4CR). Depending on Caliptra’s

threat model, these denial-of-service concerns may be more or less problematic.

Finally, several findings were reported only for informational purposes, out of an abundance

of caution. These informational issues do not describe current vulnerabilities, but rather

serve to highlight minor issues such as weak API designs that could lead to misuse, or

discrepencies between Caliptra’s specification and implementation.

•

•

•

•

4 / 71 – Executive Summary

Positive Observations

1. Use of Rust

In NCC Group’s experience, memory safety violations are the primary source of

vulnerabilities that afflict embedded systems. Memory safety is especially important for

root-of-trust implementations6, which must have an elevated security posture due to their

responsibility as the trust anchor for the entire platform. Without memory safety protections,

the overall security of an embedded system is usually only one or two vulnerabilities away

from compromise. NCC Group strongly believes that all new firmware projects should be

written in memory safe languages, as the Caliptra authors have done here.

Caliptra’s Rust firmware contains hundreds of unsafe blocks. Although NCC Group made an

effort to review each unsafe block, there were simply too many to cover in the time allotted

for this engagement. Instead, we carefully considered the unsafe blocks that were

encountered while addressing the other in-scope tasks. Specifically, we prioritized the

unsafe blocks that were reachable from Caliptra’s external attack surfaces, such as the

mailbox interface and the firmware loading flows. The majority of the unsafe blocks were

observed to use constant or tightly constrained values, such as referencing fixed register

addresses. These were judged to expose no risk to memory safety as they do not process

untrusted attacker-controlled inputs.

NCC Group did not find any critical memory safety violations which would violate the

integrity or confidentiality requirements of the Caliptra platform. Only a single low-impact

memory corruption concern (NCC-MSFT283-4DN) was discovered. Furthermore, all NMI

and exceptions are handled as fatal failures, as is Rust’s panic, which means that out-of-

bounds array accesses (for example) would also trigger a fatal error.

Overall, Caliptra’s posture on memory safety appears to be quite strong. We applaud the

decision to implement Caliptra in Rust.

2. Mailbox Protocol

Caliptra implements two mailbox interfaces that are exposed to SoC agents – a command

mailbox, and a SHA Accelerator mailbox. NCC Group discovered race conditions that impact

the SHA mailbox, as described in the Key Findings above. However, the command mailbox

was unique in that the messaging protocol’s state machine is implemented in hardware. The

hardware logic enforces several properties:

Via a locking mechanism, ensure that only a single entity can interact with the mailbox,

Strictly enforce the correct ordering of API register writes,

Copy the command payloads out of the mailbox registers to an SRAM buffer,

Ensure that the ‘data length’ register is not larger than the SRAM buffer size.

If any of these properties are violated, the mailbox state machine will enter an error state

and will throw an interrupt, safely halting processing of all mailbox operations. This hardware

logic is an effective mitigation against TOCTOU vulnerabilities.

3. Elliptic Curve RTL

Although not in scope, NCC Group briefly audited the hardware implementation of the

elliptic curve cryptographic primitives. This effort was taken because ECDSA is crucial to the

overall security posture of Caliptra due to its usage in the secure boot mechanism. The RTL

was analyzed to ensure that common cryptographic pitfalls were avoided, such as validating

that the point coordinates are less than the field modulus and on the curve, and that the

point is not at infinity and in the correct subgroup.

1.

2.

3.

4.

6. NCC Group - LeaPFRogging PFR Implementations

5 / 71 – Executive Summary

https://research.nccgroup.com/2023/08/23/leapfrogging-pfr-implementations/

Largely, the Verilog that implemented these assertions was observed here and here. It was

found to be free of the aforementioned flaws.

4. Caliptra Memory Protections

NCC Group reviewed the memory access protections offered by the Chips Alliance’s RISC-V

VeeR EL27 core. The goal of this analysis was to determine whether the data-only memory

regions were executable, or whether the code-only memory regions were writable. If either

of these properties were violated, then some classes of memory safety exploits would be

made possible.

Caliptra splits its memory into two areas – the Instruction and Data Close Coupled Memories

(ICCM and DCCM) – and our analysis for each is summarized below.

In reviewing the memory layout of Caliptra which is created by the image bundle generator,

it was noted that the ICCM memory region contains a mixture of both code and data

sections (a concatenation of .text , .rodata and initial .data). However, near the end of

ROM execution, the ICCM region is locked to prevent further writes. Although this locking

behavior doesn’t prevent execution of data in the ICCM, it does prevent a potential attacker

from writing data into the ICCM. NCC Group believes that it is unlikely an attacker would

have an opportunity to stage a payload in ICCM prior to it being locked, and so it will be very

difficult to achieve code execution in ICCM.

Caliptra’s riscv32imc core does not have a memory management unit (MMU), but it does

have a rudimentary memory protection unit (MPU). The MPU is used to protect the DCCM

region, which appears to only contain the .stack sections for the ROM, FMC, Runtime

firmware, as well as the exception and NMI handlers. The .bss and .data sections are

always empty. Furthermore, the specification8 explains further constraints which might

make it difficult for an attacker to execute a staged payload in DCCM:

An instruction fetch to a non-ICCM region must fall within the address range of at

least one instruction access window for the access to be forwarded to the IFU bus

interface

Overall, our analysis determined that the property of W^X is adequately satisfied. As a result

of this, the most likely avenue for an attacker to achieve arbitrary code execution would be

through a ROP-style of exploit. However, Caliptra aims to mitigate such exploits through its

Control Flow Integrity (CFI) mechanism.

7. Open source RTL for the CHIPS Alliance’s VeeR EL2 core

8. RISC-V VeeR EL2 Programmer’s Reference Manual, Section 2.6 “Memory Protection”

6 / 71 – Executive Summary

https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/src/ecc/rtl/ecc_dsa_ctrl.sv#L647-L651
https://github.com/chipsalliance/caliptra-rtl/blob/main/src/ecc/rtl/ecc_pm_sequencer.sv#L2401-L2423
https://github.com/chipsalliance/Cores-VeeR-EL2
https://github.com/chipsalliance/Cores-VeeR-EL2/blob/main/docs/RISC-V_VeeR_EL2_PRM.pdf

Strategic Recommendations

1. Implement the BMI Profile

Caliptra supports two methods of integration with a SoC which dictate how Caliptra

retrieves its runtime firmware while booting: The Boot Media Integrated (BMI) Profile and the

Boot Media Dependent (BMD) Profile9. In past versions of Caliptra’s specification, these

were referred to as the Active Profile and the Passive Profile.

BMI Profile: Caliptra’s ROM loads its own firmware from persistent flash storage.

BMD Profile: Caliptra’s ROM exposes a minimal mailbox interface, allowing a SoC agent to

load Caliptra’s runtime firmware. In this case, Caliptra is still responsible for verifying the

cryptographic integrity of this firmware image.

At the moment, Caliptra supports only the BMD Profile which introduces a minor dilemma –

The dimensions of the platform’s Trusted Computing Base (TCB) is increased in devices that

leverage the BMD Profile because the trusted envelope must be expanded to encompass

the SoC agent that loads Caliptra’s firmware.

In other words, the BMD Profile creates a chicken-egg problem wherein Caliptra cannot act

as the root-of-measurement (RTM) for the SoC as a whole. Caliptra has no means to

verifiably measure the firmware of the SoC agent that loaded Caliptra’s firmware. When

using the BMD Profile, the actual root of the RTM is not Caliptra, but instead, the root is the

SoC agent which loaded Caliptra’s FMC and runtime firmware.

NCC Group encourages the Caliptra Working Groups to finish development of the BMI

Profile, thus enabling Caliptra to load its own firmware from external flash without needing

to coordinate with glue logic elsewhere in the SoC.

2. Enhance Fault Injection Countermeasures

Caliptra’s only form of defense against fault injection attacks is its Control Flow Integrity

solution, which protects the forward-edge of the call-graph. The CFI library10 manipulates

the program’s AST, and instruments function calls to insert several operations:

Read a hardware counter

Delay for a random duration

Call the original function (which is amended to increment the CFI counter)

Delay for a random duration

Decrement the counter

Compare the original counter value to the decremented value

Panic if the counter values mismatch

This CFI solution is primarily aimed at mitigating fault injection attacks that target control-

flow influencing instructions (i.e., branch, or jump). That is, the CFI mechanism will panic if

an attacker introduces a glitch which causes an instruction-skipping fault and prevents a

function from being invoked. In practice, this type of mitigation is useful for protecting

security-critical functions, such as those involved in secure boot signature validation,

ensuring that an attacker can never “step over” those functions with a carefully timed glitch.

Furthermore, the inserted random delays are useful to reduce the reliability of any glitching

attempts. These delays make it difficult for an attacker to accurately predict when to inject

their fault after an externally-observable event. By adding random delays, Caliptra is

somewhat able to mask these trigger events that an attacker relies upon to infer the correct

•

•

1.

2.

3.

4.

5.

6.

7.

9. Caliptra Boot Profile Documentation

10. Caliptra’s CFI Library

7 / 71 – Executive Summary

https://github.com/chipsalliance/Caliptra/blob/main/doc/Caliptra.md#caliptra-profiles
https://github.com/chipsalliance/caliptra-sw/tree/9cb9465c343da8c5c937d7269b32469644839735/cfi

moment to inject the fault. Example trigger conditions may include power analysis,

observing bus traffic, or a fixed time offset after a command is sent to a mailbox.

However, CFI is not a perfect remedy to defend all types of fault injection, and there are

several limitations of Caliptra’s implementation.

Limitation 1: CFI Coverage is Incomplete

Most software-based fault injection countermeasures require dozens or hundreds of small

and similar changes to be sprinkled throughout the entire code base. The manual process of

applying these code changes can be fragile and prone to human error. The same concern is

also true for Caliptra.

First, Caliptra’s CFI solution only protects functions which are specifically annotated with the

cfi_impl_fn or cfi_mod_fn attributes. Because the developer has to make a conscious

decision to protect a function, this can lead to oversights where security-critical operations

are not guarded by the CFI mechanism.

Second, the CFI attributes only appear to be used by Caliptra’s ROM, and do not appear in

the FMC or Runtime Firmware. Even within the ROM, CFI coverage is incomplete.

Specifically, library functions and drivers used by the ROM do not make use of CFI.

Consequently, Caliptra’s CFI implementation contained gaps where critical functions were

left unprotected, as discussed in NCC-MSFT283-BKC. Furthermore, after carefully analyzing

the CFI library, NCC Group discovered that the CFI primitives could be further enhanced as

described in NCC-MSFT283-T3L. Finally, after delivering the first draft of this report, Google

opened two new pull requests11 12 for adding glitch defenses to other critical functions.

All together, these findings serve to highlight our assertion that applying software-based

fault injection countermeasures to a large firmware project is akin to playing whack-a-mole.

It is all too easy to overlook protections on critical code paths, and the CFI primitives

themselves may be glitchable.

Limitation 2: Memory Load/Store Not Protected

Although CFI aims to protect branch instructions, it does not protect memory load or store

instructions. This shines a spotlight on another gap in Caliptra’s glitching defenses.

A common target for fault injection attacks is to introduce a glitch when security-critical

values are read from persistent storage mediums. Examples of this are flash, fuses, or

registers, which may store important flags such as whether debug is enabled, or whether a

key slot is valid. If an attacker can accurately inject a fault while the firmware is reading a

register or fuse, they may be able to flip one or more bits in the returned result13.

The typical defense against glitches that target memory load instructions is to use

redundant reads which are interspersed by random delays. Each time the value is read, it

should be compared to ensure it matches the earlier reads.

Another common defense is to store critical flags using multi-bit encodings, such that no

single bit flips can result in a state transition. This mitigation relies heavily on the fact that

glitching outcomes are often unpredictable, and an attacker cannot control which bit is

flipped in the returned result. If state transitions require multi-bit encodings, then the

attacker’s chances of success are reduced.

After delivering an initial draft of this report, these suggestions were taken as hardening

opportunities by the Caliptra team. For example, new GitHub issues were opened for (1)

11. Caliptra SW Issue #921 - “Triple call CFI Counter reset when seeding the prng”

12. Caliptra SW Issue #922 - “Mitigate glitching of calls within Trng generate”

13. NCC Group - An Introduction To Fault Injection

8 / 71 – Executive Summary

https://github.com/chipsalliance/caliptra-sw/issues/921
https://github.com/chipsalliance/caliptra-sw/issues/922
https://research.nccgroup.com/2021/07/07/an-introduction-to-fault-injection-part-1-3/

performing strict data verification for the TRNG peripheral’s MMIO14, and (2) enhacing the

encoding of Caliptra’s security state15.

Hardware-Based Countermeasures

Ultimately, many experts view software-based fault injection countermeasures as being of

limited value, because they do not completely eliminate the problem. Instead, software-

based defenses merely reduce an attacker’s success rate. In many physical attack

scenarios, the threat actor will be in possession of the victim device for an extended period

of time, and will be able to repeatedly attempt glitching until successful.

The most effective defenses against fault injection attacks are those that are hardware-

based. These may be fast-reacting voltage/current sensors within the silicon (whose

purpose is to detect anomalies outside the intended electrical operational parameters), or a

carefully calibrated Tunable Replica Circuit (whose purpose is to detect circuit timing

violations), or shadow stacks (whose purpose is to protect the reverse edge of the control

flow graphs). There are several other solutions in this space, and NCC Group encourages

Caliptra to adopt one or more in a future hardware revision.

3. Remove SoC Access to SHA-512 Accelerator

The locking mechanism used by the SHA-512 Accelerator to prevent concurrent usage was

found to be incomplete. As described in NCC-MSFT283-YMG, a vulnerability that could lead

to execution of unsigned code was exposed through a non-atomic check used to determine

that the lock had been acquired by Caliptra, together with the fact that Accelerator registers

including the digest register were readable by Caliptra while locked by the SoC. The latter

factor appeared to be necessitated by a design requirement to satisfy an unrelated future

use case which had been communicated to NCC Group.

NCC Group recommends that external access to the SHA-512 Accelerator be removed. This

would remove the possibilities for any malicious interactions from the SoC. The above-

mentioned use case could be replaced by the SoC providing the digest through a Mailbox

command for example. Alternative means to reduce the chance of potential abuse might

include removing its use from the image verification process or removing Caliptra’s access to

it for any purposes other than reading the digest register.

4. Clarify Warm Reset Handling

The term “non-orderly” is sometimes used to distinguish between expected resets and

unexpected ones. Embedded systems must be cautious when recovering from a non-orderly

reset because the firmware state may be corrupted. Vigilance is needed to verify all data

that was preserved across the reset event.

A common attack vector for embedded systems is for an adversary to trigger a non-orderly

reset in the middle of a sequence of sensitive write operations. Such a well-timed reset

would prevent some or all writes from completing. For example, this could lead to (1) a

denial of service condition, (2) undermine expectations of atomicity of persistent data, or (3)

prevent incrementing of monotonic counters.

Failure to properly handle non-orderly resets has led to serious vulnerabilities in the past,

such as a bypass of the Trusted Platform Module’s Dictionary Attack (DA) lockout

mechanism16.

14. Caliptra SW Issue #920 - “Triple-verify TRNG MMIO read at CFI initialization in rom_entry”

15. Caliptra RTL Issue #243 - “Enhancement: fault-injection-aware encoding for security state”

16. An example vulnerability arising from non-orderly shutdown in ms-tpm-20-ref

9 / 71 – Executive Summary

https://github.com/chipsalliance/caliptra-sw/issues/920
https://github.com/chipsalliance/caliptra-rtl/issues/243
https://github.com/microsoft/ms-tpm-20-ref/commit/c44cbe3689188fd68da876cfaa3bbd113cde0119

Regarding Caliptra, there is a known outstanding issue posted on GitHub17 related to warm

resets. This issue has not seen much progress towards resolution. In Caliptra, a warm reset

may occur asynchronously, and it is interesting from a threat modeling perspective because

registers and memories may stay intact across the reset. This can put the silicon in a

different state than might be expected – for example, some Data Vault entries get unlocked

for writes, but their contents remain intact.

Currently, warm reset handling depends on the ColdResetComplete flag to be set and the

ROM just transfers control to FMC. While this excludes most of the cold reset flow (there is

still a short window after the complete flag is set and before the FirmwareHandoffTable is

fully populated), it does not exclude all of the ROM code. Consequently, a malicious SoC

agent could request a firmware update and then trigger a warm reset somewhere in the

middle of update reset handling. This extends the warm reset “entry points” to ROM’s update

reset code, in addition to the more obvious FMC or Runtime.

In Caliptra, warm resets should have a clearly defined handling, which might include putting

registers, vaults and peripherals in a predefined “non-orderly reset” state, and should most

likely restrict the functionality of FMC and Runtime.

17. Caliptra SW Issue #167 - Warm Reset can lead to undefined state

10 / 71 – Executive Summary

https://github.com/chipsalliance/caliptra-sw/issues/167

3 Dashboard

Target Data Engagement Data

Name Caliptra Type Firmware Review

Type Firmware Method Code-assisted

Platforms Rust on RISC-V Dates 2023-08-16 to 2023-09-14

Environment Whitebox Consultants 2

Level of Effort 30 person-days

Targets

ROM The immutable mask ROM

FMC The first mutable code loaded by the ROM

Runtime Firmware The firmware loaded by the FMC that offers Caliptra services to the SoC

Finding Breakdown

Critical issues 0

High issues 2

Medium issues 5

Low issues 6

Informational issues 13

Total issues 26

Category Breakdown

Configuration 1

Cryptography 2

Data Exposure 4

Data Validation 2

Denial of Service 4

Other 5

Patching 1

Policy Violation 1

Security Improvement Opportunity 4

Timing 2

11 / 71 – Dashboard

Component Breakdown

General 2

DPE 11

Drivers 3

FMC 2

ROM 7

libcaliptra 1

 Critical High Medium Low Informational

12 / 71 – Dashboard

4 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

General

Title Status ID Risk

CFI Assert Macros Offer Limited Glitching Protection Fixed T3L Medium

Outdated Dependencies Fixed BT3 Info

DPE

Title Status ID Risk

Changes in Context Tree Affecting Behaviour in Other

Branches

Fixed 6BV High

Timing Side-Channel Exposes Context Handles Fixed PTP Medium

DestroyCtx Command Can Corrupt Context Tree Fixed KML Medium

Multiple Ways to Exhaust DPE Context Handles Fixed 29Q Medium

Premature Context State Modification in DeriveChild Fixed 6Y9 Low

ChildToRootIter Infinite Loop Fixed VF7 Info

Test Code May Panic on Some Inputs Fixed 97Q Info

Chunk Size and Certificate Size Misuse in

GetCertificateChain Command

Fixed VKD Info

Context Handles Not Rotated on Error Risk Accepted DBR Info

CryptoBuf Can Be Partially Initialized Fixed 32H Info

DeriveChild Permits Context Handle to Coexist With

the Default Context

Fixed DDK Info

Drivers

Title Status ID Risk

MailboxSendTxn drop() Handling Not Exhaustive Fixed 4CR Low

Random Number Generation Iterator Potentially

Returning Non-Random Values

Fixed 2QM Info

LMS Verifier Permitted Invalid q Value Fixed NTF Info

FMC

Title Status ID Risk

Comment and Code Mismatch in derive_cdi Fixed GGG Info

Insufficient Validation of Memory Addresses Fixed QBA Info

ROM

Title Status ID Risk

TOCTOU in SHA-512 Accelerator Lock Acquisition Fixed YMG High

Premature Release of SHA-512 Accelerator Lock Fixed 3QD Medium

slice::fill(0) Does Not Always Zero Memory Fixed 962 Low

Buffer Overflow in PCR Logging Fixed 4DN Low

13 / 71 – Table of Findings

Title Status ID Risk

Critical Functions Not CFI Protected Fixed BKC Low

Memory Not Cleared During Error Conditions Fixed 42W Info

ROM Integrity Test Does Not Cover .data Section Fixed BQM Info

libcaliptra

Title Status ID Risk

TOCTOU Condition in File Read Leading to

Uninitialised Memory Buffer

Fixed VH3 Low

14 / 71 – Table of Findings

5 Finding Details – General

CFI Assert Macros Offer Limited Glitching

Protection

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-MSFT283-T3L

Component General

Category Security Improvement

Opportunity

Status Fixed

Impact

Within Caliptra’s Control Flow Integrity library, the assert implementation offers limited

protection against fault injection attacks.

Description

CFI assertions are implemented as macros and are shown below.

Medium

macro_rules! cfi_assert_macro {

($name: ident, $op: tt, $trait1: path, $trait2: path, $panic_info: ident) => {

/// CFI Binary Condition Assertion

///

/// # Arguments

///

/// `a` - Left hand side

/// `b` - Right hand side

#[inline(never)]

#[allow(unused)]

pub fn $name<T>(lhs: T, rhs: T)

where

T: $trait1 + $trait2,

{

if cfg!(feature = "cfi") {

CfiCounter::delay();

if !(lhs $op rhs) {

cfi_panic(CfiPanicInfo::$panic_info);

}

} else {

lhs $op rhs;

}

}

};

}

cfi_assert_macro!(cfi_assert_eq, ==, Eq, PartialEq, AssertEqFail);

cfi_assert_macro!(cfi_assert_ne, !=, Eq, PartialEq, AssertNeFail);

cfi_assert_macro!(cfi_assert_gt, >, Ord, PartialOrd, AssertGtFail);

cfi_assert_macro!(cfi_assert_lt, <, Ord, PartialOrd, AssertLtFail);

cfi_assert_macro!(cfi_assert_ge, >=, Ord, PartialOrd, AssertGeFail);

cfi_assert_macro!(cfi_assert_le, <=, Ord, PartialOrd, AssertLeFail);

#[macro_export]

macro_rules! cfi_assert {

15 / 71 – Finding Details – General

Figure 1: caliptra-sw/cfi/lib/src/cfi.rs:143-181

Skimming the above code, one might expect that a delay is first executed followed by a

comparison of lhs and rhs expressions. However, the macros generate functions, so lhs

and rhs are already evaluated after macro expansion.

We demonstrate the deficit of assertions on the following short function

WarmResetFlow::run() . Similar constructs can be seen in image validation code that uses

svn_check_required() . Highlighted are the boot status reads for which the intention is to

protect them from glitching attacks where in invalid value might be read or a comparison

skipped.

Figure 2: caliptra-sw/rom/dev/src/flow/warm_reset.rs:31-45

For the RISC-V target, the above Rust code compiles to following Assembly. Some

annotations were added by NCC Group to make it easier to follow.

($cond: expr) => {

cfi_assert_eq($cond, true)

};

}

pub fn run(env: &mut RomEnv) -> CaliptraResult<()> {

cprintln!("[warm-reset] ++");

// Check if previous Cold-Reset was successful.

if cfi_launder(env.data_vault.rom_cold_boot_status()) != ColdResetComplete.into() {

cprintln!("[warm-reset] Previous Cold-Reset was not successful.");

return Err(CaliptraError::ROM_WARM_RESET_UNSUCCESSFUL_PREVIOUS_COLD_RESET);

} else {

cfi_assert!(env.data_vault.rom_cold_boot_status() == ColdResetComplete.into());

}

cprintln!("[warm-reset] --");

Ok(())

}

00005408 <caliptra_rom::flow::warm_reset::WarmResetFlow::run>:

5408: 1101 add sp,sp,-32

540a: ce06 sw ra,28(sp)

540c: cc22 sw s0,24(sp)

540e: ca26 sw s1,20(sp)

5410: c84a sw s2,16(sp)

5412: 50000537 lui a0,0x50000

5416: 3e452903 lw s2,996(a0) # 500003e4 <DATA_ORG+0x3e4>

541a: 3e852483 lw s1,1000(a0)

541e: 234d jal 59c0

<caliptra_cfi_lib::cfi_counter::CfiCounter::delay>

5420: 29fd jal 591e

<caliptra_cfi_lib::cfi_counter::CfiCounter::increment>

5422: 00008537 lui a0,0x8

5426: 36450513 add a0,a0,868 # 8364

<.Lanon.a5906495874ff3d10b5fd20dd6ecf31b.25+0x10>

// 8364 5b776172 6d2d7265 7365745d 202b2b0a [warm-reset] ++.

542a: 45c1 li a1,16

542c: 0ab000ef jal 5cd6 <<caliptra_drivers::printer::Printer as

ufmt_write::uWrite>::write_str> // cprintln!("[warm-reset] ++");

5430: 1001c537 lui a0,0x1001c

16 / 71 – Finding Details – General

5434: 4a452583 lw a1,1188(a0) # 1001c4a4

<DCCM_SIZE+0xfffc4a4> // env.data_vault.rom_cold_boot_status()

(sticky_lockable_scratch_reg == 0x1001c4a0, ColdResetEntry4::RomColdBootStatus == 1)

5438: c62e sw a1,12(sp)

543a: 006c add a1,sp,12

543c: 45b2 lw a1,12(sp)

543e: 14000613 li a2,320 // ColdResetComplete

5442: 02c59363 bne a1,a2,5468 <.LBB29_2>

5446: 4a452503 lw a0,1188(a0) //

env.data_vault.rom_cold_boot_status()

544a: ec050513 add a0,a0,-320

544e: 00153513 seqz a0,a0 // a0 if a0 zero;

rom_cold_boot_status() == ColdResetComplete

5452: e07fa0ef jal 258 <caliptra_cfi_lib::cfi::cfi_assert_eq>

5456: 00008537 lui a0,0x8

545a: 37450513 add a0,a0,884 # 8374

<.Lanon.a5906495874ff3d10b5fd20dd6ecf31b.25+0x20>

// 8374 5b776172 6d2d7265 7365745d 202d2d0a [warm-reset] --.

545e: 45c1 li a1,16

5460: 077000ef jal 5cd6 <<caliptra_drivers::printer::Printer as

ufmt_write::uWrite>::write_str>

5464: 4401 li s0,0

5466: a821 j 547e <.LBB29_3>

00005468 <.LBB29_2>: // if (rom_cold_boot_status() != ColdResetComplete)

5468: 00009537 lui a0,0x9

546c: 9b450513 add a0,a0,-1612 # 89b4

<.Lanon.a5906495874ff3d10b5fd20dd6ecf31b.92>

// 89b4 5b776172 6d2d7265 7365745d 20507265 [warm-reset] Pre

// 89c4 76696f75 7320436f 6c642d52 65736574 vious Cold-Reset

// 89d4 20776173 206e6f74 20737563 63657373 was not success

// 89e4 66756c2e 0a5b7374 6174655d 204c6f63 ful..[state] Loc

5470: 03500593 li a1,53

5474: 063000ef jal 5cd6 <<caliptra_drivers::printer::Printer as

ufmt_write::uWrite>::write_str>

5478: 01040437 lui s0,0x1040

547c: 0441 add s0,s0,16 # 1040010 <DCCM_SIZE+0x1020010>

0000547e <.LBB29_3>:

547e: 2389 jal 59c0

<caliptra_cfi_lib::cfi_counter::CfiCounter::delay>

5480: 29d9 jal 5956

<caliptra_cfi_lib::cfi_counter::CfiCounter::decrement>

5482: 862a mv a2,a0

5484: 86ae mv a3,a1

5486: 854a mv a0,s2

5488: 85a6 mv a1,s1

548a: 2331 jal 5996

<caliptra_cfi_lib::cfi_counter::CfiCounter::assert_eq>

548c: 8522 mv a0,s0

548e: 40f2 lw ra,28(sp)

5490: 4462 lw s0,24(sp)

5492: 44d2 lw s1,20(sp)

5494: 4942 lw s2,16(sp)

5496: 6105 add sp,sp,32

5498: 8082 ret

17 / 71 – Finding Details – General

In the highlighted assembly code above it can be seen there were no delays added,

meaning that if one operation (a register read, or comparison) can be glitched correctly, so

can the duplicate that follows, since it is a deterministic number of cycles away. Additionally,

the call to cfi_assert_eq could be glitched as well.

The cfi_assert_eq does contain a delay, but the effect of that is only to make glitching to

skip a call to cfi_panic harder. This offers a very weak protection, since attackers will have

plenty of suitable glitching targets before.

Recommendation

The CFI assert API should be refactored such that:

The arguments are evaluated at least twice.

A random-duration delay is inserted between the evaluations.

Retest Results

2023-10-13 – Fixed

Pull request #957 fixes this finding by inlining the assert functions (eliminating the function

call which could be glitched) and adding one more delay and comparison.

1.

2.

18 / 71 – Finding Details – General

https://github.com/chipsalliance/caliptra-sw/pull/957/

Outdated Dependencies

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-BT3

Component General

Category Patching

Status Fixed

Impact

Outdated dependencies with known vulnerabilities have the potential to introduce

vulnerabilities into the product. Although a small number of vulnerable dependencies were

found within the Caliptra codebase, these were determined to pose no risk because they

were not included within the ROM, FMC and Runtime built images. Furthermore, the use of

the vulnerable libraries within build and test code did not exercise the vulnerable portions of

the flagged dependencies. As a result, this finding is provided for informational purposes

only.

Description

Several outdated dependencies with known vulnerabilities were detected.

atty 0.2.14 (Informational)

This version was vulnerable to GHSA-g98v-hv3f-hcfr18. Because this vulnerability affected

only the Windows version of the library, it is not considered to be relevant to the current

implementation. However, it should be noted that this library is unmaintained, with no

expected fix for the current vulnerability or any other currently unknown vulnerabilities.

Because this library was only referenced via other dependencies as a build dependency, it is

not expected that the final built product could incorporate the vulnerability in any way.

openssl 0.10.48 (Informational)

This version was vulnerable to GHSA-xcf7-rvmh-g6q419.

The following cargo tree output describes the points where this dependency was

referenced as a dependency of the built product:

Info

$ cargo tree -i openssl -e normal

openssl v0.10.48

├── caliptra-image-app v0.5.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/image/

app)

├── caliptra-image-openssl v0.1.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/

image/openssl)

│ ├── caliptra-builder v0.1.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/

builder)

│ │ └── caliptra-size-history v0.1.0 (/home/consultant/projects/2023-Caliptra/code/

caliptra-sw/ci-tools/size-history)

│ └── caliptra-image-app v0.5.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/

image/app)

├── caliptra-test v0.1.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/test)

└── vector_gen v0.1.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/drivers/test-

fw/scripts/vector_gen)

18. GitHub Advisory Database: GHSA-g98v-hv3f-hcfr

19. GitHub Advisory Database: GHSA-xcf7-rvmh-g6q4

19 / 71 – Finding Details – General

https://github.com/advisories/GHSA-g98v-hv3f-hcfr
https://github.com/advisories/GHSA-xcf7-rvmh-g6q4

This dependency tree demonstrates that the library was not included within the ROM, FMC

or Runtime images. It was included as a “build” and “dev” dependency, meaning that it was

used in build- and test-specific code only.

The openssl library was included within the caliptra-image-app application, which was used

to build and sign image bundle files containing FMC and Runtime code. However, the GHSA-

xcf7-rvmh-g6q4 vulnerability was deemed to be not applicable in this use case.

time 0.1.45 (Informational)

This version was vulnerable to CVE-2020-2623520.

The following cargo tree output describes the points where this dependency was

referenced as a dependency of the built product:

This dependency tree similarly demonstrates that the library was not included within the

ROM, FMC or Runtime images, but used within the caliptra-image-app application which

used to build and sign image bundle files. Because the vulnerability itself was applicable

only to multithreaded environments, it was also deemed not to be vulnerable in this use

case.

Recommendation

Ensure a regular process of patching out-of-date dependencies to ensure that known

vulnerabilities are not introduced into the product.

Continue to minimise the use of third-party dependencies within built ROM, FMC and

Runtime images to minimise the possibility that

Location

caliptra-sw/cargo.lock

Retest Results

2023-10-13 – Fixed

Pull requests #915 and #959 fixed this finding.

•

$ cargo tree -i time@0.1.45 -e normal

time v0.1.45

└── chrono v0.4.24

├── asn1 v0.13.0

│ └── caliptra-test v0.1.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/

test)

└── caliptra-image-app v0.5.0 (/home/consultant/projects/2023-Caliptra/code/caliptra-sw/

image/app)

20. National Vulnerability Database: CVE-2020-26235

20 / 71 – Finding Details – General

https://github.com/chipsalliance/caliptra-sw/pull/915
https://github.com/chipsalliance/caliptra-sw/pull/959
https://nvd.nist.gov/vuln/detail/CVE-2020-26235

6 Finding Details – DPE

Changes in Context Tree Affecting Behaviour in

Other Branches

Overall Risk High

Impact High

Exploitability Medium

Finding ID NCC-MSFT283-6BV

Component DPE

Category Other

Status Fixed

Impact

The DeriveChild DPE command could be invoked in a manner which modified a parent

context in a way that might impact the derived key that is used to compute signatures

generated using contexts within other branches of a context tree.

By modifying a parent context in this way, an attacker could cause the result of a Sign

command to be computed using a different derived key pair to that used in a preceding

CertifyKey command executed within the same context. Within an attestation flow, this

could result in the certificate chain returned by the attestation response containing a

different public key to that used to sign the attestation challenge.

If the context tree contained derived contexts from different localities, the changes could

also affect contexts across different localities.

Description

The implementation of the DeriveChild command contained two statements as follows.

Figure 3: caliptra-dpe/dpe/src/commands/derive_child.rs:123-124

These statements set the parent context’s uses_internal_input_info and

uses_internal_input_dice flags to what had been specified within the current request.

When calculating a measurement hash, the DpeInstance::compute_measurement_hash function

iterated from the selected context through its ancestors using the following code:

Figure 4: caliptra-dpe/dpe/src/dpe_instance.rs:351-364

High

dpe.contexts[parent_idx].uses_internal_input_info = self.uses_internal_info_input().into();

dpe.contexts[parent_idx].uses_internal_input_dice = self.uses_internal_dice_input().into();

// Hash each node.

for status in ChildToRootIter::new(start_idx, &self.contexts) {

let context = status?;

hasher

.update(context.tci.as_bytes())

.map_err(|_| DpeErrorCode::HashError)?;

// Check if any context uses internal inputs

uses_internal_input_info =

uses_internal_input_info || context.uses_internal_input_info();

uses_internal_input_dice =

uses_internal_input_dice || context.uses_internal_input_dice();

}

21 / 71 – Finding Details – DPE

The values of the uses_internal_input_info and uses_internal_input_dice variables would

be set to true if at least one of the contexts had the necessary flag set. While this appears

to be the true intent of the code, the block described earlier appears to be unnecessary and

could lead to the behaviour of certain branches of the context tree changing in response to

the addition of new branches, as illustrated in the following example.

Initialize a new context C0 with uses_internal_input_info set to false .

Figure 5: State of Context Tree After Initialising C0

From C0, derive a child context C1 with uses_internal_input_info set to false .

Calculate a measurement hash using context C1, which will not include internal input info.

Figure 6: State of Context Tree after Inserting C1

From C0, derive a child context C2 with uses_internal_input_info set to true . The uses_

internal_input_info flag in C0 will change to true .

Calculate a measurement hash using context C1, which now will include the internal input

info because the C0 flag is true .

Figure 7: State of Context Tree after Inserting C2

From C0, derive a child context C3 with uses_internal_input_info set to false . The uses

_internal_input_info flag in C0 will change to false .

Calculate a measurement hash using context C1, which now will not include the internal

input info because the C0 flag is false again.

1.

2.

3.

4.

5.

6.

7.

22 / 71 – Finding Details – DPE

Figure 8: State of Context Tree after Inserting C3

The example attestation flow outlined in the DPE specification could be affected by these

changes. The pseudocode below illustrates a modified version of the flow where an attacker

is able to inject a DeriveChild command within the attestation flow sequence.

The resulting attestation response generated via the child context represented by context1

would have a signature that cannot be validated by the returned public key.

Recommendation

Delete the two lines of code which set the parent context’s uses_internal_input_info and

uses_internal_input_dice flags within the implementation of the DeriveChild command.

Retest Results

2023-10-10 – Fixed

Pull request #202 fixed this finding per the above recommendation.

parent = dpe.InitializeContext(uds)

parent = dpe.DeriveChild(context, firmware0_hash)

context1, parent = dpe.DeriveChild(parent , firmware1_hash, uses-internal-input-info=false,

retain-parent=true)

context1, cert_chain = dpe.CertifyKey(context1)

context2, parent = dpe.DeriveChild(parent , firmware2_hash, uses-internal-input-info=true,

retain-parent=true) // Executed by separate thread/process

signature = dpe.Sign(context1, attestation_challenge)

attestation_response = cert_chain, signature

23 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/202

Timing Side-Channel Exposes Context Handles

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-MSFT283-PTP

Component DPE

Category Data Exposure

Status Fixed

Impact

Knowledge of a context handle might enable an attacker to impersonate other entities within

the same locality to the DPE command handler. While an attacker could also retrieve context

handles from other localities, it was found these could not be used to execute DPE

commands.

Description

The following function is called from get_active_context_pos() , which is invoked by most

DPE commands. The purpose is to retrieve the handle’s index in DpeInstance::contexts[] ,

where ContextHandle ’s are stored.

Figure 9: caliptra-dpe/dpe/src/dpe_instance.rs:149-170

Medium

fn get_active_context_pos_internal(

&self,

handle: &ContextHandle,

locality: u32,

) -> Result<usize, DpeErrorCode> {

let mut valid_handles = self

.contexts

.iter()

.enumerate()

.filter(|(_, context)| {

context.state == ContextState::Active && &context.handle == handle

})

.peekable();

if valid_handles.peek().is_none() {

return Err(DpeErrorCode::InvalidHandle);

}

let mut valid_handles_and_localities = valid_handles

.filter(|(_, context)| context.locality == locality)

.peekable();

if valid_handles_and_localities.peek().is_none() {

return Err(DpeErrorCode::InvalidLocality);

}

let (i, _) = valid_handles_and_localities

.find(|(_, context)| {

context.state == ContextState::Active

&& &context.handle == handle

&& context.locality == locality

})

.ok_or(DpeErrorCode::InternalError)?;

24 / 71 – Finding Details – DPE

The code first creates an iterator over all Active context handles that match the

ContextHandle . The comparison operation is automatically derived on the type, as can be

seen below.

Figure 10: caliptra-dpe/dpe/src/context.rs:121-122

The automatically derived comparison does not execute in constant time21. By repeatedly

observing the execution time with varying inputs, an attacker can determine the correct

context handle in a byte-by-byte manner. As per the DPE specification draft22, the context

handle must be held secret (emphasis added by NCC Group):

The context handle MUST be unguessable in practice. If the context handle value

is an index to a client’s DPE context data, it SHOULD be random and at least 16

bytes in length. The reason for this is that a context handle authorizes operations

on the associated context. So, for example, it’s possible for parent and child

components to share the same encrypted session, but the child should not be able

to leverage that shared session to impersonate the parent.

Note that only impersonation within the same locality is possible. While the context handle

bytes for other localities could be leaked, the command handlers check the origin locality,

and this cannot be spoofed.

Recommendation

Use constant_time_eq23 or similar to compare context handles in constant time. Additionally,

it would make sense to first filter context locality before comparing the handles.

Reproduction Steps

Observe timings for a command (e.g. RotateCtx) that looks up the index via above method.

Recover the context handle byte by byte. In ideal scenario, the handle would be recovered

in at most 256*16 (16 bytes to recover, each has 256 possible values) operations.

Depending on the implementation details, the actual comparisons could use larger types,

which might make the attack more time consuming.

Retest Results

2023-10-11 – Fixed

Pull request #199 fixed this finding per the above recommendation.

#[derive(Debug, PartialEq, Eq, Clone, Copy, zerocopy::AsBytes, zerocopy::FromBytes)]

pub struct ContextHandle(pub [u8; ContextHandle::SIZE]);

21. Rust Lang slice cmp is not constant time.

22. TCG DPE Specification, Section 5.6 “Contexts”

23. Rust Lang const_time_eq

25 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/199
https://doc.rust-lang.org/src/core/slice/cmp.rs.html#63
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://docs.rs/constant_time_eq/latest/constant_time_eq/fn.constant_time_eq.html

DestroyCtx Command Can Corrupt Context

Tree

Overall Risk Medium

Impact Medium

Exploitability High

Finding ID NCC-MSFT283-KML

Component DPE

Category Other

Status Fixed

Impact

The DestroyCtx command could be used to corrupt the context tree structure, making it

possible for context handles to have incorrect parents or children set, even from different

localities. This flaw could be leveraged by an attacker to call the CertifyKey and Sign

operations on a TCI that has the incorrect parent set, making it attest that it was derived

from an entirely different context handle.

The impact is limited by the fact that the misused entries have to be created after

DestroyCtx command is called.

Description

Contexts are stored in the dpe.contexts[] array with MAX_HANDLES (24) entries. As the

contexts form a tree, their relations are stored in the parent_idx and children bitmasks.

Every node has a parent_idx set to the array index of the context that created it, except for

the initial context, where it’s set to ROOT_INDEX . The node’s children are tracked with a

children bitmask, so when a bit n is set, dpe.contexts[n] is one of the children.

This parent-child relationship tracking is not amended when a context is deleted, which can

result in a vulnerability.

Shown below is the whole of the DestroyCtx command handler.

Medium

impl CommandExecution for DestroyCtxCmd {

fn execute(

&self,

dpe: &mut DpeInstance,

_env: &mut DpeEnv<impl DpeTypes>,

locality: u32,

) -> Result<Response, DpeErrorCode> {

let idx = dpe.get_active_context_pos(&self.handle, locality)?;

let context = &dpe.contexts[idx];

// Make sure the command is coming from the right locality.

if context.locality != locality {

return Err(DpeErrorCode::InvalidLocality);

}

let to_destroy = if self.flag_is_destroy_descendants() {

(1 << idx) | dpe.get_descendants(context)?

} else {

1 << idx

};

for idx in flags_iter(to_destroy, MAX_HANDLES) {

if idx >= dpe.contexts.len() {

26 / 71 – Finding Details – DPE

Figure 11: caliptra-dpe/dpe/src/commands/destroy_context.rs:37-67

And the destroy() method of Context :

Figure 12: caliptra-dpe/dpe/src/context.rs:99-108

The code is shown in full to demonstrate that these functions do not use

Context.parent_idx or the Context.children bitmask. When a Context is destroyed, its

parent stays intact, which means that the parent’s children bitmask will still contain a bit

indicating this child should be valid, when in fact it points to an Inactive context (which

could later be populated). This could be abused to destroy context entries later created by

any locality (see detailed example in Reproduction Steps).

The way the children are handled is also problematic. Unless a flag is set to destroy the

children as well, they will also remain intact. Their parent_idx field will point to an Inactive

context which could be used later. The parent_idx field is used by the ChildToRootIter

iterator, which is then used in functions get_tcb_nodes() and compute_measurement_hash() .

Those functions are called from command handlers of CertifyKey and Sign respectively.

Both vulnerabilities could be thought of as a type of use-after-free bug. The entry is freed

(by DestroyCtx), but there is still a reference to it (in children mask or in parent_idx) and

on a subsequent allocation, it can be reused through the old references.

Recommendation

Use a tree data structure that correctly keeps track of its node relations.

Reproduction Steps

There are at least three attack scenarios where data from another locality can be used or

deleted.

Using CertifyKey With a Parent From Another Locality

Call Init to create a ContextHandle::default for the current locality

Call DeriveChild { handle = default_handle, retain_parent = true } ; store returned

handle as child_handle

1.

2.

return Err(DpeErrorCode::InternalError);

}

dpe.contexts[idx].destroy();

}

Ok(Response::DestroyCtx(ResponseHdr::new(

DpeErrorCode::NoError,

)))

}

}

/// Destroy this context so it can no longer be used until it is re-initialized. The

default

/// context cannot be re-initialized.

pub fn destroy(&mut self) {

self.tci = TciNodeData::new();

self.has_tag = false.into();

self.tag = 0;

self.state = ContextState::Inactive;

self.uses_internal_input_info = false.into();

self.uses_internal_input_dice = false.into();

}

27 / 71 – Finding Details – DPE

Call DeriveChild { handle = child_handle, retain_parent = true } ; store returned

handle as grandchild_handle

Call DestroyCtx { handle = child_handle } – parent_idx of grandchild_handle now

points to a destroyed handle

Wait for another locality to create a new entry in dpe.children[]

Call CertifyKey { handle = grandchild_handle }

CertifyKey will use a parent from another locality for their operation.

Using Sign With a Parent From Another Locality

*Same five steps as for CertifyKey above

Call Sign { handle = grandchild_handle }

Sign will use a parent from another locality for their operation.

Destroying Context Entries of Another Locality

The following sequence of commands will destroy context entries created by other entities:

Call Init to create a ContextHandle::default for the current locality

Call DeriveChild { handle = default_handle, retain_parent = true } ; store returned

handle

Many iterations of command DeriveChild { handle = stored_handle, retain_parent =

true }

Call DestroyCtx commands with handles all those newly created children –

stored_handle now has children mask populated, but those children were destroyed

Wait for other localities to create entries in dpe.children[]

Call DestroyCtx { handle = stored_handle, flags = DESTROY_CHILDREN_FLAG_MASK }

Retest Results

2023-10-12 – Fixed

Pull requests #200, #207 and #232 fixed this finding.

3.

4.

5.

6.

1.

2.

1.

2.

3.

4.

5.

6.

28 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/200
https://github.com/chipsalliance/caliptra-dpe/pull/207
https://github.com/chipsalliance/caliptra-dpe/pull/232

Multiple Ways to Exhaust DPE Context Handles

Overall Risk Medium

Impact Medium

Exploitability High

Finding ID NCC-MSFT283-29Q

Component DPE

Category Denial of Service

Status Fixed

Impact

An attacker that is able to send DPE commands to Caliptra could exhaust the space in the

array that is used to keep track of the context handles. Since the array is shared across

localities, any SoC agent could make Caliptra unusable for others.

Description

NCC Group identified three ways to fill DpeInstance::contexts[] in order to induce a denial

of service.

1. Normal Usage of DeriveChild

The DeriveChild command can be repeatably used with the retain_parent option set. This

will fill the array, but the entries could still be deleted from the same locality.

2. Abuse of DeriveChild

The DeviceChild command can create context handles for another locality, even a non-

existent locality. This can make the entries undeletable unless the parents were retained, in

which case DestroyCtx can be used on a parent with the destroy_children flag set.

3. Retired Entries

Retired context entries cannot be deleted. This is actually a known and documented bug, as

shown below:

Figure 13: caliptra-dpe/dpe/src/context.rs:173-177

Recommendation

To limit the impact of these attacks across localities, Caliptra could count how many context

entries a locality created and forbid further creation once a certain number is reached.

Retest Results

2023-10-13 – Fixed

This finding is fixed by pull requests #907, #944 and #962.

Medium

/// A child was derived from this context, but it was not retained. This will need to be

/// destroyed automatically if all of it's children have been destroyed. It is preserved

for its

/// TCI data, but the handle is no longer valid. Because the handle is no longer valid, a

client

/// cannot command it to be destroyed.

29 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-sw/pull/907
https://github.com/chipsalliance/caliptra-sw/pull/944
https://github.com/chipsalliance/caliptra-sw/pull/962

Premature Context State Modification in

DeriveChild

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-MSFT283-6Y9

Component DPE

Category Other

Status Fixed

Impact

The implementation of the DeriveChild command prematurely modified certain properties

of the new or parent context before it was certain that the command would succeed. This

could lead to the behaviour of the parent context changing when computing measurement

hashes or invalidating parent contexts.

Because all of the state-changing statements occurred subsequent to validation of the

supplied context handle and locality, this could not be abused to modify contexts to which

the attacker did not already have accessed, and therefore judged to carry a low overall risk.

Description

The DeriveChild command was implemented within the DeriveChildCmd::execute function.

Fragments of this function are reproduced below.

Low

fn execute(&self, dpe: &mut DpeInstance, env: &mut DpeEnv<impl DpeTypes>, locality: u32,) ->

Result<Response, DpeErrorCode> {

// ... Snipped for brevity

dpe.contexts[parent_idx].uses_internal_input_info = self.uses_internal_info_input().into();

dpe.contexts[parent_idx].uses_internal_input_dice = self.uses_internal_dice_input().into();

// ... Snipped for brevity

// Make sure it can be the default if it is supposed to be.

if self.makes_default() {

let default_context_idx =

dpe.get_active_context_pos(&ContextHandle::default(), target_locality);

if !self.safe_to_make_default(parent_idx, default_context_idx) {

return Err(DpeErrorCode::InvalidArgument);

}

}

let child_handle = if self.makes_default() {

ContextHandle::default()

} else {

dpe.generate_new_handle(env)?

};

if !self.retains_parent() {

dpe.contexts[parent_idx].state = ContextState::Retired;

dpe.contexts[parent_idx].handle = ContextHandle([0xff; ContextHandle::SIZE]);

} else if !dpe.contexts[parent_idx].handle.is_default() {

dpe.contexts[parent_idx].handle = dpe.generate_new_handle(env)?;

}

30 / 71 – Finding Details – DPE

Figure 14: caliptra-dpe/dpe/src/commands/derive_child.rs:94-168

Within this function, the self reference pointed to the command received from the mailbox,

and therefore contained potentially untrusted data. Once an appropriate parent context and

child context had been determined, statements throughout the function modified individual

properties of the parent or child context. These included:

dpe.contexts[parent_idx].uses_internal_input_info

dpe.contexts[parent_idx].uses_internal_input_dice

dpe.contexts[parent_idx].state

dpe.contexts[parent_idx].handle

dpe.contexts[child_idx].activate()

Each of these statements were followed by one or more statements which could result in

the abnormal termination of the function returning an error response, which would result in

the contexts being placed into an inconsistent state. All state-changing and prematurely

terminating operations have been highlighted in the above snippet.

Recommendation

Ensure that the all properties of the parent and child contexts are modified within a single

block at the end of the DeriveChildCmd::execute function, after the completion of all

operations which might potentially fail.

Retest Results

2023-10-11 – Fixed

Pull request #202 fixed this finding per the above recommendation.

•

•

•

•

•

dpe.contexts[child_idx].activate(&ActiveContextArgs {

context_type: ContextType::Normal,

// ... Snipped for brevity

dpe.add_tci_measurement(env, child_idx, &TciMeasurement(self.data), target_locality)?;

// Add child to the parent's list of children.

dpe.contexts[parent_idx].add_child(child_idx)?;

31 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/202

ChildToRootIter Infinite Loop

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-VF7

Component DPE

Category Denial of Service

Status Fixed

Impact

A denial of service is possible if ChildToRootIter is created with an incorrect idx . No

instances of incorrect usage were found in the current source code, therefore this finding is

provided for informational purposes only.

Description

A Rust Iterator trait is defined by its next function, which returns an Option bearing the

next value in the sequence or None if no further values are available.”

In the below code, the iterator returns an error in case self.idx is too large. However, since

self.done is not set, on the following .next() invocation the same error will happen,

resulting in an infinite loop.

Figure 15: caliptra-dpe/dpe/src/context.rs:253-266

The callers of inspected code were found to not be able to reach the buggy behavior.

Nevertheless, fixing this iterator would make it more robust against misuse.

Recommendation

The iterator implementation should set self.done = true like in the error case a few lines

above.

Reproduction Steps

The following code can be used to trigger the infinite loop behavior.

Retest Results

2023-10-10 – Fixed

Fixed as per recommendation in pull request #198.

Info

impl<'a> Iterator for ChildToRootIter<'a> {

type Item = Result<&'a Context, DpeErrorCode>;

fn next(&mut self) -> Option<Result<&'a Context, DpeErrorCode>> {

if self.done {

return None;

}

if self.count >= MAX_HANDLES {

self.done = true;

return Some(Err(DpeErrorCode::MaxTcis));

}

if self.idx >= self.contexts.len() {

return Some(Err(DpeErrorCode::InternalError));

}

for _ in ChildToRootIter::new(30, &contexts) {

}

32 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/198

Test Code May Panic on Some Inputs

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-97Q

Component DPE

Category Security Improvement

Opportunity

Status Fixed

Impact

Test code could be used as a base for real implementation, and bugs could be propagated.

It should be noted that towards the end of the assessment, code for DpePlatform::get_certi

ficate_chain has been merged24, and it does not contain the described bug.

Description

The GetCertificateChain command contains user controlled parameters offset and size .

This used to be handled by a “not-implemented shim” in DpePlatform::get_certificate_chain

() , but has been correctly implemented during the period of this assessment. However,

there is still a DefaultPlatform::get_certificate_chain() function that contains a possible

denial of service vulnerability, were it to be used. At the moment, this function is only used

in code for tests.

The maximum values for offset and size are correctly checked. However, if the size value

is less than MAX_CHUNK_SIZE or if the offset is set within the last MAX_CHUNK_SIZE bytes of

the end of TEST_CERT_CHAIN , the source argument to copy_from_slice will be smaller than

out is. This will make the code panic at the marked line below.

Figure 16: caliptra-dpe/platform/src/default.rs:155-169

The reason is the behavior of copy_from_slice 25, which says “This function will panic if the

two slices have different lengths.”

Then, panic! in caliptra-runtime (as well as the ROM and FMC) is implemented in

handle_fatal_error , which eventually ends up in an infinite loop.

Info

impl Platform for DefaultPlatform {

fn get_certificate_chain(

&mut self,

offset: u32,

size: u32,

out: &mut [u8; MAX_CHUNK_SIZE],

) -> Result<u32, PlatformError> {

let len = TEST_CERT_CHAIN.len() as u32;

if offset >= len {

return Err(PlatformError::CertificateChainError);

}

let cert_chunk_range_end = min(offset + size, len);

out.copy_from_slice(&TEST_CERT_CHAIN[offset as usize..cert_chunk_range_end as usize]);

Ok(cert_chunk_range_end - offset)

}

24. Caliptra – Pull Request #717 - “Implement Platform::get_certificate_chain”

25. Rust Lang copy_from_slice documentation

33 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-sw/pull/717/commits
https://doc.rust-lang.org/std/primitive.slice.html#method.copy_from_slice

Recommendation

Use code such as DpePlatform::get_certificate_chain() which correctly handles partial

slice copying.

Retest Results

2023-10-10 – Fixed

The example code was fixed as part of pull request #169.

34 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/169

Chunk Size and Certificate Size Misuse in

GetCertificateChain Command

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-VKD

Component DPE

Category Security Improvement

Opportunity

Status Fixed

Impact

This finding does not have an impact because the values of the misused constants are

coincidentally the same. This finding is raised for informational purposes.

Description

In the below code, self.size is checked to be at most MAX_CERT_SIZE , but later it is used as

a size of data to be copied into cert_chunk , which is MAX_CHUNK_SIZE bytes large (note the

“CERT” vs. “CHUNK” in the constant name).

Because of Rust memory safety guarantees, this would not result in a buffer overflow, but

rather, would cause a panic like the one described in NCC-MSFT283-97Q.

Figure 17: caliptra-dpe/dpe/src/commands/get_certificate_chain.rs:18-33

In the inspected code, both MAX_CERT_SIZE and MAX_CHUNK_SIZE equal 2048, so this would

not be an issue.

Recommendation

The first marked condition check above looks like it should be against MAX_CHUNK_SIZE .

Retest Results

2023-10-12 – Fixed

Note that the fix for a related issue NCC-MSFT283-97Q eliminates the potential for panic in

the example code. Additionally, the pull request #231 changed the code to use the correct

variable.

Info

impl CommandExecution for GetCertificateChainCmd {

fn execute(

&self,

_dpe: &mut DpeInstance,

env: &mut DpeEnv<impl DpeTypes>,

_locality: u32,

) -> Result<Response, DpeErrorCode> {

// Make sure the operation is supported.

if self.size > MAX_CERT_SIZE as u32 {

return Err(DpeErrorCode::InvalidArgument);

}

let mut cert_chunk = [0u8; MAX_CHUNK_SIZE];

let len = env

.platform

.get_certificate_chain(self.offset, self.size, &mut cert_chunk)

35 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/231

Context Handles Not Rotated on Error

Overall Risk Informational

Impact None

Exploitability Medium

Finding ID NCC-MSFT283-DBR

Component DPE

Category Policy Violation

Status Risk Accepted

Impact

It is assumed that context handle rotation is mandated by the DPE specification to reduce

the risk of commands being replayed in encrypted sessions. Because encrypted sessions

were not in use in the current Caliptra implementation, this risk would not be mitigated in

any way by rotating context handles and the finding is reported for informational purposes

only.

Although many types of failures might be expected to reoccur when the same command

was replayed, certain failures caused by hardware glitches could potentially be replayed

successfully at a future time, while other failures due to conditions that are true at one time

but false at another time might also be replayed successfully. An attacker with the ability to

replay such a message might use this to alter the state of the DPE to their advantage.

Description

The DICE Protection Environment specification stated the following with regard to the

context handle:26

The context handle MUST NOT remain valid after it has been used by a command.

In other words, context handles are single use. New context handles are returned

by a DPE within a response to a client so it can be used on a subsequent command.

Once a context handle is provided to the DPE by a client, the context handle is

invalidated by the DPE.

The specification did not explicitly state what should happen in the event of an error.

However, in the event that an error did occur during processing of a DPE command, it was

true that the context handle had already been “provided to the DPE”.

The DPE source code initiated the generation of a new context handle during the processing

of four commands: CertifyKey , ExtendTci , Sign and TagTci . The implementation of the

TagTci command is shown below.

Info

fn execute(

&self,

dpe: &mut DpeInstance,

env: &mut DpeEnv<impl DpeTypes>,

locality: u32,

) -> Result<Response, DpeErrorCode> {

// Make sure this command is supported.

if !dpe.support.tagging() {

return Err(DpeErrorCode::InvalidCommand);

}

// Make sure the tag isn't used by any other contexts.

if dpe.contexts.iter().any(|c| c.has_tag() && c.tag == self.tag) {

return Err(DpeErrorCode::BadTag);

26. Trusted Computing Group: DICE Protection Environment Specification, version 1.0 revision 0.6

36 / 71 – Finding Details – DPE

https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf

Figure 18: caliptra-dpe/dpe/src/commands/tag_tci.rs:18-53

The context handle was rotated in the highlighted statement, after a set of validation

statements which could result in early termination with an error code. As a result, any of the

error conditions would not result in the rotation of the context handle. In this particular case,

it is notable that the specifically highlighted error statement was returned in response to a

condition which might be true at one time, but might subsequently be false after the

deletion of a context bearing a specific conflicting tag.

Recommendation

Ensure that context handles are rotated both when a command completes successfully and

when it terminates due to an error. An exception must be made when the error relates to an

invalid context handle. The error response format must be adapted to permit the inclusion of

the rotated context handle. Alternatively, if the risk associated with non-rotated context

handles is judged to be sufficiently low, the wording of the DPE specification should be

altered to clarify this case.

Retest Results

2023-10-13 – Fixed

This issue was tracked in #883, which was originally closed with the following reason:

We decided to not do this since rotating a handle on an error would mean that the

caller no longer has access to that handle, since if a DPE command fails, we do not

return the handle. Since rotating the handle destructively mutates DPE’s context

array, the old handle is invalid, and the caller has no way to access the new context

corresponding to the rotated handle.

Another reason is that rotating the handle on error could be confusing in other

ways such as if the input handle itself invalid or if the DPE command failed due to

an error in generating the new handle.

Because no action was taken to correct the code, NCC Group recommended that the

wording in the Caliptra documentation or DPE specification should be adjusted to clarify this

edge case. Pull request #953 was created to document that this behavior is expected:

}

let idx = dpe.get_active_context_pos(&self.handle, locality)?;

if dpe.contexts[idx].has_tag() {

return Err(DpeErrorCode::BadTag);

}

// Because handles are one-time use, let's rotate the handle, if it isn't the default.

dpe.roll_onetime_use_handle(env, idx)?;

let context = &mut dpe.contexts[idx];

context.has_tag = true.into();

context.tag = self.tag;

Ok(Response::TagTci(NewHandleResp {

handle: context.handle,

resp_hdr: ResponseHdr::new(DpeErrorCode::NoError),

}))

}

37 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-sw/issues/833#issuecomment-1743659723
https://github.com/chipsalliance/caliptra-sw/pull/953

This implementation guarantees that no internal DPE state is changed if a command

fails for any reason. This includes Context Handle rotation; single-use context

handles are not rotated if a command fails.

On failure, DPE will only return a command header, with no additional command-

specific response parameters. This is in line with the CBOR-based main DPE spec,

which does not return a response payload on failure.

38 / 71 – Finding Details – DPE

CryptoBuf Can Be Partially Initialized

Overall Risk Informational

Impact Low

Exploitability None

Finding ID NCC-MSFT283-32H

Component DPE

Category Data Exposure

Status Fixed

Impact

Partial initialization of the type makes it possible for memory contents to be exposed. This

finding is reported for informational purposes, because no instance was found where this

API was misused.

Description

As seen in the code snippet below, CryptoBuf::new() method first creates an empty vec (its

type is ArrayVec<u8, MAX_SIZE> , which is inferred by the compiler), then copies data from

bytes[] into it, and finally forcefully sets the size to algs.size() .

Figure 19: caliptra-dpe/crypto/src/signer.rs:39-51

There are a few cases where the sizes do not match:

bytes.len() > MAX_SIZE – vec.try_extend_from_slice(bytes) fails and CryptoError::Size

is returned

bytes.len() <= MAX_SIZE – vec.try_extend_from_slice(bytes) copies the data to vec ,

and its length is set to bytes.len()

algs.size() == bytes.len() – vec.set_len(algs.size()) does nothing, the length is

already set to this value

algs.size() < bytes.len() – vec.set_len(algs.size()) shortens the vec , same effect

could be achieved with vec.truncate()

algs.size() > bytes.len() – vec.set_len(algs.size()) forces the length to be

increased; uninitialized data can now be accessed

Note: algs.size() is coded to be at maximum AlgLen::MAX_ALG_LEN_BYTES (which is equal

to MAX_SIZE)

While NCC Group has not seen a usage of CryptoBuf::new() that would trigger the

described vulnerability, this is a fragile API that could be misused.

Info

•

•

•

•

•

•

/// A common base struct that can be used for all digests, signatures, and keys.

pub struct CryptoBuf(ArrayVec<u8, { Self::MAX_SIZE }>);

impl CryptoBuf {

pub const MAX_SIZE: usize = AlgLen::MAX_ALG_LEN_BYTES;

pub fn new(bytes: &[u8], algs: AlgLen) -> Result<CryptoBuf, CryptoError> {

let mut vec = ArrayVec::new();

vec.try_extend_from_slice(bytes)

.map_err(|_| CryptoError::Size)?;

unsafe { vec.set_len(algs.size()) };

Ok(CryptoBuf(vec))

}

39 / 71 – Finding Details – DPE

Note that in addition to direct usage of CryptoBuf , there are also a few alias types:

HmacSig in caliptra-dpe/crypto/src/signer.rs:37

OpensslPrivKey in caliptra-dpe/crypto/src/openssl.rs:75

PrivKey in caliptra-dpe/crypto/src/openssl.rs:80

Digest in caliptra-dpe/crypto/src/lib.rs:60

Recommendation

Check bytes.len() matches algs.size() and error out if not. The unsafe call to set_len()

can now be removed. If there are valid cases where the lengths do not match, they should

be documented and handled safely.

Reproduction Steps

Behavior was tested with the following code snippet.

When the code is ran, we observed data additional to the provided value 1 . The data also

changed on each run.

Retest Results

2023-10-11 – Fixed

Pull request #201 fixed this finding.

•

•

•

•

let foo = [1u8; 1];

println!("new: {:?}", CryptoBuf::new(&foo, AlgLen::Bit384).unwrap().bytes());

cryptobuf_test$ cargo run

new: [1, 48, 97, 51, 50, 57, 48, 48, 48, 32, 114, 119, 45, 112, 32, 48, 48, 48, 53, 51, 48,

48, 48, 32, 0]

cryptobuf_test$ cargo run

new: [1, 0, 0, 0, 0, 0, 0, 0, 57, 48, 48, 48, 45, 53, 53, 54, 57, 100, 54, 54, 56, 97, 48, 48,

48, 32, 114, 119, 45, 112, 32, 48, 48, 48, 53, 51, 48, 48, 48, 32, 0, 0, 0, 0, 0, 0, 0, 0]

40 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/201

DeriveChild Permits Context Handle to Coexist

With the Default Context

Overall Risk Informational

Impact Undetermined

Exploitability High

Finding ID NCC-MSFT283-DDK

Component DPE

Category Other

Status Fixed

Impact

The implementation does not conform to the specification. The impact of this was not

assessed.

Description

Draft DPE specification27 says (emphasis by NCC Group):

A DPE SHOULD support default context(s) and may support only default context(s).

If a DPE supports default contexts, it MUST support one default context per

session. A DPE MUST NOT allow simultaneous use of a default context and

context handles within the same session: these are mutually exclusive.

However, the implementation does not agree with this. When DPE already has a default

context (this is the state after initialisation) and DeriveChild command is executed with

retain_parent = true , default = false , none of the following statements will be executed.

This makes is possible for a default context to remain, and for a new context handle to be

generated.

Figure 20: caliptra-dpe/dpe/src/commands/derive_child.rs:148-153

Recommendation

The DeriveChild command handler should not allow creation of a generated handle in case

an existing default handle is retained.

Retest Results

2023-10-13 – Fixed

The pull requests #203 and #235 fixed this finding.

Info

if !self.retains_parent() {

dpe.contexts[parent_idx].state = ContextState::Retired;

dpe.contexts[parent_idx].handle = ContextHandle([0xff; ContextHandle::SIZE]);

} else if !dpe.contexts[parent_idx].handle.is_default() {

dpe.contexts[parent_idx].handle = dpe.generate_new_handle(env)?;

}

27. TCG DPE Specification – Section 5.6.1, “Default Contexts”

41 / 71 – Finding Details – DPE

https://github.com/chipsalliance/caliptra-dpe/pull/203
https://github.com/chipsalliance/caliptra-dpe/pull/235
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf

7 Finding Details – Drivers

MailboxSendTxn drop() Handling Not

Exhaustive

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-MSFT283-4CR

Component Drivers

Category Denial of Service

Status Fixed

Impact

The intention of Drop for MailboxSendTxn appears to be to return the mailbox into the Idle

state, however, this will only happen if it was in RdyForCmd state at the start. This could

potentially leave mailbox in a non-operational state following an error where the code

handling it relied on the destructor to return the mailbox state machine to Idle . This finding

represents a potential denial of service vulnerability.

Description

The MailboxSendTxn destructor is implemented in the code shown below.

Figure 21: caliptra-sw/drivers/src/mailbox.rs:244-259

The full set of operational states is defined in the same file:

Figure 22: caliptra-sw/drivers/src/mailbox.rs:24-32

It can be seen only RdyForCmd state is handled, however, transition to RdyForDlen ,

RdyForData and Execute states is possible from publicly accessible methods such as

Low

impl Drop for MailboxSendTxn<'_> {

fn drop(&mut self) {

//

// Release the lock by transitioning the mailbox state machine back

// to Idle.

//

if self.state == MailboxOpState::RdyForCmd {

//

// Send dummy request to transition the state machine to execute state.

//

let _ = self.send_request(0, &[]);

// Release the lock

let _ = self.complete();

}

}

}

/// Malbox operational states

pub enum MailboxOpState {

#[default]

RdyForCmd,

RdyForDlen,

RdyForData,

Execute,

Idle,

}

42 / 71 – Finding Details – Drivers

write_cmd , write_dlen and execute_request respectively, although there are indirect calls

as well.

Recommendation

Handle transition from any state into Idle .

Retest Results

2023-10-10 – Fixed

Fixed with the pull request #856, which force unlocks the Mailbox in drop() .

43 / 71 – Finding Details – Drivers

https://github.com/chipsalliance/caliptra-sw/pull/856

Random Number Generation Iterator

Potentially Returning Non-Random Values

Overall Risk Informational

Impact High

Exploitability None

Finding ID NCC-MSFT283-2QM

Component Drivers

Category Cryptography

Status Fixed

Impact

The Caliptra drivers provided an implementation of the Iterator trait which could be used

to supply a sequence of a pre-defined quantity of random numbers, produced by the

CSRNG peripheral connected to the device. Under certain conditions, this implementation

could enter a state where the supplied values could not be guaranteed to be random.

This iterator was not used by the code in a way which could lead to this condition, and as a

result this finding is being reported for informational purposes only. However, the condition

was not documented or prohibited by the iterator code, leading to the possibility that future

code might reuse the iterator code in a dangerous fashion, leading to the possibility that

random values produced by the code might be more easily guessable by an attacker.

Description

A Rust Iterator trait is defined by its next function, which returns an Option bearing the

next value in the sequence or None if no further values are available. The Caliptra drivers

provided an implementation of this trait which could be used to produce a sequence of a

pre-defined quantity of random numbers, produced by the CSRNG peripheral connected to

the device.

Figure 23: caliptra-sw/drivers/src/csrng.rs:209-223

The value of the constant WORDS_PER_GENERATE_BLOCK was equal to 4 , reflecting the fact that

the underlying CSRNG hardware would produce random values in blocks of 4 words (or 16

bytes) at a time.

This function was developed on the assumption that the iterator would always be initialised

with a num_words_left value which was a multiple of four. Only then would the condition sel

f.num_words_left % WORDS_PER_GENERATE_BLOCK == 0 be true on the first invocation of the

Info

fn next(&mut self) -> Option<Self::Item> {

let csrng = self.csrng.regs();

if self.num_words_left == 0 {

None

} else {

if self.num_words_left % WORDS_PER_GENERATE_BLOCK == 0 {

// Wait for CSRNG to generate next block of 4 words.

wait::until(|| csrng.genbits_vld().read().genbits_vld());

}

self.num_words_left -= 1;

Some(csrng.genbits().read())

}

}

44 / 71 – Finding Details – Drivers

next function. If the iterator had been initialised with any other value, then the initial result

would not have taken into account the current state of the CSRNG peripheral, which might

return uninitialised data.

Recommendation

Ensure that the csrng.genbits_vld() condition is awaited on the initial execution of the next

method. This could be performed by implementing a forward-running counter which would

either replace the existing num_words_left counter with a separate field to store the

maximum number of words to be returned by this iterator.

If such a fix is not desired for any reason, then the iterator should check during initialisation

whether the num_words_left value is divisible by four. If this is not the case, then the code

should return an appropriate error code or panic, as appropriate.

Retest Results

2023-10-11 – Fixed

Pull request #470 fixed this finding. Additionally, changes in pull request #892 made sure

the API cannot be misused.

45 / 71 – Finding Details – Drivers

https://github.com/chipsalliance/caliptra-sw/pull/470
https://github.com/chipsalliance/caliptra-sw/pull/892

LMS Verifier Permitted Invalid q Value

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-NTF

Component Drivers

Category Cryptography

Status Fixed

Impact

The LMS signature validation function accepted an invalid value of the q parameter from a

supplied signature. Because the specific edge case resulted in the operation failing at a later

stage and returning a different error, there was no security impact and the finding is

reported for informational purposes only.

Description

The LMS signature scheme28 is based on a Merkle tree - a binary tree where each leaf node

contains hash digest generated using a secure hash algorithm such as SHA-256. Each

signature generated using the scheme contains a parameter q , which represents the index

of the leaf node used to create the specific signature. Given a tree of a height h , leaf nodes

are numbered within the range 0 ..= (2^h)-1 . An alternative numbering scheme exists that

covers all nodes whether they are leaf or branch nodes. Known as the node number, the

root node of the tree is assigned the node number of 1 while the nodes in successive levels

of the tree with height h are labelled with a node number within the range of 2^h ..= 2^h +

(2^h-1) . The node number corresponding to any value q would thus be calculated as 2^h +

q , and the largest possible node number within a tree of a given height h would be 2^h +

(2^h- 1) , which could otherwise be expressed as 2^(h+1)-1 .

While verifying a submitted LMS signature using the verify_lms_signature_cfi function, the

following code was used to validate the node number:

Figure 24: caliptra-sw/drivers/src/lms.rs:412-416

Having determined the tree height (which could be one of the values 5, 10, 15, 20 or 25), the

node number node_num was calculated as 2^h + q (using the equivalent left-shift operator

to calculate the power of two). An error was then returned if this calculated value was

greater than 2^(h+1) . This implied that a calculated value which was equal to 2^(h+1) being

permitted, despite the fact that, as indicated earlier, the maximum possible node number

should be 2^(h+1)-1 .

Presenting a concrete example given a tree height of 5, the node numbers should be within

the range of 1 ..= 63 . A value of 64 should be rejected by the function, but would be

permitted according to the above logic.

In practice, supplying a q value to trigger this edge case would result in the subsequent

loop in lines 453-485 running an additional iteration and attempting to read the LMS

signature’s tree path out of bounds. Because this value was implemented as a Rust slice,

Info

let (_, tree_height) = get_lms_parameters(lms_sig.tree_type)?;

let mut node_num: u32 = (1 << tree_height) + lms_sig.q.get();

if node_num > 2 << tree_height {

return Err(CaliptraError::DRIVER_LMS_INVALID_PVALUE);

}

28. Internet Research Task Force: RFC 8554

46 / 71 – Finding Details – Drivers

https://datatracker.ietf.org/doc/html/rfc8554

this would result in an error and cause the signature verification function to fail with the DRIV

ER_LMS_PATH_OUT_OF_BOUNDS error rather than the DRIVER_LMS_INVALID_PVALUE which might be

expected of an incorrect q value.

Recommendation

Correct the node number validation code to use the >= operator.

Retest Results

2023-10-11 – Fixed

Pull request #861 fixed this finding per the above recommendation.

47 / 71 – Finding Details – Drivers

https://github.com/chipsalliance/caliptra-sw/pull/861

8 Finding Details – FMC

Comment and Code Mismatch in derive_cdi

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-GGG

Component FMC

Category Other

Status Fixed

Impact

Incorrect API description could lead to the API being used incorrectly. In the described case,

there is potential for HMAC key and output CDI to be used in place of each other.

Description

The following function has incorrectly described parameters.

Figure 25: caliptra-sw/fmc/src/flow/rt_alias.rs:190-220

The signature of the hmac384_kdf function is shown below:

Info

/// Permute Composite Device Identity (CDI) using Rt TCI and Image Manifest Digest

/// The RT Alias CDI will overwrite the FMC Alias CDI in the KeyVault Slot

///

/// # Arguments

///

/// * `env` - ROM Environment

/// * `hand_off` - HandOff

/// * `rt_cdi` - Key Slot that holds the current CDI

/// * `fmc_cdi` - Key Slot to store the generated CDI

fn derive_cdi(

env: &mut FmcEnv,

hand_off: &HandOff,

fmc_cdi: KeyId,

rt_cdi: KeyId,

) -> CaliptraResult<()> {

// Compose FMC TCI (1. RT TCI, 2. Image Manifest Digest)

let mut tci = [0u8; 2 * SHA384_HASH_SIZE];

let rt_tci = Tci::rt_tci(env, hand_off);

let rt_tci: [u8; 48] = okref(&rt_tci)?.into();

tci[0..SHA384_HASH_SIZE].copy_from_slice(&rt_tci);

let image_manifest_digest: Result<_, CaliptraError> =

Tci::image_manifest_digest(env, hand_off);

let image_manifest_digest: [u8; 48] = okref(&image_manifest_digest)?.into();

tci[SHA384_HASH_SIZE..2 * SHA384_HASH_SIZE].copy_from_slice(&image_manifest_digest);

// Permute CDI from FMC TCI

Crypto::hmac384_kdf(env, fmc_cdi, b"rt_alias_cdi", Some(&tci), rt_cdi)?;

report_boot_status(FmcBootStatus::RtAliasDeriveCdiComplete as u32);

Ok(())

}

/// Calculate HMAC-384 KDF

///

/// # Arguments

///

/// * `env` - FMC Environment

48 / 71 – Finding Details – FMC

Figure 26: caliptra-sw/fmc/src/flow/crypto.rs:62-76

The code in hmac384_kdf suggests the comments are correct here, and are incorrect in

derive_cdi .

The only caller of derive_cdi is shown below:

Figure 27: caliptra-sw/fmc/src/flow/rt_alias.rs:59-61

Recommendation

Fix the comment to match the code. Argument order and comment order suggests this may

have been a copy-paste error.

Since the arguments are just a KeyId (a key index), the output does not need to be mutable,

hence it is missing a mut that would make it clear which of the two is the output. Consider

annotating output/destination arguments to avoid such potential errors.

Retest Results

2023-10-10 – Fixed

The comments were corrected as a part of a bigger pull request #894.

/// * `key` - HMAC384 key slot

/// * `label` - Input label

/// * `context` - Input context

/// * `output` - Key slot to store the output

pub fn hmac384_kdf(

env: &mut FmcEnv,

key: KeyId,

label: &[u8],

context: Option<&[u8]>,

output: KeyId,

// Derive CDI

Self::derive_cdi(env, hand_off, input.cdi, KEY_ID_RT_CDI)?;

report_boot_status(FmcBootStatus::RtAliasDeriveCdiComplete as u32);

49 / 71 – Finding Details – FMC

https://github.com/chipsalliance/caliptra-sw/pull/894

Insufficient Validation of Memory Addresses

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-QBA

Component FMC

Category Data Validation

Status Fixed

Impact

A memory address validation function checked whether a given address was within a

supplied range, but incorrectly handled addresses near the end of the acceptable range.

The current codebase did not contain any invocations where this could be abused by an

attacker, and therefore the current finding has been reported for informational purposes.

However, future developments reusing this function could lead to potential vulnerabilities

such as data exposure by reading from inappropriate addresses, or arbitrary code execution

by writing to inappropriate addresses.

Description

The validate_address function allowed the caller to determine whether a provided memory

address was within a given region of memory.

Figure 28: caliptra-sw/fmc/src/hand_off.rs:34-36

An address equal to the end of a region should not be considered to be a part of that region.

However, this function checked whether the supplied address was less than or equal to the

address of the end of the region, indicated by self.start + self.size . As a result, a single

external address would be erroneously reported as being within the memory region.

Additionally, the validate_address function accepts only a phys_addr argument, but not a

corresponding phys_size . Therefore, a structure that begins inside the valid range, but

extends beyond the valid range would be mistakenly accepted as being valid.

This function was invoked from the is_valid function of two types representing distinct

memory regions:

The IccmAddress::is_valid function was used to determine whether the entry point of

the Runtime image was contained within the ICCM memory region (caliptra-sw/fmc/src/

hand_off.rs:196). A similar check had already been performed by the ROM while loading

the Runtime (caliptra-sw/image/verify/src/verifier.rs:659-660), using the half-open

Range type which correctly excluded the address marking the end of the range.

Therefore, it was not possible that this FMC memory range validation code could be

reached using an invalid range.

The DccmAddress::is_valid function was used to determine whether the image manifest

had been written to a valid address within the DCCM memory range (caliptra-sw/fmc/

src/hand_off.rs:298). Because this checked only the start address of the manifest, it

would accept not only a manifest beginning at the end of the DCCM range, but also an

address near the end of the DCCM range that would result in a portion of the manifest

overlapping the end of this range. However, it is acknowledged that the only code which

set this manifest address was located in the ROM, which always initialised it to a fixed

Info

1.

2.

fn validate_address(&self, phys_addr: u32) -> bool {

phys_addr >= self.start && phys_addr <= self.start + self.size

}

50 / 71 – Finding Details – FMC

address that ensured that the entirety of fixed-size manifest would be contained within

the same range (caliptra-sw/rom/dev/src/flow/cold_reset/fw_processor.rs:392).

Recommendation

Ensure that the validate_address() function uses the less-than operator (<) when

comparing the supplied address with the end of the range.

When validating an address intended for a set of bytes, ensure that the validate_address()

function is adapted to accept the desired size as an input and validates the end of the range

according to this size.

Retest Results

2023-10-10 – Fixed

Address validation code has been moved into BoundedAddress , and the semantic equivalent

of the validate_address() from the original finding is validate_addr() .

Figure 29: caliptra-sw/drivers/src/bounded_address.rs:53-64

The size of the type and also its alignment are also now validated.

pub fn validate_addr(addr: u32) -> Result<(), CaliptraError> {

let addr = addr as usize;

if addr % core::mem::align_of::<T>() != 0 {

return Err(CaliptraError::ADDRESS_MISALIGNED);

}

let size = core::mem::size_of::<T>();

if addr < B::ORG || size > B::SIZE || addr > B::ORG + (B::SIZE - size) {

return Err(B::ERROR);

}

Ok(())

}

51 / 71 – Finding Details – FMC

9 Finding Details – ROM

TOCTOU in SHA-512 Accelerator Lock

Acquisition

Overall Risk High

Impact High

Exploitability Medium

Finding ID NCC-MSFT283-YMG

Component ROM

Category Timing

Status Fixed

Impact

The SHA-512 Accelerator was a shared component which could be accessed by both the

Caliptra firmware and the SoC, and could be used to compute SHA-384 (and SHA-512)

digests of shared memory regions, in particular the SRAM used to back the Mailbox.

Simultaneous use was restricted by means of a lock.

By exploiting a race condition within the ROM code used to acquire this lock, the SoC could

claim ownership of the peripheral while the ROM believed it had exclusive access. The SoC

could then cause digests of benign signed code to be computed in place of malicious

unsigned code that had been supplied to the ROM, which would result in the ROM accepting

the malicious code to be validly signed and proceed to execute it.

Description

The firmware verification process followed by the ROM computed eight SHA-384 digests

used to validate different sections of the supplied Image Bundle, including the FMC and

Runtime code. For each individual digest calculation, the code attempted to acquire a lock

for the SHA-512 Accelerator peripheral by means of the following code:

Figure 30: caliptra-sw/drivers/src/sha384acc.rs:45-56

Two conditions could cause this operation to “fail”, which would result in the return of a None

value and a subsequent attempt to acquire the same lock through an infinite loop wrapping

this function. In order of testing, these conditions were:

Whether the lock had been acquired by some entity (through sha_acc.lock().read().lock

() returning true).

Whether the acquired lock was owned by the SoC (through

sha_acc.status().read().soc_has_lock() returning true). If this returned false , then the

owner of the lock would be assumed to be the Caliptra microcontroller.

High

1.

2.

pub fn try_start_operation(&mut self) -> Option<Sha384AccOp> {

let sha_acc = self.sha512_acc.regs();

if sha_acc.lock().read().lock() && sha_acc.status().read().soc_has_lock() {

None

} else {

// We acquired the lock, or we already have the lock (such as at startup)

Some(Sha384AccOp {

sha512_acc: &mut self.sha512_acc,

})

}

}

52 / 71 – Finding Details – ROM

These conditions were determined by reading the LOCK and STATUS registers respectively

of the SHA-512 Accelerator peripheral. If either of the conditions was not met, the firmware

would consider that it owned the lock and proceed to request the calculation of a specific

hash digest. However, the SoC could, through careful timing, ensure that the firmware

believed that it owned the lock at the end of this check, while the lock was actually owned

by the SoC. To do this, the SoC needed to:

Acquire the lock prior to the first check

Release the lock prior to the second check

Re-acquire the lock after the second check

This could be used in an attack resulting in the execution of unsigned malicious code. The

following example depends on a signed image bundle which has been tampered with by

moving the clean FMC and Runtime images to a higher offset within the bundle and

substituting malicious code in their place, as demonstrated in the diagram below.

The two ToC entries retained the offsets, sizes and hash digests of the original, clean,

firmware images. However, when the ROM reached the point where the submitted firmware

images themselves were to be validated, the SoC could, by releasing and re-acquiring the

SHA-512 peripheral’s lock as described earlier, cause the firmware to believe that it had

submitted a request to calculate the digest of the image to be executed, while the resultant

digest actually corresponded to a different memory region which contained the clean code

but would not ultimately be executed.

The following sequence diagram illustrates the specific sequence that could to the

malicious FMC and Runtime code being executed.

1.

2.

3.

53 / 71 – Finding Details – ROM

54 / 71 – Finding Details – ROM

An alternative way of exploiting this issue was also identified:

A SoC sends a malicious firmware through Mailbox

Lock is acquired as described above

SoC uses the streaming mode of SHA-512 Accelerator to calculate the digest of a clean

firmware

Caliptra reads the digest[] register and the firmware verification succeeds

Recommendation

Because the check used in this function requires the reading of two independent registers, it

may be impossible to prevent this condition from occurring within the supplied code. If

possible, the hardware should be modified to ensure that the peripheral can be locked and

its ownership checked in an atomic fashion.

Because the peripheral is forcibly locked at startup, the condition could be prevented in

firmware by not releasing the lock prematurely (see finding "Premature Release of SHA-512

Accelerator Lock").

Retest Results

2023-10-09 – Fixed

With merged pull request #862 this finding is resolved. The code is changed so that the

externally-accessible SHA-512 Accelerator is no longer used for image verification; instead a

separate internal-only SHA-512 peripheral is used.

Additionally, try_start_operation() that is mentioned above was changed to include an ass

umed_lock_state: ShaAccLockState argument where the programmer specifies the current

lock state. This would fix the issue if the provided state argument is correct. Currently, the

only remaining usage of SHA-512 Accelerator is in FIPS self-test code.

1.

2.

3.

4.

55 / 71 – Finding Details – ROM

https://github.com/chipsalliance/caliptra-sw/pull/862

Premature Release of SHA-512 Accelerator

Lock

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-MSFT283-3QD

Component ROM

Category Denial of Service

Status Fixed

Impact

The SHA-512 Accelerator was a shared component which could be accessed by both the

Caliptra firmware and the SoC, and could be used to compute SHA-384 (and SHA-512)

digests of shared memory regions, in particular the SRAM used to back the Mailbox.

Simultaneous use was restricted by means of a lock.

During the initial startup, Caliptra had exclusive access to this lock in order to perform its

necessary work. By releasing this lock prematurely, this allowed another component to claim

the lock and, by not releasing it, prevent the Caliptra ROM from completing its necessary

validation of the First Mutable Code and Runtime and transferring control to those

components.

The premature release of the lock could also facilitate the exploitation of a more severe

TOCTOU condition described in NCC-MSFT283-YMG, which could result in the ROM loading

unsigned FMC or Runtime code.

Description

The Caliptra ROM used the SHA-512 Accelerator to compute digests of various portions of

the incoming Image Bundle. The first occurrence was observed in the code below, which

was used to verify the public signing keys within the unsigned preamble of the image.

Figure 31: caliptra-sw/image/verify/src/verifier.rs:279-298

A total of eight invocations of ImageVerificationEnv::sha384_digest were present within the

same file, each executed sequentially within a single operation defined by the ImageVerifier

::verify function.

The sha384_digest function itself was implemented as shown below:

Medium

fn verify_vendor_pk_digest(&mut self) -> Result<(), NonZeroU32> {

// ... Snipped for brevity

let range = ImageManifest::vendor_pub_keys_range();

let actual = self

.env

.sha384_digest(range.start, range.len() as u32)

.map_err(|_| CaliptraError::IMAGE_VERIFIER_ERR_VENDOR_PUB_KEY_DIGEST_FAILURE)?;

impl<'a> ImageVerificationEnv for &mut RomImageVerificationEnv<'a> {

/// Calculate Digest using SHA-384 Accelerator

fn sha384_digest(&mut self, offset: u32, len: u32) -> CaliptraResult<ImageDigest> {

loop {

if let Some(mut txn) = self.sha384_acc.try_start_operation() {

let mut digest = Array4x12::default();

txn.digest(len, offset, false, &mut digest)?;

56 / 71 – Finding Details – ROM

Figure 32: caliptra-sw/rom/dev/src/verifier.rs:33-43

The highlighted try_start_operation function attempted to acquire a lock for the SHA-512

Accelerator and, if successful, returned a Sha384AccOp structure which implemented the

Drop trait as shown below.

Figure 33: caliptra-sw/drivers/src/sha384acc.rs:99-102

Writing a true value to this lock register had the effect of releasing the lock. From this

point on, the SoC would be permitted to claim the lock for the SHA-512 Accelerator for itself

and the ROM would be confined to the loop in the sha384_digest function shown above.

It is acknowledged that the watchdog timer was active during this period and would

ultimately trigger a reset if such a condition occurred, transferring ownership of the lock to

the ROM. To prevent the Caliptra firmware from starting, it would be necessary to

continually re-acquire the lock to maintain the same condition.

Recommendation

Ensure that ownership of the SHA-512 Accelerator lock is maintained outside the context of

any individual operation. As such, the lock should not be released during the drop function

invoked when a specific instance of Sha384AccOp falls out of scope, but, at the earliest on

the final completion of the ImageVerifier::verify function, when the peripheral is no longer

required during the firmware startup process. It may be advisable to defer the release of the

lock to the FMC or the beginning of the Runtime, in anticipation of any potential future

modifications to those components that may require exclusive access to the peripheral.

Retest Results

2023-10-11 – Fixed

With merged pull request #862 this finding is resolved. The code is changed so that the

externally-accessible SHA-512 Accelerator is no longer used for image verification; instead

the separate internal-only SHA-512 peripheral is used.

return Ok(digest.0);

}

}

}

fn drop(&mut self) {

let sha_acc = self.sha512_acc.regs_mut();

sha_acc.lock().write(|w| w.lock(true));

}

57 / 71 – Finding Details – ROM

https://github.com/chipsalliance/caliptra-sw/pull/862

slice::fill(0) Does Not Always Zero Memory

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-MSFT283-962

Component ROM

Category Data Exposure

Status Fixed

Impact

Memory that is not zeroed stays resident for longer than strictly necessary, potentialy

allowing it to be exposed by a separate memory exfiltration vulnerability.

Description

Zeroing memory with slice::fill(0) only guarantees the memory is read as zero when

accessed again. If the compiler is not aware of any access after the zeroing, it might decide

to remove the operation when optimising. This could leave the memory contents intact, and

accessible through a wild pointer.

The important distinction here is that zeroing for cleanup is a different problem than zeroing

for privacy29. Specifically, slice::fill(0) only zeroes for cleanup and since it does not use

a volatile pointer in its implementation 30, it might be optimized-out if the compiler knows

the value is not used anymore, which will often be the case for arrays on the stack.

There are multiple instances of slice::fill(0) being used to zero memory of a stack array

and not used afterwards. The intention of that fill(0) is clearly to zero the memory for

privacy. One such instance is listed below. While the data in any of the instances inspected

was not deemed sensitive, the code should still execute these operations properly or

alternatively just remove them.

Figure 34: caliptra-sw/rom/dev/src/flow/cold_reset/fmc_alias.rs:99-106

This pattern also occurs in MemoryRegions::zeroize() (runtime/src/lib.rs:326-334) which is

called from FipsModule::zeroize() (runtime/src/fips.rs:39). In this case there might be a

specification requirement to zero the memory for privacy. Note that the fill(0) is behind

the “zeroize” naming, which is commonly used to refer to “zeroing for privacy”.

Recommendation

Use the zeroize crate31. It is portable, embedded-friendly, and guarantees zeroing will not

be optimized away.

Retest Results

2023-10-12 – Fixed

Pull requests #918 and #936 fixed this finding.

Low

fn derive_cdi(env: &mut RomEnv, measurements: &Array4x12, cdi: KeyId) -> CaliptraResult<()> {

let mut measurements: [u8; 48] = measurements.into();

Crypto::hmac384_kdf(env, cdi, b"fmc_alias_cdi", Some(&measurements), cdi)?;

measurements.fill(0);

report_boot_status(FmcAliasDeriveCdiComplete.into());

Ok(())

}

29. https://users.rust-lang.org/t/zeroing-a-slice-of-integers/33825/10

30. Rust Lang - slice and slice_spec

31. Rust Lang - Zeroize crate

58 / 71 – Finding Details – ROM

https://github.com/chipsalliance/caliptra-sw/pull/918
https://github.com/chipsalliance/caliptra-sw/pull/936
https://users.rust-lang.org/t/zeroing-a-slice-of-integers/33825/10
https://doc.rust-lang.org/src/core/slice/mod.rs.html#3441-3446
https://doc.rust-lang.org/src/core/slice/specialize.rs.html#5-15
https://crates.io/crates/zeroize

Buffer Overflow in PCR Logging

Overall Risk Low

Impact Undetermined

Exploitability Low

Finding ID NCC-MSFT283-4DN

Component ROM

Category Data Validation

Status Fixed

Impact

An error in the PCR logging code can cause the log contents to overflow into the FUSE log.

The impact of corrupting FUSE log was not determined.

Description

The relevant parts of log_pcr function are shown below.

Figure 35: caliptra-sw/rom/dev/src/pcr.rs:131,145-147,157-165

One can see the there is a check for log_index , but a value of PCR_LOG_SIZE /

core::mem::size_of::<PcrLogEntry>() will pass the check, as the address of the start of a

new log entry will be valid. However, the log entry will cross the PCR_LOG_ORG+PCR_LOG_SIZE

and spill into FUSE_LOG.

For example, let’s assume log_index == 17 and sizeof::<PcrLogEntry>() == 60 . The check

passes because 17*60 == 1020 (not larger than PCR_LOG_SIZE , which is 1024). A dst slice is

then constructed which spans from PCR_LOG_ORG+1020 (0x500047FC) until PCR_LOG_ORG+1020+

sizeof::<PcrLogEntry>() (0x50004838).

Memory layout shows the data immediately after PCR_LOG is FUSE_LOG.

Figure 36: caliptra-sw/drivers/src/memory_layout.rs:34-35,62-63

Recommendation

The log_index check needs to be fixed to cover the newly created log entry as well.

Low

pub fn log_pcr(

[...]

if pcr_bank.log_index * core::mem::size_of::<PcrLogEntry>() > PCR_LOG_SIZE {

return Err(CaliptraError::ROM_GLOBAL_PCR_LOG_EXHAUSTED);

}

[...]

let dst: &mut [PcrLogEntry] = unsafe {

let ptr = PCR_LOG_ORG as *mut PcrLogEntry;

let entry_ptr = ptr.add(pcr_bank.log_index);

pcr_bank.log_index += 1;

core::slice::from_raw_parts_mut(entry_ptr, 1)

};

// Store the log entry.

dst[0] = pcr_log_entry;

pub const PCR_LOG_ORG: u32 = 0x50004400;

pub const FUSE_LOG_ORG: u32 = 0x50004800;

[...]

pub const PCR_LOG_SIZE: usize = 1024;

pub const FUSE_LOG_SIZE: usize = 996;

59 / 71 – Finding Details – ROM

Retest Results

2023-10-09 – Fixed

Fixed by using the newly introduced PersistentDataAccessor (pull requests #690, #704),

which simplifies persistent data handling, and removes the reported and some other unsafe

code instances.

60 / 71 – Finding Details – ROM

https://github.com/chipsalliance/caliptra-sw/pull/690
https://github.com/chipsalliance/caliptra-sw/pull/704

Critical Functions Not CFI Protected

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-MSFT283-BKC

Component ROM

Category Configuration

Status Fixed

Impact

Gaps in Caliptra’s CFI implementation may enable bypassing of anti-rollback protection.

Description

In the Caliptra ROM, Control Flow Integrity (CFI) is used to protect all functions which

perform security-critical actions. The goal of CFI is to defend against attacks or exploits

whose aim is to influence the firmware’s call-graph.

Within the ROM, CFI is applied on an ad-hoc basis, by manually adding the cfi_impl_fn or

cfi_mod_fn attributes to individual functions. At the moment, many sensitive operations are

protected in this way, including the following:

PCR extension and logging operations

SHA1 hashing operations

DICE operations including CDI derivations, UDS decryption, etc

Manifest loading and signature verification

However, some sensitive functions are overlooked, such as the anti-rollback check which is

shown below:

Figure 37: caliptra-sw/image/verify/src/verifier.rs:587-589

Figure 38: caliptra-sw/image/verify/src/verifier.rs:101-103

Recommendation

Apply the cfi_impl_fn or cfi_mod_fn attributes to the above mentioned functions.

Additionally, NCC Group wishes to point out that our sweep for CFI-worthy functions was

incomplete due to time constraints. We encourage the Caliptra team to perform a deeper

analysis for additional functions that warrant the protections offered by CFI.

Retest Results

2023-10-12 – Fixed

The code has been changed by pull request #911 to use the cfi_assert!() macro

(caliptra-sw/image/verify/src/verifier.rs:588-602).

Low

•

•

•

•

fn svn_check_required(&mut self) -> bool {

// If device is unprovisioned or if anti-rollback is disabled, don't check the SVN.

!(self.env.dev_lifecycle() == Lifecycle::Unprovisioned || self.env.anti_rollback_disabl

e())

}

fn anti_rollback_disable(&self) -> bool {

self.soc_ifc.fuse_bank().anti_rollback_disable()

}

61 / 71 – Finding Details – ROM

https://github.com/chipsalliance/caliptra-sw/pull/911

Memory Not Cleared During Error Conditions

Overall Risk Informational

Impact None

Exploitability Low

Finding ID NCC-MSFT283-42W

Component ROM

Category Data Exposure

Status Fixed

Impact

Several function cleanup operations intended to fill certain memory buffers with zeroes were

bypassed if certain other functions returned error codes. Although it was observed that at

least one such error could be triggered by an attacker controlling the mailbox, none of the

specific affected values were determined to be sensitive. As a result, the finding has been

reported as informational.

However, the risk could be upgraded in future developments which apply a similar pattern to

more sensitive types of information.

Description

Several locations within the codebase failed to clear initialised memory blocks in the event

of early termination due to error conditions. One example of this behaviour is shown below.

Figure 39: caliptra-sw/rom/dev/src/flow/cold_reset/mod.rs:53-75

The above code contained two lines which ended with ? operators which, in the event that

the preceding function returned an error, would result in the current function terminating

immediately and propagating the error code. The subsequent cleanup calls to ldevid_layer_

output.zeroize() and fw_proc_info.zeroize() would not run in the even of such an error,

and subsequently the contents of those structures would remain in memory.

The FirmwareProcessor::process function referenced in the above code provided numerous

other opportunities to fail, the first occurring in the following code, which invoked the Firmwa

reProcessor::download_image function:

Figure 40: caliptra-sw/rom/dev/src/flow/cold_reset/fw_processor.rs:57

Info

pub fn run(env: &mut RomEnv) -> CaliptraResult<Option<FirmwareHandoffTable>> {

// ... Snipped for brevity

let fmc_layer_input = dice_input_from_output(&ldevid_layer_output);

// Download and validate firmware.

let mut fw_proc_info = FirmwareProcessor::process(env)?;

// Execute FMCALIAS layer

FmcAliasLayer::derive(env, &fmc_layer_input, &fw_proc_info)?;

ldevid_layer_output.zeroize();

fw_proc_info.zeroize();

let mut txn = Self::download_image(&mut env.soc_ifc, &mut env.mbox)?;

fn process_mailbox_commands<'a>(

soc_ifc: &mut SocIfc,

mbox: &'a mut Mailbox,

) -> CaliptraResult<ManuallyDrop<MailboxRecvTxn<'a>>> {

soc_ifc.flow_status_set_ready_for_firmware();

62 / 71 – Finding Details – ROM

Figure 41: caliptra-sw/rom/dev/src/flow/cold_reset/fw_processor.rs:126-172

This particular error would occur in response to an unexpected value in the mailbox

command register. Because the mailbox was potentially externally controllable, this

presented a means for an external entity to force a state in the ROM where data had not

been cleared after execution.

Similar behaviour was present in several other code fragments, which are referenced in the

Location section of this finding.

Recommendation

Ensure that sensitive data is cleared during both normal function execution flow and when

the function is prematurely exited.

In the cases identified within this finding, this could be accomplished by implementing the

Drop trait for the affected structures, which could call the zeroize method. Because

ownership of these values are not passed to another entity, the drop method will always

execute when the variable goes out of scope, which includes function exit due to an error.

If there is a need to keep the sensitive data within the buffer for only strictly as long as it is

needed, then drop could be explicitly called or the data could be zeroed before the

statements with the ? operator, or by using more verbose language to ensure that the data

is zeroed within each applicable execution branch which culminates in the end of function

execution. Examples of this can already be found in other parts of the code, such as the

following:

Figure 42: caliptra-sw/rom/dev/src/flow/cold_reset/fmc_alias.rs:59-61

Although the zeroize method is not used in this case, an equivalent method is highlighted

which will achieve a similar effect, but should be considered in light of finding "slice::fill(0)

Does Not Always Zero Memory".

Location

The following code locations point to a line that may prematurely exit a function via a ?

operator or another method. The subsequent line numbers in parentheses indicate the

zeroize calls that are bypassed.

caliptra-sw/rom/dev/src/flow/cold_reset/fmc_alias.rs : 82 (bypass 83)

caliptra-sw/rom/dev/src/flow/cold_reset/fmc_alias.rs : 102 (bypass 103)

caliptra-sw/rom/dev/src/flow/cold_reset/fmc_alias.rs : 185, 189, 192 (bypass 198, 212)

•

•

•

cprint!("[afmc] Waiting for Commands...");

loop {

if let Some(txn) = mbox.peek_recv() {

match CommandId::from(txn.cmd()) {

// .. Snipped for brevity

_ => {

cprintln!("Invalid command 0x{:08x} received", txn.cmd());

txn.start_txn().complete(false)?;

return Err(CaliptraError::FW_PROC_MAILBOX_INVALID_COMMAND);

}

let result = Self::derive_cdi(env, &measurement, KEY_ID_ROM_FMC_CDI);

measurement.0.fill(0);

result?;

63 / 71 – Finding Details – ROM

caliptra-sw/rom/dev/src/flow/cold_reset/idev_id.rs : 248, 250, 269, 272, 275 (bypass

254, 285, 286)

caliptra-sw/rom/dev/src/flow/cold_reset/ldev_id.rs : 186 (bypass 192, 207)

caliptra-sw/rom/dev/src/flow/cold_reset/mod.rs : 70, 73 (bypass 74, 75)

Retest Results

2023-10-12 – Fixed

This finding is fixed by the pull requests #868, #877 and #936.

•

•

•

64 / 71 – Finding Details – ROM

https://github.com/chipsalliance/caliptra-sw/pull/868
https://github.com/chipsalliance/caliptra-sw/pull/877
https://github.com/chipsalliance/caliptra-sw/pull/936

ROM Integrity Test Does Not Cover .data

Section

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-MSFT283-BQM

Component ROM

Category Security Improvement

Opportunity

Status Fixed

Impact

The ROM boot process includes an integrity test of the ROM itself that does not cover all of

the sections. While the firmware does not currently use .data , if/when it does in future, this

could become an oversight.

On integrity failure the boot process fails and on success the integrity hash is discarded (not

used for any measurements).

Description

On ROM boot, as a part of the FIPS tests, the following integrity test is executed.

Figure 43: caliptra-sw/rom/dev/src/main.rs:158-174

It calculates the SHA256 digest over the firmware, from 0x0 (ROM is loaded at this address)

to CALIPTRA_ROM_INFO . Similar code can also be seen in elf2rom() (caliptra-sw/builder/src/

lib.rs), where the ROM image is generated.

In the linker script, we can see there is actually more data stored in the ROM after

CALIPTRA_ROM_INFO .

Info

fn rom_integrity_test(env: &mut RomEnv, expected_digest: &[u32; 8]) -> CaliptraResult<()> {

// WARNING: It is undefined behavior to dereference a zero (null) pointer in

// rust code. This is only safe because the dereference is being done by an

// an assembly routine ([`ureg::opt_riscv::copy_16_words`]) rather

// than dereferencing directly in Rust.

#[allow(clippy::zero_ptr)]

let rom_start = 0 as *const [u32; 16];

let n_blocks = unsafe { &CALIPTRA_ROM_INFO as *const RomInfo as usize / 64 };

let digest = unsafe { env.sha256.digest_blocks_raw(rom_start, n_blocks)? };

cprintln!("ROM Digest: {}", HexBytes(&<[u8; 32]>::from(digest)));

if digest.0 != *expected_digest {

cprintln!("ROM integrity test failed");

return Err(CaliptraError::ROM_INTEGRITY_FAILURE);

}

Ok(())

}

. = ALIGN(64);

CALIPTRA_ROM_INFO = .;

} > ROM

.data : ALIGN(4)

{

_sidata = LOADADDR(.data);

65 / 71 – Finding Details – ROM

Figure 44: caliptra-sw/rom/dev/src/rom.ld:75-92

This means that integrity of the initial .data section will not be checked by

rom_integrity_test() .

While it is unusual for Rust code to have static or global initialised data (which would go into

.data section), ‘objdump’ confirmed the section was not empty when compiled for x86-64.

However, when compiled for riscv32imc, .data was empty. There are even indications that a

.data section would not work correctly with the current code because copying it from ROM

to DCCM is commented out32.

Recommendation

Modify the linker script to move CALIPTRA_ROM_INFO after all the other sections that are

present in ROM.

Retest Results

2023-10-09 – Fixed

Fixed with the pull request #928, as per the above recommendation.

_sdata = .;

/* Must be called __global_pointer$ for linker relaxations to work. */

PROVIDE(__global_pointer$ = . + 0x800);

(.sdata .sdata. .sdata2 .sdata2.*);

(.data .data.);

. = ALIGN(4);

_edata = .;

} > DATA AT> ROM

32. Caliptra startup code does not copy .data section

66 / 71 – Finding Details – ROM

https://github.com/chipsalliance/caliptra-sw/pull/928
https://github.com/chipsalliance/caliptra-sw/blob/release_v20230831_0/rom/dev/src/start.S#L118-L122

10 Finding Details – libcaliptra

TOCTOU Condition in File Read Leading to

Uninitialised Memory Buffer

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-MSFT283-VH3

Component libcaliptra

Category Timing

Status Fixed

Impact

Two instances of C code were observed which read the contents of a file without

sufficiently checking whether the number of bytes read matched the size of the allocated

buffer. This could result in the buffer partially containing uninitialised data, which in turn

could potentially leak sensitive information from previously freed memory within the process

address space.

One instance of the code was within a file used for automated testing purposes. However,

the other instance existed within an example project intended to instruct other developers in

integrating the Caliptra API with their products. Within that project, the function was used to

load a copy of the ROM and a copy of the FMC. Although it is expected that the integrity of

both would subsequently be verified by Caliptra and thus rejected if found to contain

uninitialised data, other concerns could emerge if developers were to re-use this example

code in other contexts posing greater risk.

Description

The “hwmodel” example code contained a function intended to read the contents of a file

into a memory buffer. This code is reproduced below:

Low

static struct caliptra_buffer read_file_or_exit(const char* path)

{

// Open File in Read Only Mode

FILE *fp = fopen(path, "r");

if (!fp) {

printf("Cannot find file %s \n", path);

exit(-ENOENT);

}

struct caliptra_buffer buffer = {0};

// Get File Size

fseek(fp, 0L, SEEK_END);

buffer.len = ftell(fp);

fseek(fp, 0L, SEEK_SET);

// Allocate Buffer Memory

buffer.data = malloc(buffer.len);

if (!buffer.data) {

printf("Cannot allocate memory for buffer->data \n");

exit(-ENOMEM);

}

// Read Data in Buffer

67 / 71 – Finding Details – libcaliptra

Figure 45: caliptra-sw/libcaliptra/examples/hwmodel/interface.c:27-54

A function named read_file_or_die with identical contents was also present at

caliptra-sw/hw-model/c-binding/examples/smoke_test.c:10-37 .

This code performed the following operations:

Using fopen , open a file in read-only mode

Using fseek and ftell , determine the size of the file

Using malloc , allocate a buffer in memory using the length

Using fread , read the file data into the buffer

Although the fread function accepted the full size of the allocated buffer, its return value,

which would have indicated the number of bytes actually read, was never checked. In the

event that the full expected data was no longer available, this meant that the fread function

would not have modified the buffer beyond what was available. This subsequent portion of

the buffer would therefore contain uninitialised data.

Recommendation

Check the return value of the fread function. If this value does not equal the size of the

allocated memory buffer, then free the buffer and return an error.

Retest Results

2023-10-09 – Fixed

Pull request #896 fixed this finding per the above recommendation.

•

•

•

•

fread((char *)buffer.data, buffer.len, 1, fp);

return buffer;

}

68 / 71 – Finding Details – libcaliptra

https://github.com/chipsalliance/caliptra-sw/pull/896

11 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these recommendations

are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a

small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability, as

well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

69 / 71 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

70 / 71 – Finding Field Definitions

12 Provided Materials

To facilitate this engagement, NCC Group leveraged the following public source code and

documentation resources.

Source Code

Caliptra ROM, FMC, Firmware

https://github.com/chipsalliance/caliptra-sw (release tag release_v20230831_0)

https://github.com/chipsalliance/caliptra-dpe (commit 76528b046e)

Caliptra RTL

https://github.com/chipsalliance/caliptra-rtl (commit 76d7c90fc8)

Documentation

Main Specification

https://github.com/chipsalliance/Caliptra/blob/f3ba3eaff457b66d53160a5b96136f32607304

c3/doc/Caliptra.md

ROM Specification

https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e

385e/rom/dev/README.md

FMC Specification

https://github.com/chipsalliance/caliptra-sw/tree/1bf2a1b600296da11c9c7ce7fb9115c4225e

385e/fmc#readme

Runtime Firmware Specification

https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e

385e/runtime/README.md

Hardware Specification

https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040

df43b/docs/Caliptra_Hardware_Specification.pdf

Integration Specification

https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040

df43b/docs/Caliptra_Integration_Specification.pdf

DICE Attestation Architecture Specification

https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture

_r22_02dec2020.pdf

DICE Protection Environment Specification

https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-

Specification_14february2023-1.pdf

•

•

71 / 71 – Provided Materials

https://github.com/chipsalliance/caliptra-sw/releases/tag/release_v20230831_0
https://github.com/chipsalliance/caliptra-dpe/tree/76528b046e903168e52f1247b282f1cad8975a60
https://github.com/chipsalliance/caliptra-rtl/tree/76d7c90fc8eab682519676e12d3e1599040df43b
https://github.com/chipsalliance/Caliptra/blob/f3ba3eaff457b66d53160a5b96136f32607304c3/doc/Caliptra.md
https://github.com/chipsalliance/Caliptra/blob/f3ba3eaff457b66d53160a5b96136f32607304c3/doc/Caliptra.md
https://github.com/chipsalliance/Caliptra/blob/f3ba3eaff457b66d53160a5b96136f32607304c3/doc/Caliptra.md
https://github.com/chipsalliance/Caliptra/blob/f3ba3eaff457b66d53160a5b96136f32607304c3/doc/Caliptra.md
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/rom/dev/README.md
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/rom/dev/README.md
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/rom/dev/README.md
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/rom/dev/README.md
https://github.com/chipsalliance/caliptra-sw/tree/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/fmc#readme
https://github.com/chipsalliance/caliptra-sw/tree/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/fmc#readme
https://github.com/chipsalliance/caliptra-sw/tree/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/fmc#readme
https://github.com/chipsalliance/caliptra-sw/tree/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/fmc#readme
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/runtime/README.md
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/runtime/README.md
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/runtime/README.md
https://github.com/chipsalliance/caliptra-sw/blob/1bf2a1b600296da11c9c7ce7fb9115c4225e385e/runtime/README.md
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Hardware_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Hardware_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Hardware_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Hardware_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Hardware_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Integration_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Integration_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Integration_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Integration_Specification.pdf
https://github.com/chipsalliance/caliptra-rtl/blob/76d7c90fc8eab682519676e12d3e1599040df43b/docs/Caliptra_Integration_Specification.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_DICE_Attestation_Architecture_r22_02dec2020.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf

	Title Page
	Table of Contents
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Positive Observations
	Strategic Recommendations

	Dashboard
	Table of Findings
	General
	DPE
	Drivers
	FMC
	ROM
	libcaliptra

	Finding Details – General
	CFI Assert Macros Offer Limited Glitching Protection
	Outdated Dependencies

	Finding Details – DPE
	Changes in Context Tree Affecting Behaviour in Other Branches
	Timing Side-Channel Exposes Context Handles
	DestroyCtx Command Can Corrupt Context Tree
	Multiple Ways to Exhaust DPE Context Handles
	Premature Context State Modification in DeriveChild
	ChildToRootIter Infinite Loop
	Test Code May Panic on Some Inputs
	Chunk Size and Certificate Size Misuse in GetCertificateChain Command
	Context Handles Not Rotated on Error
	CryptoBuf Can Be Partially Initialized
	DeriveChild Permits Context Handle to Coexist With the Default Context

	Finding Details – Drivers
	MailboxSendTxn drop() Handling Not Exhaustive
	Random Number Generation Iterator Potentially Returning Non-Random Values
	LMS Verifier Permitted Invalid q Value

	Finding Details – FMC
	Comment and Code Mismatch in derive_cdi
	Insufficient Validation of Memory Addresses

	Finding Details – ROM
	TOCTOU in SHA-512 Accelerator Lock Acquisition
	Premature Release of SHA-512 Accelerator Lock
	slice::fill(0) Does Not Always Zero Memory
	Buffer Overflow in PCR Logging
	Critical Functions Not CFI Protected
	Memory Not Cleared During Error Conditions
	ROM Integrity Test Does Not Cover .data Section

	Finding Details – libcaliptra
	TOCTOU Condition in File Read Leading to Uninitialised Memory Buffer

	Finding Field Definitions
	Risk Scale
	Category

	Provided Materials
	Source Code
	Documentation

