
Zcash NU5 Cryptography Review

Zcash
November 1, 2021

Prepared for
Sean Bowe
Jack Grigg
Daira Hopwood
Taylor Hornby
Ying Tong Lai
Kris Nuttycombe
Larry Ruane
Steven Smith

Prepared by
Parnian Alimi
Aleksandar Kircanski
Thomas Pornin

Executive Summary
Synopsis
In March 2021, Electric Coin Co. engaged NCC
Group to perform a review of the upcoming network
protocol upgrade NU5 to the Zcash protocol (code-
named “Orchard”). The review was to be performed
over multiple phases: first, the specification document
changes and the relevant ZIPs, then, in June 2021, the
implementation itself.

Scope
The scope of the specification review consisted of the
following:

• The Zcash protocol specification: https://zips.z.cas
h/protocol/nu5.pdf (reviewed version was 2021.1.19,
dated March 17th, 20211).

• The contents of ZIPs 216, 224, 225, 244 and 252, as of
March 15th, 2021:
– https://zips.z.cash/zip-0216
– https://zips.z.cash/zip-0224
– https://zips.z.cash/zip-0225
– https://zips.z.cash/zip-0244
– https://zips.z.cash/zip-0252

As for the implementation review, scope included:

• For ZIP 216:
– primary fix: https://github.com/zkcrypto/jubjub/tre
e/f192388f3cad327868db4e8a58582083f24ef09f

– fix integration in librustzcash: https://github.c
om/zcash/librustzcash/pull/396

– changes to consensus rules: https://github.com/z
cash/zcash/pull/5213

• For ZIP 224:
– Pallas and Vesta curves implementation: https://gi
thub.com/zcash/pasta_curves/tree/d8547d2326b
16b11b5c3e8ada231065111b51680

– support for RedPallas added into a fork of the redju
bjub crate: https://github.com/str4d/redjubjub/tre
e/d5d8c5f3bb704bad8ae88fe4a29ae1f744774cb2

– orchard crate: https://github.com/zcash/orchard/t
ree/93a7f1db228479228f768e9d86dd5868e4c2ff
1e with the exception of the “circuit” part.

– note encryption support (shared between Sapling
and Orchard): https://github.com/zcash/librustzcas
h/pull/358 and https://github.com/zcash/librustzc
ash/pull/390

– Orchard pool value tracking: https://github.com/z
cash/zcash/pull/5228

– Orchard proof verification consensus rules: https://

github.com/zcash/zcash/pull/5232
– signature validation consensus rules: https://github
.com/zcash/zcash/pull/5217

– block header commitments: https://github.com/z
cash/zcash/pull/5220

• For ZIP 225:
– Rust parser code: https://github.com/zcash/librust
zcash/pull/375 and https://github.com/zcash/libru
stzcash/pull/398

– C++ integration: https://github.com/zcash/zcash/p
ull/5202

• For ZIP 244:
– transaction digest components: https://github.com
/zcash/librustzcash/pull/375

– transaction and signature digests: https://github.c
om/zcash/zcash/pull/5215 and https://github.com
/zcash/zcash/pull/5219

• ZIP 316 specification (https://zips.z.cash/zip-0316)
and implementation (https://github.com/zcash/libru
stzcash/pull/383 and https://github.com/zcash/librust
zcash/pull/352) were added to the scope in the second
phase.

Limitations
While NCC Group Cryptography Services completed the
scope of the security audit there were some challenges
with scope adjustments and code not being finalized at
the start of the implementation review phase.

Findings and Strategic Recommendations
No serious issue was detected during the review. Some
potential issues were reported, but cannot be triggered
in the current implementation and the intended usage
context; they might induce vulnerabilities later on if
some library code were later reused in a different
context (e.g. improper implementation of the random
point selection function for the iso-Pallas and iso-Vesta
curves; see finding NCC-E001151-002 on page 6).

A description of the audit process and some relevant
remarks have been assembled in Appendix B onpage 13
for the specification review, and Appendix C on page 18
for the implementation review. None of these remarks
constitutes a security vulnerability, but they are still
worth mentioning and can be viewed as software
engineering issues impacting long-term readability and
maintenance of the code. Most of them relate to
cases of dead code, duplicated code, or ambiguous (or
lacking) documentation.

1Document hash (SHA-256): fcfe26c583a23d9990bf3fdd836e86e7d8ecd1c89c5882a0516517ba65d21216

2 | Zcash NU5 Review NCC Group

https://zips.z.cash/protocol/nu5.pdf
https://zips.z.cash/protocol/nu5.pdf
https://zips.z.cash/zip-0216
https://zips.z.cash/zip-0224
https://zips.z.cash/zip-0225
https://zips.z.cash/zip-0244
https://zips.z.cash/zip-0252
https://github.com/zkcrypto/jubjub/tree/f192388f3cad327868db4e8a58582083f24ef09f
https://github.com/zkcrypto/jubjub/tree/f192388f3cad327868db4e8a58582083f24ef09f
https://github.com/zcash/librustzcash/pull/396
https://github.com/zcash/librustzcash/pull/396
https://github.com/zcash/zcash/pull/5213
https://github.com/zcash/zcash/pull/5213
https://github.com/zcash/pasta_curves/tree/d8547d2326b16b11b5c3e8ada231065111b51680
https://github.com/zcash/pasta_curves/tree/d8547d2326b16b11b5c3e8ada231065111b51680
https://github.com/zcash/pasta_curves/tree/d8547d2326b16b11b5c3e8ada231065111b51680
https://github.com/str4d/redjubjub/tree/d5d8c5f3bb704bad8ae88fe4a29ae1f744774cb2
https://github.com/str4d/redjubjub/tree/d5d8c5f3bb704bad8ae88fe4a29ae1f744774cb2
https://github.com/zcash/orchard/tree/93a7f1db228479228f768e9d86dd5868e4c2ff1e
https://github.com/zcash/orchard/tree/93a7f1db228479228f768e9d86dd5868e4c2ff1e
https://github.com/zcash/orchard/tree/93a7f1db228479228f768e9d86dd5868e4c2ff1e
https://github.com/zcash/librustzcash/pull/358
https://github.com/zcash/librustzcash/pull/358
https://github.com/zcash/librustzcash/pull/390
https://github.com/zcash/librustzcash/pull/390
https://github.com/zcash/zcash/pull/5228
https://github.com/zcash/zcash/pull/5228
https://github.com/zcash/zcash/pull/5232
https://github.com/zcash/zcash/pull/5232
https://github.com/zcash/zcash/pull/5217
https://github.com/zcash/zcash/pull/5217
https://github.com/zcash/zcash/pull/5220
https://github.com/zcash/zcash/pull/5220
https://github.com/zcash/librustzcash/pull/375
https://github.com/zcash/librustzcash/pull/375
https://github.com/zcash/librustzcash/pull/398
https://github.com/zcash/librustzcash/pull/398
https://github.com/zcash/zcash/pull/5202
https://github.com/zcash/zcash/pull/5202
https://github.com/zcash/librustzcash/pull/375
https://github.com/zcash/librustzcash/pull/375
https://github.com/zcash/zcash/pull/5215
https://github.com/zcash/zcash/pull/5215
https://github.com/zcash/zcash/pull/5219
https://github.com/zcash/zcash/pull/5219
https://zips.z.cash/zip-0316
https://github.com/zcash/librustzcash/pull/383
https://github.com/zcash/librustzcash/pull/383
https://github.com/zcash/librustzcash/pull/352
https://github.com/zcash/librustzcash/pull/352

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 11.

Title Status ID Risk
Insufficient Checks in Unified Address Parser Fixed 004 Medium
Incorrect Random Point Generation and Decoding on Isogenous Curves Reported 002 Low
Non-Constant-Time Operations in Pasta Curves Reported 003 Low

3 | Zcash NU5 Review NCC Group

Finding Details
Finding Insufficient Checks in Unified Address Parser

Risk Medium Impact: Low, Exploitability: Low

Identifier NCC-E001151-004

Status Fixed

Category Data Validation

Component librustzcash

Location components/zcash_address/src/kind/unified.rs, line 90

Impact Failure to reject Unified Addresses (UA) that include more than one address type can lead to
ambiguous choice of receiver address.

Description ZIP 316 clearly states that the “Senders MUST reject Unified Addresses in which the same
Typecode appears more than once, or that include both P2SH and P2PKH Transparent Ad-
dresses, or that contain only a Transparent Address”. The unified address parser (used by
the sender’s wallet) parses the input as a sequence of Tag-Length-Values, but does not check
if A) an address type is repeated, B) P2SH and P2PKH are both present, and C) at least one
shielded address is included. This can be seen in the code below.

90 fn try_from(buf: &[u8]) -> Result<Self, Self::Error> {
91 let encoded =

f4jumble::f4jumble_inv(buf).ok_or(ParseError::InvalidEncoding)?;
92

93 // Validate and strip trailing zero bytes.
94 let encoded = match encoded.split_at(encoded.len() - PADDING_LEN) {
95 (encoded, tail) if tail == &[0; PADDING_LEN][..] => Ok(encoded),
96 _ => Err(ParseError::InvalidEncoding),
97 }?;
98

99 iter::repeat(())
100 .scan(encoded, |encoded, _| match encoded {
101 // Base case: we've parsed the full encoding.
102 [] => None,
103 // The raw encoding of a Unified Address is a concatenation of:
104 // - typecode: byte
105 // - length: byte
106 // - addr: byte[length]
107 [typecode, length, data @ ..] if data.len() >= *length as usize => {
108 let (addr, rest) = data.split_at(*length as usize);
109 *encoded = rest;
110 Some(Receiver::try_from((*typecode, addr)))
111 }
112 // The encoding is truncated.
113 _ => Some(Err(ParseError::InvalidEncoding)),
114 })
115 .collect::<Result<_, _>>()
116 .map(Address)
117 }

The loop on line 99 scans, decodes, and appends receiver addresses to the Address list
without performing any checks. As a consequence, it is ambiguous which address the caller
of this API (Sender wallet) will use to create the transaction. In order to exploit this, an active
attacker has to decode the UA and insert their address at the index they predict the sender

4 | Zcash NU5 Review NCC Group

https://github.com/zcash/librustzcash/blob/4ac5977c913ab123eea5ee4323b170e0ff659c8f/components/zcash_address/src/kind/unified.rs#L90

wallet will prefer. This is not easier than simply replacing receiver’s UA with the malicious UA,
thus the exploitability of this finding is low.

Recommendation Adapt the Unified Address parser to check that there are at most one of each address types
in the input and there is at most one type of transparent address present.

Retest Results NCC Group reviewed Pull Request 416 and observed that the Address construction API is
updated. With this fix, an Address can be constructed from:

1. A vector of Receivers (via the TryFrom<Vec< Receiver > > API), which returns an error if
any of the 3 checks mentioned in this finding do not pass.

Or, 2. A byte array (via the TryFrom<&[u8]> API) which first parses the input into an array of
Receivers and if successful, constructs the Address from it.

Since an Address can only be constructed after passing required checks, this finding has been
marked as Fixed.

5 | Zcash NU5 Review NCC Group

https://github.com/zcash/librustzcash/pull/416
https://github.com/zcash/librustzcash/blob/b875f6c34b1677abc35fa3f43eb4e3fc21626ec6/components/zcash_address/src/kind/unified.rs#L240
https://github.com/zcash/librustzcash/blob/b875f6c34b1677abc35fa3f43eb4e3fc21626ec6/components/zcash_address/src/kind/unified.rs#L207

Finding Incorrect Random Point Generation and Decoding on Isogenous Curves

Risk Low Impact: Undetermined, Exploitability: None

Identifier NCC-E001151-002

Status Reported

Category Cryptography

Component pasta_curves

Location pasta_curves/src/curves.rs, lines 69 and 633

Impact Invalid curve points may be created if decoding from bytes or random point generation are
used on the isogenous curves (iso-Pallas and iso-Vesta). Since the implementations of these
curves only have crate visibility, and none of the crate code invokes these functionalities, this
issue cannot be triggered in the present state of the code.

Description The new_curve_implmacro defines the implementation of all functions attached to the struc-
ture types that implement a given curve (in Jacobian and affine coordinates); this is used for
the Pallas and Vesta curves, and their isogenous counterparts iso-Pallas and iso-Vesta. Among
these functions are the following:

• random() generates a random non-neutral curve point.
• from_bytes() decodes a sequence of 32 bytes into a curve point.

random() uses rejection sampling: a candidate x coordinate is produced as a random field
element; the curve equation is then used to compute y2 from x. If that value is indeed a
quadratic residue, a square root is extracted (and an extra random bit is used to choose its
sign); otherwise, the process loops with a new candidate x coordinate. The curve equation is
nominally y2 = x3 + ax+ b for two given constants a and b. However, the random() function
only uses b:

let x3 = x.square() * x;
let y = (x3 + $name::curve_constant_b()).sqrt();

Thus, the candidate y2 is computed as x3 + b; this assumes that a = 0. This is true for the
Pallas and Vesta curves (which both have equation y2 = x3+5), but not for iso-Pallas and iso-
Vesta, who both have non-zero a. For these isogenous curves, the random() function would
generate points which are not part of the curve.

Similarly, from_bytes() decodes the x coordinate from the provided bytes and computes y2
using the curve equation, again assuming that a = 0:

let x3 = x.square() * x;
(x3 + $name::curve_constant_b()).sqrt().and_then(// ...

On iso-Pallas and iso-Vesta, from_bytes() would decode incoming bytes into an incorrect
point, not the intended one (and not even a point on the curve).

The iso-Pallas curve structures (IsoEp and IsoEpAffine) are declared with pub(crate) vis-
ibility; the same applies to the iso-Vesta structures (IsoEq and IsoEqAffine). Thus, their
random() and from_bytes() functions may be invoked only from the same crate, and none
of the crate code currently calls these functions. The issue described above thus cannot be
triggered with the pasta_curves crate as currently implemented. However, the issue may

6 | Zcash NU5 Review NCC Group

resurface in a future version, if for some reason the isogenous curves are made part of the
public API.

Recommendation The random() and from_bytes() functions can be easily fixed to take the a curve param-
eter into account, so that they are correct for the isogenous curves as well. The extra cost
induced by the multiplication by a is negligible with regard to the cost of the square root that
immediately follows (a square root cost is about 200 to 250 times that of a multiplication).

7 | Zcash NU5 Review NCC Group

Finding Non-Constant-Time Operations in Pasta Curves

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-E001151-003

Status Reported

Category Cryptography

Component pasta_curves

Location pasta_curves/src/curves.rs
pasta_curves/src/fields/fp.rs
pasta_curves/src/fields/fq.rs
pasta_curves/src/arithmetic/fields.rs

Impact Non-constant-timeprocessingmay leak secret information through timing-based side-channels
if operating on secret inputs. Since the pasta_curves API is seemingly aiming at constant-
time processing, but does not actually provide that feature, users of these crate in contexts
such as key exchange or signature generation may unknowingly be vulnerable to timing
attacks.

Description The API of the Pasta curves implementation does not formallymake any assertion of the intent
of providing constant-time functions. However, it does not contain any disclaimer either;
moreover, the API and the code structure contain strong hints that constant-time behaviour
is or at least has been a goal:

• The field structures (Fp and Fq) and the curve structures (Ep, EpAffine…) implement the
ConstantTimeEq trait (promising constant-time equality comparisons).

• Many functions that have failure conditions on invalid input use the CtOption type, im-
ported from the subtle crate; its documentation explicitly states that it is intended to be
used “in constant-time APIs”.2 Similarly, the Choice type from the subtle create is also used
in several places.

• The to_bytes() function (on an affine curve point) includes an explicit comment “TODO:
not constant time” which indicates that constant-time behaviour is intended (but not yet
implemented) for this specific function.

• The point multiplication routine (mul()) uses a double-and-add algorithm, with the addition
computed for every scalar bit, the result being kept or not through a constant-time condi-
tional selection primitive. This is substantially more expensive than using a conditional jump
to perform the addition only when the corresponding scalar bit is equal to 1; the extra cost
makes sense only if constant-time processing is intended.

However, the implementation fails to be constant-time in several places:

• The cmp() function for field elements uses lexicographic ordering on the binary represen-
tations of the field elements. The comparison is done on a byte-by-byte basis and stops at
the first differing byte values; this is not constant-time.

• The square root implementation in finite fields uses Sarkar’s method3 to optimize the final
part of the operation in the specific fields used by Pasta curves. This method relies on
precomputed tables, and accesses are performed at data-dependent addresses. This is
inherently non-constant-time.

• The curve point addition routine uses conditional jumps to handle the exceptional cases
2https://docs.rs/subtle/2.3.0/subtle/struct.CtOption.html
3https://eprint.iacr.org/2020/1407

8 | Zcash NU5 Review NCC Group

https://docs.rs/subtle/2.3.0/subtle/struct.CtOption.html
https://eprint.iacr.org/2020/1407

that are not handled correctly by the point addition formulas on short Weierstraß curves in
Jacobian coordinates (namely adding the point-at-infinity to a non-infinity point, and adding
a point to another representation of itself). Execution time and memory access pattern will
differ when these cases are encountered.

• Curve point decoding (from_bytes()), random point selection (random()), and hash-to-
curve operations all use square root computations and thus inherit the non-constant-time
behaviour. The hash-to-curve operation also ends with a point addition (the results of two
distinct map-to-curve invocations are added together) which may conceptually hit one of
the addition exceptional cases, albeit with a negligible probability.

• Point multiplication by a scalar (mul() functions on both Jacobian and affine structures)
uses a double-and-add algorithm. The accumulator point (acc variable) is initialized with
the point-at-infinity; thus, all point additions in the loop will exercise the special case of
adding a point to the point-at-infinity, up to the first non-zero bit in the scalar (in high-to-
low order). Since the special case of point addition has a much shorter execution time, the
overall execution time of mul() will leak the actual binary length of the scalar; in an ECDSA
or Schnorr signature generation context, this leak would be a very serious vulnerability.

• Point encoding (to_bytes() function) has a special case for the point-at-infinity (this non-
constant-time behaviour is acknowledged in an internal code comment).

In the main intended usage context of the Pasta curves, i.e. verification of Halo 2 proofs,
there is no secret value, and side-channel leakages are irrelevant. In that context, none of
the above matters. However, for generation of such proofs, secret values are used, and side-
channel resistance matters, unless the overall operational context is such that proof genera-
tion can be assumed to happen on physical systems that cannot be observed by attackers.

Recommendation The pasta_curves crate should explicitly document its stance with regard to constant-time
implementations. If constant-time behaviour is not an intended feature of the code, then
there should be disclaimers to that effect, especially for the documentation of API functions
that appear to aim at constant-time behaviour (e.g. through the use of a constant-time prim-
itive such as CtChoice).

In order to make the whole crate constant-time, the following changes would be needed:

• Square root extractionmust be changed into a constant-time routine. Using Sarkar’smethod-
ology, this can be achieved by producing the final 32-bit exponent t bit by bit instead of
using 8-bit chunks. This would involve some extra computational overhead to the square
root operation, though probably not in catastrophic amounts.

• Curve point addition must be made constant-time. A simple way would be to use projective
coordinates with Renes-Costello-Batina formulas,4 which are complete as long as the curve
has odd order (which is the case for the Pasta curves).

• For the specific operation of point multiplication of a curve point by a scalar, the constant-
time complete addition routine can be used. Alternatively, Jacobian coordinates can still be
leveraged to improve performance, using the following method:
– The source point can be converted to Jacobian coordinates when entering the function,
and converted back on output, if the overall representation format uses projective coor-
dinates (these conversions are relatively inexpensive).

– The scalar is nominally a modular integer (modulo q for points on the Pallas curve). It can
be converted into an integer n in the 0 to q−1 range; the integer n′ = n+2q can then be
used as an equivalent scalar value. This alternate integer is such that 2255 < n′ < 2256,
which guarantees that n′, as a 256-bit integer, starts with a 1. This removes the issue with
the accumulator containing the point-at-infinity.

4https://eprint.iacr.org/2015/1060

9 | Zcash NU5 Review NCC Group

https://eprint.iacr.org/2015/1060

– In the double-and-add algorithm, it can be shown that none of the point additions for
the first 253 steps may hit one of the exceptional cases of Jacobian coordinates formulas.
Only for the final bits should the implementation revert to projective coordinates and use
the complete routines.

• The cmp() (on fields) and to_bytes() functions (on curve points) can be made constant-
time in straightforward ways.

10 | Zcash NU5 Review NCC Group

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

11 | Zcash NU5 Review NCC Group

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

12 | Zcash NU5 Review NCC Group

Appendix B: Protocol Specification andZIPs Review

This appendix documents the notes and comments that were presented in the first phase of the NU5 Zcash release
review, which focused solely on the specification and accompanying ZIPs, as outlined by the NU5 release web page.
At this stage, NCC Group consultants looked at the specification and a subset of the ZIPs in scope.

Specification review
In this section, we list remarks on the specification itself. None is a security issue per se, but they were deemed worth
reporting nonetheless, if only because they may create confusion in readers or have otherwise detrimental indirect
effects. They are listed below in order of appearance in the specification document nu5.pdf.5 Not included are the
multiple places marked as TODO or broken references to sections that do not exist yet (NCC Group assumes that
these placeholders will be systematically searched for and completed before the formal release of the NU5 protocol
specification).

• Section 4.11.1 (page 30): “reasonble” is a typo for “reasonable”
• Section 4.14 (page 50): in vbalanceOrchard, the word “Orchard” is unduly in bold font (in the LaTeX source, \vBalance
{\Orchard} is used, but it should probably be \vBalance{Orchard}).

• Section 5.2 (page 67): some spaces are missing in “SaplingandOrchard”
• Section 5.4.1.9 (page 75): value c is defined as “the largest integer such that 2n ≤ (rP − 1)/2”. This “2n” should be
“2c”.

• Section 5.4.1.9 (page 75): the incomplete addition operator is incompletely defined, since its output can be the
special no-value ⊥, which may then be used as input to other applications of the incomplete addition operator.
Similarly, SinsemillaHash is defined as applying ExtractP on the output of SinsemillaHashToPoint. This last function
normally outputs a point on P (the Pallas curve) but it may also conceptually return ⊥, and ExtractP is not defined
for an input of ⊥ (page 97). The intent was probably to make ⊥ an alias to OP.

• Section 5.4.2 (page 79): the formula defines the PRF output as Poseidon(nk, ρ), but the Poseidon function was not
defined (the function is called PoseidonHash).

• Section 5.4.4 (page 80): the FF1 encryptionmode for format preserving encryption is used. Thismodewas originally
created by Voltage (which was later acquired by HP) and submitted to the NIST standardization process for NIST SP
800-38G.6 A “letter of assurance”7 was sent by Voltage to signify their intent, in case their submission (called FFX in
the letter) were to be selected for inclusion in the NIST standard, to “make available a non-exclusive license, under
reasonable rates with or without compensation” for use of their relevant patents. FFX was included in NIST SP 800-
38G, as FF1. Therefore, the current intellectual property status of FF1 is unclear. NCC Group recommends that
Electric Coin performs some additional legal analysis to ascertain the limitations that may arise from the use of FF1
in the NU5 protocol specification.

• Section 5.4.9.6 (page 96): the offered definition of a short Weierstrass elliptic curve, as a curve of equation y2 =

x3 + a ·x+ b for two field elements a and b such that 4 · a3 +27 · b2 ̸= 0, is valid only for finite fields of characteristic
different from 2 and 3. For fields with characteristic 2 or 3, notions of “short Weierstrass curve” have been defined,
but with different equation formats.

• Section 5.4.9.6 (page 96): the text usesGwithout introducing it. NCCGroup recommends the addition of a sentence
such as “Let G be either P or V” as is done in section 5.4.9.8.

• Section 5.4.9.6 (page 96): the text implicitly switches between integers and field elements. For instance, the
encoding of a point into bits uses “x+ 2255 · ỹ”, which should be computed over the integers (N), not the finite field
in which the point coordinates are defined (though the expression is mathematically defined in the finite field); a few
lines later, a square root is extracted from the value “x3 + bG”, an expression which, this time, must be evaluated
in the finite field. Explicit conversions between finite field elements and integers would help clarify the intent for
implementers.

• Section 5.4.9.6 (page 98): In the sentence: “Define abstG […] such that abstJ(P⋆) is computed as follows”, the second
“abstJ” should be “abstG”.

5https://zips.z.cash/protocol/nu5.pdf, retrieved on 2021-03-19, SHA-256 = fcfe26c583a23d9990bf3fdd836e86e7d8ecd1c89c5882a0516517ba65d
21216
6https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
7https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-voltage-ip.pdf

13 | Zcash NU5 Review NCC Group

https://electriccoin.co/blog/nu5-proposed-features/
https://zips.z.cash/protocol/nu5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/proposed-modes/ffx/ffx-voltage-ip.pdf

• Section 5.4.9.8 (page 98): the proposed hash_to_field is supposed to align on the hash-to-curve draft8; this intent
is explicitly stated on page 99. However, the NU5 specification diverges from the hash-to-curve draft in two respects:
– The padding sequence “[0x00]64” is a sequence of 64 bytes of value zero; it corresponds to the value Z_pad of
the draft (section 5.4.1). However, the draft makes that string have the same length as the internal block size of
the hash function used. Here, the hash function used is BLAKE2b-512, whose internal block size is 128 bytes (16
words of 64 bits, see RFC 76939). Thus, the padding sequence should have length 128 bytes, not 64.

– As per the hash-to-curve draft, extraction of each field element should use a sequence of L = ceil((ceil(log
2(p)) + k) / 8) bytes, with p being the field size, and k the “claimed security level” of the curve. For the Pallas
and Vesta curves, p is slightly above 2254. The proposed hash_to_field specification uses 64 bytes for each of the
two field elements, which would imply a claimed security level k between 250 and 257 bits. This is way more than
the theoretical resistance of the curves against generic attacks; Electric Coin’s own blog explicitly claims “126-bit
security against Pollard rho attacks”.10

• Section 5.4.9.8 (page 99): the text defines the output space of sqrt_ratio to be the finite field FqG , but then imme-
diately offers formulas that output a pair of values (a finite field element and an integer of value 0 or 1).

• Section 5.4.9.8 (page 99): the value λG is not provided anywhere in the specification. This is normal (the value van-
ishes through the computations, so the actual choice has no impact on the final output ofmap_to_curve_simple_swu),
but this is not obvious and should probably be made explicit somewhere in the text.

• Section 5.4.9.8 (page 100): the input string D to GroupHash is formally a byte sequence of arbitrary length, but it
is in practice limited because the total size of DST must not exceed 255 bytes (the operations in the hash-to-curve
draft can use an arbitrary length domain separation tag through the use of an extra hashing operation when the
tag is too large, but this specific construction has not been retained in the NU5 specification, which is thus limited
to tags of 255 bytes or fewer).

• Section 7.1 (page 117): in the consensus rules, some spaces aremissing after flagsOrchard, after enableSpendsOrchard
(three times), and before spendAuthSig. Also, the second enableSpendsOrchard should be enableOutputsOrchard
since that sentence is output transaction outputs. Finally, a “216” should be “216”.

• Section 7.3 (page 119): a space is missing before spendAuthSig.

ZIPs review
NCC Group reviewed the following ZIPs: 216, 224, 225, 244 and 252. As for ZIP 252, it describes the deployment of
the NU5 upgrade and NCC Group has not found any issues with it. See the review of the remaining ZIPs below.

ZIP 216
ZIP 216 modifies the rules concerning non-canonical encodings of some Jubjub points. Initially, the decoding function
(abstJ) rejected any non-canonical encoding, but it was found that this did not match the behaviour of the imple-
mentation (zcashd), which accepted two non-canonical encodings, for point (0, 1) and (0,−1). The specification was
thus amended in July 2020 to align with the implementation.11 This behaviour was later found to be inconvenient
for implementations, since consistency across decoding/encoding then requires maintaining the encoding variant
information; a failure to do so was deemed likely to be undetected, and may lead to inadvertent forks. ZIP 216
thus reinstantiates the enforcement of canonical encodings, with a scheduled application at the activation height of
Orchard.

ZIP 216 contains a list of references to the “orchard.pdf” file, which does not exist yet; these links are thus (currently)
broken, but will become valid when the Orchard PDF file is published. The text of references [6] to [9], however, is
incorrect in that it contains the wrong section number, because section numbering changed in the most recent drafts
of the protocol specification. The following mappings should be applied:

• Reference [6] (Jubjub): 5.4.8.3→ 5.4.9.3
• Reference [7] (Pallas and Vesta): 5.4.8.6→ 5.4.9.6

8https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10
9https://tools.ietf.org/html/rfc7693#section-2.1
10https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
11https://github.com/zcash/zips/commit/154da511c63f270427ae38efb693824f52f8900b

14 | Zcash NU5 Review NCC Group

https://zips.z.cash/zip-0216
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10
https://tools.ietf.org/html/rfc7693#section-2.1
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://github.com/zcash/zips/commit/154da511c63f270427ae38efb693824f52f8900b

• Reference [8] (Sapling Payment Addresses): 5.6.4→ 5.6.3.1
• Reference [9] (Sapling Full Viewing Keys): 5.6.7→ 5.6.3.3

In the “Specification” section, the following intent is expressed:

The above is intended to be a complete list of the places where compressed encodings of Jubjub points
occur in the Zcash consensus protocol and in plaintext, address, or key formats.

Such a guarantee cannot be ensured indefinitely, unless the ZIP contents are actively updated tomatch future protocol
versions, which would prevent the ZIP from reaching “Final” status. It might be more robust to indicate explicitly that
the provided list relates to the Zcash consensus protocol at the time of Orchard activation.

ZIP 224
ZIP 224 specifies the use of the new Orchard shielded protocol. The protocol itself is not described in details in the
ZIP; the complete description is in the network protocol document itself, with explanations and additional material in
the halo2 and Orchard books, to which the ZIP links. The following remarks can be offered:

• In the “Nullifiers” section, the meaning of p in the formula is not defined. In the protocol specification, this is qP,
i.e. the coordinate field of the Pallas curve; crucially, it is not the scalar field of Pallas, a non-trivial point that the
protocol document specifically highlights, but that ZIP 224 glosses over. (This remark also applies to the Orchard
book, section 3.5.)

• ZIP 224 uses (twice) the string “c/f” as an abbreviation for the Latin verb conferatur. The correct abbreviation is: “cf.”.
• In “Commitments”, the previous commitment mechanism is referred to as “Bowe--Hopwood” with two dash signs,
but in “Commitment tree” a single dash sign is used instead, which is inconsistent.

• In “Proving system”, the link to the Halo 2 protocol is missing (it is specified as “TODO”).
• Due to changes in the draft specification document, section numbering has been modified, and some references in
the table of references of ZIP 224 are now off:
– Reference [6] (Mainnet and Testnet): 3.11→ 3.12
– Reference [14] (RedDSA, RedJubjub, and RedPallas): 5.4.6→ 5.4.7
– Reference [15] (Sinsemilla commitments): 5.4.7.4→ 5.4.8.4
– Reference [16] (Pallas and Vesta): 5.4.8.6→ 5.4.9.6
– Reference [17] (Group Hash into Pallas and Vesta): 5.4.8.8→ 5.4.9.8
– References [18] to [21] point to sections 5.6.4.1 to 5.6.4.4 for encodings of Orchard addresses and keys; in
the current specification draft, there are now five sections (5.6.4.1 to 5.6.4.5) that also describe the new unified
payment address format, that Orchard addresses leverage.

ZIP 225
ZIP 225 lays out the V5 transaction format together with modifications to the transaction ID and signature digest
specified in ZIP 244 . The new transaction format supports already existing pools and adds fields specific to Orchard.
As mentioned, since the transaction structure is extended, this ZIP depends on ZIP 244 which specifies new methods
for computing the transaction ID and Authorizing Data Commitments.

The following issues in the context of ZIP 225 can be observed:

• In new transaction format table on p. 114, the NU5 specification outlines that the size of vSpendsSapling and
vOutputsSapling fields is 362*nSpendsSapling and 948*nOutputsSapling, respectively. This is different than
in ZIP 225, which specifies the sizes of those fields as 128*nSpendsSapling and 756*nOutputsSapling. In V5
transactions, the size of the SpendDescriptionV5 type is 96 bytes, since it contains three 32-byte values, according
to the ZIP and section 7.3 of the spec. As for the OutputDescriptionV5 type, the ZIP is correct in what the actual
size is, however the spec includes fields that are only present in V4. NCC Group suggests updating the ZIP and the
table on p. 114 of the spec to reflect the correct sizes.

• In ZIP 225, just below the transaction field table, valueBalanceSapling, anchorSapling, and bindingSigSapling
fields are mentioned to be present if and only if nSpendsSapling + nOutputsSapling > 0. On the other hand,

15 | Zcash NU5 Review NCC Group

https://zips.z.cash/zip-0224
https://zcash.github.io/halo2/
https://zcash.github.io/orchard/
https://zcash.github.io/orchard/design/nullifiers.html
https://zips.z.cash/zip-0225
https://zips.z.cash/zip-0244

the NU5 specification on p. 114 also includes vSpendProofsSapling, vSpendAuthSigsSapling and vOutputProo
fsSapling under that same condition, which appears to be a discrepancy between the spec and ZIP 225. Now, in
the ZIP, vSpendProofsSapling and vSpendAuthSigsSapling are conditioned to have a 1:1 correspondence to the
elements of vSpendsSapling and as for vOutputProofsSapling, it is conditioned to have a 1:1 correspondence to
vOutputsSapling. However, the two 1:1 conditions aren’t equivalent with the nSpendsSapling + nOutputsSapl
ing > 0 stated in the spec. In particular, the conditions in ZIP 225 do not explicitly state whether the field is present
or not and, when it comes to the spec, it does not include the 1:1 condition and the sorting requirement. NCC Group
suggests unifying the two sets of conditions in both the spec and ZIP 225.

• Onpage 114, the NU5 specification lists a number of action-related fields as present if and only if nActionsOrchard
> 0. ZIP 225 does the same, but excludes the following fields: flagsOrchard, sizeProofsOrchard, proofsOrchard
and vSpendAuthSigsOrchard. The ZIP does not mention any restrictions on flagsOrchard and proofsOrchard.

• In the “Orchard Action Description” section of ZIP 225, ephemeralKey is described to be a Pallas public key, while
the spec states this is a Jubjub key. The spec should be corrected to state this is a Pallas key.

• ZIP 225 names the least significant and next to least significant bit inside the flagsOrchard as spendsEnable
dOrchard and outputsEnabledOrchard, respectively. These bits are referred to differently in the specification:
enableSpendsOrchard and enableOutputsOrchard

• In the “Sapling Output Description” section in ZIP 225, the data type of the outCiphertext “bytes” and “data type”
columns don’t match. The bytes field is stated to be 80 and data type byte[580]. The similar issue exists in the
Orchard Action Description section of the same ZIP.

• The § symbol is used to refer to sections inside the NU5 spec, however this is not explicitly stated before the first
such reference.

ZIP 244
In ZIP 244, the transaction ID computation ismodified to exclude attestations to transaction validity, such as transaction
signatures and proofs. In addition, a new way of computing the transaction digest for signature validation is specified.
Finally, an existing block field is repurposed to contain new transaction commitments. It should be noted that ZIP 244
is Orchard-agnostic and that Orchard-specific amendments to transaction ID and signature hash can be found in ZIP
225 (Version 5 Transaction Format).

It is worth observing that:

• The ZIP 244 Requirements section contains a requirement that’s not satisfied. The requirement is: “It should be
possible to use the transaction id unmodified as the value that is used to produce a signature hash in the case that
the transaction contains no transparent inputs, or in the case that only the SIGHASH_ALL flag is used.”. However, if
the transaction has transparent inputs and only SIGHASH_ALL flag is used, the transaction ID and signature hash
will still not be the same. This is since the txin_sig_digest intermediate hash will be non-empty as long as there
are transparent inputs, regardless of the actual signature flag used.

• Inside ZIP 225’s section that’s relevant to ZIP 244, there is an omitted field inside the signature_digest section.
The sprout_digest is mentioned in the tree inside the Signature Digest section of ZIP 225, but not right next
below in the signature_digest subsection.

• The flagsOrchard field does not participate in a transaction’s signature hash. The flags control whether Orchard
spends or outputs are enabled or not. In a transaction that’s already without Orchard spends, it’s possible to toggle
the enableOrchardSpends flag without knowing any secrets. There do not appear to be any issues with this, since
the transaction intent is not modified in any way. Note: As per the Zcash team, this flag was intended to participate
inside the signature hash and the reviewed ZIP will be modified to reflect that.

ZIP 316
ZIP 316 bundles the transparent addresses (P2PKH and P2SH), and shielded addresses (i.e. Sapling and Orchard as
of NU5) into a unified address encoding. With this approach the Receiver/Producer wallet will send its preferred ad-
dresses to the Sender’s wallet and allows them to pick their preferred address type. This simplifies the communication
between the Sender and Receiver, and allows wallets to be compatible with a range of older and newer wallets. By
design, wallets that upgrade to support unified address format will ignore address types that they do not recognize,

16 | Zcash NU5 Review NCC Group

https://zips.z.cash/zip-0244
https://zips.z.cash/zip-0316

which will result in forward compatibility as more address types are introduced.

The Open Issues and Known Concerns and Reference implementation sections of ZIP 316 are left as TODO.

ZIP 316 corresponds with section 5.6.4 of NU5 specification.

• It is mentioned that one of the goals of the unified addresses is to “Provide a “bridging mechanism” to allow shielded
wallets to successfully interact with conformant Transparent-Only wallets.”, however the ZIP does not describe how
this bridging mechanism works, and in fact it emphasizes that unified addresses cannot be transparent only.

• This statement: “The string encoding is resilient against typos, transcription errors, cut-and-paste errors, unantic-
ipated truncation, or other anticipated UX hazards.” implies that the formatting has error correcting capabilities,
when it can only detect errors via Bech32m’s checksum. It is worth noting that, by design, Bech32m could be used
to locate the position of a few substitution errors, however it is not advised to correct errors without notifying the
user12 as it could, unintentionally, result in losing funds.

• One of the unified address decoding rules is that the sender must reject a UA in which the same typecode appears
more than once, and another rule is that it must ignore typecodes that it does not recognize. The ZIP’s description
does not clearly specify whether the first rule applies to typecodes that the Sender does not recognize or not.

12https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki#cite_ref-3-0

17 | Zcash NU5 Review NCC Group

https://zips.z.cash/zip-0316#open-issues-and-known-concerns
https://zips.z.cash/zip-0316#reference-implementation
https://zips.z.cash/protocol/nu5.pdf#orchardpaymentaddrencoding
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki#cite_ref-3-0

Appendix C: Implementation Review
This section includes notes and various remarks about the audit process of the implementations in scope. Some of
these remarks could be considered issues to fix, but are not security vulnerabilities, even in a loose sense.

ZIP 216
The ZIP 216 implementation is straightforward. The patch is split over three pull requests:

• Primary fix: https://github.com/zkcrypto/jubjub/pull/46
This small patch simply adds an explicit (and constant-time) test for the edge condition where u = 0 with a non-zero
sign bit, and the zip_216_enabled flag is set.

• Fix integration into librustzcash: https://github.com/zcash/librustzcash/pull/396
This patch adds the zip216_enabled flag to the API so that the new behaviour can be activated at a specific chain
height.

• Consensus rule change in zcash: https://github.com/zcash/zcash/pull/5213
The new zip216_enabled parameter is passed to conditionally enable the new behaviour when the call is part of
the consensus and the current height reaches a specific activation threshold (outside of consensus rules, the new
behaviour is unconditionally enforced).

These three patches collectively implement the provisions of ZIP 216.

ZIP 224
Implementation of the Pasta Curves
The implementation of the Pasta curves is in a dedicated crate, in the following repository and specific commit: http
s://github.com/zcash/pasta_curves/tree/d8547d2326b16b11b5c3e8ada231065111b51680

The code appears to be mathematically correct and behave as expected, with two caveats which have been detailed
in specific findings:

• The point decoding and randompoint generation functions, as implemented, do not work correctly for the isogenous
curves (iso-Pallas and iso-Vesta); this is not a critical issue because these curves are only used internally for hash-to-
curve support (see finding NCC-E001151-002 on page 6).

• Some of the implementation appears to be aiming at constant-time behaviour, but fails to do so in a number of
parts. The actual intent is not documented in the API; see finding NCC-E001151-003 on page 8.

Apart from that, the following remarks may be offered:

• Square root computation description in the Halo 2 book: the Halo 2 book contains a dedicated section that
explains Sarkar’s method for speeding up square root computations in the kind of field that the Pasta curves use.
The pasta_curves repository contains a file (book/src/design/implementation/fields.md) which appears to
have been later copied into the Halo 2 book as the source of that section. It contains some formulas that reference
the value “g2−24 ”, where g is a primitive 232-th root of unity modulo p (or q). This value is not defined, since g has
order 232, and 224 is not invertible modulo 232. The correct expression here would be “g−224 ”.

• Code duplication: the two fields Fp and Fq (base fields of Pallas and Vesta, respectively) are implemented into two
separate but very similar files src/fields/fp.rs and src/fields/fq.rs. The two files are essentially the same
code, modulo the replacement of type Fpwith type Fq, a few constant changes, and some differences in the function
that uses an addition chain to implement the first step of the square root. Code duplication is, in general, frowned
upon, since it increases maintenance efforts. These two files could be merged into a single one by generating most
of the functions through macros (in the same way as it is done for elliptic curves in src/curves.rs).

• Undocumented ranges: the field implementations rely on internal functions which have some specific range re-
quirements, which are fulfilled in the code, but not documented; this may lead to issues if this code is later adapted
to other finite fields. Namely, the following information should be explicitly stated in the fp.rs and fq.rs source
files:
– The field modulus must be lower than 2255. A 256-bit modulus is not supported; otherwise, carries may be lost in
additions (line 412) and Montgomery reductions (line 354).

18 | Zcash NU5 Review NCC Group

https://github.com/zkcrypto/jubjub/pull/46
https://github.com/zcash/librustzcash/pull/396
https://github.com/zcash/zcash/pull/5213
https://github.com/zcash/pasta_curves/tree/d8547d2326b16b11b5c3e8ada231065111b51680
https://github.com/zcash/pasta_curves/tree/d8547d2326b16b11b5c3e8ada231065111b51680

– While element values should normally be represented as integers in the 0 to p− 1 range (for a modulus p), some
functions can accept larger operands. In particular, the sub() function tolerates that its second operand (but not
the first) is equal to p; this is leveraged in the implementation of additions, as well as the conditional subtraction
at the end of Montgomery reduction.

– The montgomery_reduce() function takes as input a 512-bit integer, but it cannot work will all integers up to
2512−1. Its actual maximum input value is 2256p, for a modulus p. This limit is larger than p2; this fact is leveraged
in the from_u512() function, which performs modular reduction of a 512-bit input and can, contrary to montgom
ery_reduce(), handle inputs up to 2512 − 1.

• Constant-time negation in the fields: the neg() function, on input x, computes p − x, but must fix the value in
case the input was zero (since p is not in the expected range of values). This fix uses at some point a Boolean value,
converted to a 64-bit integer:

let mask = (((self.0[0] | self.0[1] | self.0[2] | self.0[3]) == 0) as u64).wrapping_sub(1);

Depending on the target architecture and the compiler flags, this construction might induce the compiler to use a
conditional jump, since it is aware of the Boolean nature of that value. This should normally not happen on usual
architectures (x86, ARM…) when optimizations are active. A possibly safer alternative would be to implement neg()
by calling the sub() function, to subtract the operand from zero.

• Range limitations in curves: similarly to finite fields, the curve implementation macros in src/curves.rs have
some inherent limitations with regard to the fields and scalars they may handle. In particular, the size of encoded
points (32 bytes) is hardcoded (e.g. lines 226 and 623), with the top bit of the last byte being reserved for the sign of
y (line 627); this effectively prevents use with a base field modulus larger than 255 bits. Similarly, when multiplying
a curve point by a scalar, the top bit of the scalar is ignored (lines 453 and 564): scalars must fit on 255 bits too. The
Pasta curves naturally comply with these limitations, but in the interest of preventing issues in case of reuse of this
code for other curves, it is recommended that a couple of assert!() clauses be added, in order to check that both
the coordinate and scalar fields have NUM_BITS constant values in the proper range (i.e. at most 255).

• Unnecessary checks in point doubling: the point doubling functions for points in Jacobian coordinates in src/cu
rves.rs (lines 787 and 824) include a final constant-time check to specially handle the point-at-infinity. This check
is not actually needed, because the doubling formulas are complete: if z = 0 on input, then the output will correctly
have z = 0 as well. In fact, even if the curves contained points of order 2, the formulas would still work for these
points, making the comments on lines 790 and 827 technically correct but irrelevant.

RedPallas Support
The redjubjub cratewas forked in order to add some support code for RedPallas. The reviewed repository and commit
were: https://github.com/str4d/redjubjub/tree/d5d8c5f3bb704bad8ae88fe4a29ae1f744774cb2

In this fork, only the src/orchard.rs file contained Orchard-specific modifications. These are simple functions that
seem correct and in line with the Orchard specification. Of note, the non_adjacent_form() function (on line 81,
defined on the Pallas scalar type) is an almost identical copy of the function with the same name in src/scalar_mu
l.rs (line 68); the two functions differ only in the type of scalar structure they attach to (Pallas vs Jubjub scalars) and
the function call used to obtain the little-endian 32-byte representation of the scalar. In the interest of future code
maintenance, it is recommended that these two functions be merged, at least in the source code (with a macro).

Implementation of the Orchard network upgrade
The implementation of the Orchard network upgrade is in a dedicated crate, in the following repository and specific
commit: https://github.com/zcash/orchard/tree/1182d8d5a7e73644fe36d06af4a4727fc0544304

The whole crate was in scope, but in particular the following elements: Bundle and Action structures, Key structures,
Notes, Commitments, Nullifiers, Note encryption, Bundle builder, Sinsemilla primitive, and Poseidon primitive and
circuit gadget.

• MerklePath’s hash_layer() function could panic: the helper function that hashes left and right nodes on a Merkle
path unwraps the result of Sinsemilla hash, which could potentially panic and crash the calling process. This has a

19 | Zcash NU5 Review NCC Group

https://github.com/str4d/redjubjub/tree/d5d8c5f3bb704bad8ae88fe4a29ae1f744774cb2
https://github.com/zcash/orchard/tree/1182d8d5a7e73644fe36d06af4a4727fc0544304
https://github.com/zcash/orchard/blob/1182d8d5a7e73644fe36d06af4a4727fc0544304/src/tree.rs#L120

very low probability of happening, as it will require to find amessage thatmakes SinsemillaHashToPoint algorithm
produce None. One of the conditions where that can happen is if Acci−1 and S(mi), in the SinsemillaHashToPoint
algorithm, are equal. This maps to the hash_to_point_inner function in primitives/sinsemilla.rs (line 124).
It is worth emphasizing that the probability of that happening is very low; see Theorem 5.4.4 for proof.

Update: Since this note was reported, Orchard’s Merkle authentication path calculation has been updated to map
the hash outputs that are None to zero (Relevant Orchard Pull Request). As a result Merkle path calculation will no
longer panic and crash the calling process, and therefore this note has been addressed. The specification has also
been updated to allow zero to be a valid Merkle tree node (see Zcash Protocol Specification).

• Sinsemilla hash API does not check the message’s length: the Sinsemilla hash function assumes the message
length is less than or equal to K ∗ C , but it does not explicitly check it. As a result if the msg’s length is too large
assert!(self.len <= K * C); will panic. This code is only accessible via the MerklePath’s root() API at the
moment, which hashes Merkle tree nodes (Pallas bases) and therefore is fine, but it is an unexpected behaviour for
a hash function to panic on large messages. We suggest that this assumption be documented or return an error
code.

• Undefined padding rule: in the protocol specification (nu5.pdf), the pad() function is defined with three steps,
the first of which stating that the input bit string M shall be padded to n · k bits; however, it is not said what value
the additional bits should have, nor where they should be added. A previous version of the document specified
that the padding should be performed by appending bits of value zero, but these details have been removed. The
implementation indeed adds the extra bits of value zero after the inputM .

• Non-genericity of Poseidon implementation: the src/primitives/poseidon.rs file defines numerous parame-
terized traits and implementations to define generic sponge constructions that can potentially accommodate various
values of the state size (T parameter) and the rate (RATE parameter), both expressed in number of field elements.
The sponge capacity, by definition, is the difference of these two values (T - RATE). However, on lines 172-174, the
starting state is initialized with an implicit assumption that the capacity is equal to 1, since only a single state element
is set to the relevant value:

let input = [None; RATE];
let mut state = [F::zero(); T];
state[RATE] = initial_capacity_element;

If this code were to be used with different parameters that lead to a capacity of 2 or more, then the initialization
would be incorrect (but it would still compile successfully).

• Unused function: in src/constants.rs, the find_zs_and_us() function is not public, and never called anywhere.
• Default value assumption: in src/constants/util.rs, on line 40, the evaluation of a polynomial with given
coefficients uses Horner’s method, starting with an accumulator variable (acc) initialized with the default value for
the field. This implicitly assumes that the default value of the field is zero. Since the used trait for the field includes a
function called zero() that explicitly returns a zero, it would be clearer and more robust to use that function instead
of default().

• Duplicated constants: in src/spec.rs, the domain separation strings ("z.cash:Orchard-CommitIvk" on line
174, and "z.cash:Orchard-gd" on line 195) are given as literal strings, instead of using the constants COMMIT_IV
K_PERSONALIZATION and KEY_DIVERSIFICATION_PERSONALIZATION defined in src/constants.rs.

Unified Address Support
The support for parsing and encoding Unified Addresses (as outlined in ZIP 316) was added to the librustzcash
repo. The reviewed repository and commit hash were: https://github.com/zcash/librustzcash/tree/4ac5977c913ab12
3eea5ee4323b170e0ff659c8f. More specifically NCC Group reviewed 2 Pull Requests: https://github.com/zcash/libru
stzcash/pull/383 and https://github.com/zcash/librustzcash/pull/352.

The implementation closely follows ZIP 316’s description with the exception of finding NCC-E001151-004 on page 4.
It is worth noting that the implementation does not yet support encoding or decoding a unified ivk or fvk. Another
minor remark is that Typecode constants (values 0x00 to 0x03 for receiver types) are included as literal integers in two
separate functions (Receiver’s TryFrom implementation and its typecode getter); using symbolic constants, defined

20 | Zcash NU5 Review NCC Group

https://github.com/zcash/orchard/pull/136
https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh
https://github.com/zcash/orchard/blob/1182d8d5a7e73644fe36d06af4a4727fc0544304/src/primitives/sinsemilla.rs#L131
https://github.com/zcash/orchard/blob/1182d8d5a7e73644fe36d06af4a4727fc0544304/src/primitives/sinsemilla.rs#L74
https://zips.z.cash/zip-0316
https://github.com/zcash/librustzcash/tree/4ac5977c913ab123eea5ee4323b170e0ff659c8f
https://github.com/zcash/librustzcash/tree/4ac5977c913ab123eea5ee4323b170e0ff659c8f
https://github.com/zcash/librustzcash/pull/383
https://github.com/zcash/librustzcash/pull/383
https://github.com/zcash/librustzcash/pull/352

in a single place, would improve maintainability by reducing the risk of typographic errors leading to the two functions
using different values.

ZIP 244
The implementation of ZIP 244 was reviewed as in the following commit. Three different ways to compute transac-
tion digests are introduced: TxId digest, Signature Digest and Authorizing Data Commitment. A modification to the
semantics and a renaming of the hashLightClientRoot block field is also introduced. The implementation review
looked for any value omissions in digest computation, discrepancies between the implementation and specification
and DoS vectors common in deserialization code. No issues have been identified in the implementation of ZIP 244.

As for the TxId digest, it is realized in code by the txid::TxIdDigester implementation. ZIP 244 mentions that the
transparent_digest hash is based on prevout_digest, sequence_digest and output_digest values, however,
the method that computes transparent_digest also includes the per_input_digest field, if it exists. This is not
an issue since the transparent digest’s per_input_digest is set to None before being passed to the corresponding
function. If Orchard actions are non-existent, the orchard_digest field is just the personalization field hash: this is
ensured using the hash_sapling_txid_emptymethod.

When it comes to the Authorizing Data Commitment, it is realized in code by the txid::BlockTxCommitmentDigester
implementation. ZIP 244 mentions that ZTxAuthHash_ || CONSENSUS_BRANCH_ID should be used as a personaliza-
tion string for the commitment. This is implemented inside the BlockTxCommitmentDigester::combinemethod. It
is worth noting that ZIP 244 mentions that only if Orchard Actions are present in the Orchard-related transaction field,
orchard_auth_digest will be computed on non-static data. Technically, even if Orchard bundle’s actions are empty,
the Authorizing Data Commitment implementation will include the zkproof and binding_signature fields. This is
not an issue since Orchard entries with empty actions are rejected by the read_v5_orchardmethod (as also specified
by ZIP 244).

As for the Signature Digest, it implemented by sighash_v5::v5_signature_hash. The key part discussed in the ZIP is
in the transparent_input_sigdigests function. The review effort was on that function, since the remaining aspects
of the Signature Digest computation are similar to the previously discussed digest computations.

ZIP 225
The implementation of ZIP 225 was reviewed in the following commit. As for the threat model around ZIP 225, it was
noted that there has been a fair amount of code refactoring to support the new TransactionDatamemory structure.
Several TransactionData fields have been packed into bundles. For example, preNU5-release, the TransactionData
fields included:

pub value_balance: Amount,
pub shielded_spends: Vec<SpendDescription>,
pub shielded_outputs: Vec<OutputDescription>,
//
pub binding_sig: Option<Signature>

In NU5, these TransactionData fields are bundled, see sapling.rs:

pub struct Bundle<A: Authorization> {
pub shielded_spends: Vec<SpendDescription<A>>,
pub shielded_outputs: Vec<OutputDescription<A::Proof>>,
pub value_balance: Amount,
pub authorization: A,

}

With respect to V4 transactions, the NU5 release needs to re-implement the legacy behaviour, but with the new Tran
sactionData “bundled” memory format. This introduces a premature fork risk.

21 | Zcash NU5 Review NCC Group

https://zips.z.cash/zip-0244
https://github.com/zcash/librustzcash/tree/0bfd1f7544c81614d724ac44d18a679815d9bc74
https://github.com/zcash/librustzcash/blob/0bfd1f7544c81614d724ac44d18a679815d9bc74/zcash_primitives/src/transaction/txid.rs#L202
https://github.com/zcash/librustzcash/blob/0bfd1f7544c81614d724ac44d18a679815d9bc74/zcash_primitives/src/transaction/txid.rs#L432
https://github.com/zcash/librustzcash/blob/0bfd1f7544c81614d724ac44d18a679815d9bc74/zcash_primitives/src/transaction/txid.rs#L585
https://zips.z.cash/zip-0225
https://github.com/zcash/librustzcash/tree/0bfd1f7544c81614d724ac44d18a679815d9bc74
https://github.com/zcash/librustzcash/blob/0bfd1f7544c81614d724ac44d18a679815d9bc74/zcash_primitives/src/transaction/components/sapling.rs#L47

For example, the read_v4 function in NU5 needs to behave exactly in the same way as the pre-NU5 read method.
This was an important aspect of the ZIP 225 implementation review, however, no issues were identified. The read_v4
function was refactored to call a number of sub-functions, e.g., in NU5, reading transparent inputs has been replaced
by a specific read_transparent function. NCC Group spent time validating that the code is fully equivalent and no
issues have been found.

As an aside, it is worth mentioning that the ZIP states that for coinbase transactions, the enableSpendsOrchard
Orchard flag must be set to 0, however this is not enforced at the librustzcash level.

22 | Zcash NU5 Review NCC Group

https://github.com/zcash/librustzcash/blob/0bfd1f7544c81614d724ac44d18a679815d9bc74/zcash_primitives/src/transaction/mod.rs#L530
https://github.com/zcash/librustzcash/blob/f234f0b496e574b4d2bf15d2a6cc6f1d39debd95/zcash_primitives/src/transaction/mod.rs#L307

	Executive Summary
	Synopsis
	Scope
	Limitations
	Findings and Strategic Recommendations

	Table of Findings
	Finding Details
	Finding Field Definitions
	Protocol Specification and ZIPs Review
	Specification review
	ZIPs review

	Implementation Review
	ZIP 216
	ZIP 224
	ZIP 244
	ZIP 225

