

Fuzzing USB devices using

Andy Davis
Research Director

andy.davis ‘at’ ngssecure.com

An NGS Secure Research Publication

13 January 2012

© Copyright 2011 NGS Secure

http://www.ngssecure.com

http://www.ngssecure.com/

 Fuzzing USB devices using Frisbee Lite

Page 2 of 15

Table of Contents

1. Introduction .. 3

2. Communication with USB devices .. 3

2.1. bmRequestType .. 4

2.2. bRequest ... 4

2.3. wValue .. 4

2.4. wIndex ... 4

2.5. wLength ... 4

2.6. Standard device requests .. 4

3. Public USB device vulnerabilities .. 6

3.1. usb_control_msg(0xA1, 1) .. 6

3.2. usb_control_msg(0x21, 2) .. 7

4. Frisbee Lite .. 7

4.1. Software download ... 7

4.2. Installation .. 8

4.3. Usage ... 13

5. Conclusions and further research ... 15

6. References and further reading .. 15

 Fuzzing USB devices using Frisbee Lite

Page 3 of 15

1. Introduction
At Black Hat USA 2011 I presented “USB – Undermining Security Barriers”[1], which detailed a fuzzing
approach that enabled USB devices and hosts to be security tested in a platform-independent manner.
However, this approach required the use of USB test equipment hardware in conjunction with bespoke
fuzzing software (Frisbee). Since then I have needed to fuzz more USB devices than USB hosts and
therefore decided to develop simple fuzzer that could be used to test them.

Frisbee Lite has been written in wxPython for the Windows platform, although only relatively minor
changes would be required to port it to Unix-based platforms. It is a “dumb” fuzzer in that it requires the
user to understand the types of USB request packets that are likely to trigger security flaws, but just
running it with minimal knowledge of the USB protocols would have discovered the two USB bugs that
were used to jailbreak various Apple products in recent years.

This paper will discuss the format of device requests that are sent to USB devices in order to hopefully
provide an insight into areas where software flaws may exist. It will also discuss a number of public
vulnerabilities in USB devices and finally, the installation and usage of Frisbee Lite.

2. Communication with USB devices
This section contains an overview of how communication is performed with a USB device. Much of the

information presented here is also available in the USB Specification v2.0[2]. All USB devices respond to

requests on the device’s Default Control Pipe. The requests are made using control transfers and the

parameters are sent to the device in a Setup packet. Table 1 shows the format of a setup packet.

Offset Field Size Value Description
0 bmRequestType 1 Bitmap Characteristics of request:

D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host
D6...5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved
D4...0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4...31 = Reserved

1 bRequest 1 Value Specific request

2 wValue 2 Value Word-sized field that varies according to
request

4 wIndex 2 Value Word-sized field that varies according to
request; typically used to pass an index or
offset

6 wLength 2 Count Number of bytes to transfer if there is a
Data stage

Table 1: USB Setup packet format

 Fuzzing USB devices using Frisbee Lite

Page 4 of 15

2.1. bmRequestType
This is a bitmapped field that describes the characteristics of the request. For example, it identifies the
direction of the data transfer in the second (data) phase of the control transfer (the direction bit is
ignored if the wLength field is set to zero, hence implying that there is no data stage). There are a
number of standard requests (see Table 2) within the USB specification, in addition to class-specific
requests. Requests can be sent to a USB device, an interface or an endpoint (on the device). Therefore,
the bmRequestType field also includes information about the intended recipient. If the recipient is an
interface or endpoint the wIndex field specifies the interface or endpoint.

2.2. bRequest
This is the actual request that is being sent (the “Type” bits in the bmRequestType field change the
meaning of this field). Standard requests are detailed in Table 3.

2.3. wValue
The contents of this field are request-specific.

2.4. wIndex
The contents of this field are request-specific. However, it is often used to specify an endpoint or
interface.

2.5. wLength
This specifies the length of the data transferred during the second phase of the control transfer. If this
field is zero, there is no second (data transfer) phase. On an input request, a device should never return
more data than is indicated by the wLength value; it may return less. On an output request, wLength
should always indicate the exact amount of data to be sent by the host.

2.6. Standard device requests
There are a number of standard device requests, which are the same for all USB devices; these are
detailed in Table 2. USB devices must respond to standard device requests, even if the device has not
yet been assigned an address or has not been configured.

 Fuzzing USB devices using Frisbee Lite

Page 5 of 15

bmRequestType bRequest wValue wIndex wLength Data
00000000B
00000001B
00000010B

CLEAR_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero or
Language
ID

Descriptor
Length

Descriptor

10000001B GET_INTERFACE Zero Interface One Alternate
Interface

10000000B
10000001B
10000010B

GET_STATUS Zero Zero
Interface
Endpoint

Two Device,
Interface, or
Endpoint
Status

00000000B SET_ADDRESS Device
Address

Zero Zero None

00000000B SET_CONFIGURATION Configuration
Value

Zero Zero None

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero or
Language
ID

Descriptor
Length

Descriptor

00000000B
00000001B
00000010B

SET_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

00000001B SET_INTERFACE Alternate
Setting

Interface Zero None

10000010B SYNCH_FRAME Zero Endpoint Two Frame Number

Table 2: Standard requests

The values associated with the standard request codes, e.g. GET_DESCRIPTOR, used in Table 2 are

shown in Table 3.

bRequest Value
GET_STATUS 0

CLEAR_FEATURE 1

Reserved for future use 2

SET_FEATURE 3

Reserved for future use 4

SET_ADDRESS 5

GET_DESCRIPTOR 6

SET_DESCRIPTOR 7

GET_CONFIGURATION 8

SET_CONFIGURATION 9

GET_INTERFACE 10

SET_INTERFACE 11

SYNCH_FRAME 12

Table 3: Standard request codes

 Fuzzing USB devices using Frisbee Lite

Page 6 of 15

The values associated with the USB descriptor types used in Table 2 are shown in Table 4.

Descriptor Value
DEVICE 1

CONFIGURATION 2

STRING 3

INTERFACE 4

ENDPOINT 5

DEVICE_QUALIFIER 6

OTHER_SPEED_CONFIGURATION 7

INTERFACE_POWER 8

Table 4: Descriptor types

The values associated with the standard feature selectors used in Table 2 are shown in Table 5.

Feature selector Recipient Value
DEVICE_REMOTE_WAKEUP Device 1

ENDPOINT_HALT Endpoint 0

TEST_MODE Device 2

Table 5: Standard feature selectors

As can be seen, the number of different permutations of device request is huge and in a number of
cases, unusual combinations of values supplied in these requests have led to situations where the device
request parsers in USB device drivers have not been capable of processing them, resulting in an
exception or kernel panic. This has led to various publicly disclosed security vulnerabilities in USB
devices.

3. Public USB device vulnerabilities
A number of USB device vulnerabilities have been publicly disclosed and some have been subsequently

exploited. The two most high profile vulnerabilities relate to Apple products and are known as:

 usb_control_msg(0xA1, 1) or "steaks4uce" exploit

 usb_control_msg(0x21, 2) exploit

As can be seen from the titles, the device request is being sent with the bmRequestType set to the first
value and bRequest set to the second value. More information about these vulnerabilities can be found
on the iPhone Wiki[3].

3.1. usb_control_msg(0xA1, 1)
A heap overflow exists in the iPod touch 2G boot ROM's DFU (Device Firmware Upgrade) mode when
sending a USB control message of bmRequestType = 0xA1, bRequest = 0x1. On newer devices, the same

 NGS Secure played no part in either the discovery or exploitation of these vulnerabilities.

 Fuzzing USB devices using Frisbee Lite

Page 7 of 15

USB message triggers a double free() vulnerability when the image upload is marked as finished, also
rebooting the device (but this second vulnerability is not exploitable).

3.2. usb_control_msg(0x21, 2)
A null pointer dereference vulnerability exists in the versions of iBoot/iBSS/iBEC found in firmware
versions 3.1/3.1.1 and 3.1.2 on all iDevices. The vulnerability existed because of a missing check of the
contents of a processor register. Often null pointer dereference vulnerabilities cannot be exploited,
however in this instance it can because the MMU (Memory Management Unit) maps whatever is
running (LLB, iBoot, etc.) to address zero so that if an exception vector is triggered, it would jump to the
one designed to be used with what is running, as opposed to jumping to what is normally located at
address zero, the boot ROM.

So, it can be seen that exploitable vulnerabilities can be discovered in the driver software running on

USB devices, which led to the development of Frisbee Lite.

4. Frisbee Lite
Frisbee Lite is a “dumb” USB device fuzzer – i.e. the intelligence is in the user. It enables any single USB
device request to be created and sent or multiple requests iterated through using a brute-force fuzzing
approach. Based on the information presented in Section 2, the reader should now have a clearer idea
of values to set within Frisbee Lite in order to create situations where a software flaw (and potential
security vulnerability) may lie.

4.1. Software download
There are a number of prerequisites that need to be downloaded and installed in order to use Frisbee
Lite. These are detailed in this section.

 Download and install Python (if you haven’t already got it) - http://www.python.org/getit/

 Download and install wxPython - http://www.wxpython.org/download.php#stable

 Download and extract FribseeLite.zip - http://www.ngssecure.com/research/research-
overview/Public-Tools.aspx

http://www.python.org/getit/
http://www.wxpython.org/download.php#stable
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx

 Fuzzing USB devices using Frisbee Lite

Page 8 of 15

4.2. Installation
After extracting the Frisbee Lite zip file, from the “dependencies” directory, install pyusb:

Extract the zip and type:

python setup.py install

Next, the PID (Product ID) and VID (Vendor ID) of the device to be fuzzed must be identified - these are
the unique values that identify the device to your PC.

In Device Manager, right click on the device to be fuzzed and select “Properties”:

 Fuzzing USB devices using Frisbee Lite

Page 9 of 15

Then select the “Details” tab and select “Hardware Ids”:

In the example above, the PID = 0x8184 and the VID =0x413c

From the “dependencies” directory, extract libusb and in the “bin” directory run “inf-wizard.exe”:

 Fuzzing USB devices using Frisbee Lite

Page 10 of 15

Click “Next”

Select the device to fuzz and click “Next”

 Fuzzing USB devices using Frisbee Lite

Page 11 of 15

Verify that the PID and VID identified earlier are correct for the device to be fuzzed. Click “Next”

Click “Save”

 Fuzzing USB devices using Frisbee Lite

Page 12 of 15

Click “Install Now”

Click “Install this driver software anyway”

Everything should now be installed.

 Fuzzing USB devices using Frisbee Lite

Page 13 of 15

4.3. Usage

Run “FrisbeeLite.py” and the GUI below should be displayed:

The first step is to select the USB device that will be fuzzed. Click “File” -> “Select USB device”:

Enter the PID and VID values for the device and click “OK”

All elements within a USB device request can be fuzzed, although it was considered that fuzzing through
all the wLength values would most likely prove fruitless and therefore, a static value can be set for this
field. Fuzzing operation is simple, the values which are to be fuzzed are selected using the checkboxes,
the start and stop values are then chosen and the start button is pressed e.g.

 Fuzzing USB devices using Frisbee Lite

Page 14 of 15

The console output shows the fuzzing detail:

The output is also written to a log file in the current directory.

Finally, the “Single” button allows a single USB request to be sent using the currently selected values.

 Fuzzing USB devices using Frisbee Lite

Page 15 of 15

5. Conclusions and further research

There are a large number of different USB device requests that can be generated and sent to a device
under test, which is why fuzzing is an appropriate approach to security testing USB devices. Although no
inherent “intelligence” has been designed into Frisbee Lite, it still provides powerful capabilities to
identify software flaws and potential security vulnerabilities.

Possible additions for future versions of Frisbee Lite may include:

 Instrumentation using either ICMP to check if the device is still accessible over the network or
first establishing a “known good” request that results in a repeatable response in order to check
if the USB stack is still functioning on the target device

 A greater degree of granularity in the way that the bmRequestType values are fuzzed, to make
the tool more intuitive to use

 The inclusion of specific test cases that are known to be likely to trigger software flaws in USB
driver software.

Hopefully, the tool will be useful to security researchers and pentesters. Any feedback can be provided

to me directly via the email address at the beginning of the paper.

6. References and further reading

1 - http://www.ngssecure.com/Libraries/Document_Downloads/USB_-_Undermining_Security_Barriers-
BlackHat-USA-2011-Andy_Davis-NGS_Secure.sflb.ashx

2 - http://www.usb.org/developers/docs/usb_20_101111.zip

3 - http://theiphonewiki.com/wiki/index.php?title=Main_Page

http://www.ngssecure.com/Libraries/Document_Downloads/USB_-_Undermining_Security_Barriers-BlackHat-USA-2011-Andy_Davis-NGS_Secure.sflb.ashx
http://www.ngssecure.com/Libraries/Document_Downloads/USB_-_Undermining_Security_Barriers-BlackHat-USA-2011-Andy_Davis-NGS_Secure.sflb.ashx
http://www.usb.org/developers/docs/usb_20_101111.zip
http://theiphonewiki.com/wiki/index.php?title=Main_Page

