PARTNERS

iSEC Partners is a
information security
firm that provides
application, network,
and product security
services. iSEC also
produces utilities for
automated security
testing and proof-of-
concept tools. For
more information on
ISEC Partners or
access to our security
tools, please visit

Www.isecpartners.com

ISEC Security Whitepaper
|

IAX Voice Over-IP Security*
Written by Zane Lackey and Himanshu Dwivedi

Introduction

Inter-Asterisk eXchange (IAX?) is a protocol used for Voice-Over-IP (VoIP) communication
with Asterisk servers (http://www.asterisk.org/), an open source PBX system. Along with
Asterisk servers, IAX can be used between any client endpoint® and server system

supporting the IAX protocol for voice communication.

IAX is simplistic in nature, as compared with other VoIP protocols such as H.323 and SIP.
IAX uses a single UDP port between all endpoints and servers (UDP port 4569). This feature
makes IAX very attractive for firewall administrators, who are often asked to open ports
north of 1024 for VoIP communication. Specifically, IAX provides signaling and media
transfer in-band within the protocol itself, while other VoIP implementations use multiple
protocols relying on each other. For example, H.323/SIP can be used for signaling and use
RTP for media transfer, which can be more confusing and complex than figuring out where
the Line of Control border sits between India and Pakistan.

IAX uses a binary protocol, which claims to offers protection against buffer overrun attacks,
as stated in the RFC*. TAX offers public key authentication with the use of RSA and call
confidentiality with the use of AES. These security features are important, however, they are
frequently absent in IAX deployments, leaving many [AX implementations as vulnerable as
unprotected SIP or H.323 systems. Unencrypted IAX voice conversations can be sniffed,
recorded, and replayed by eavesdroppers since IAX supports clear-text communication
(similar to RTP media transports). The commonly used MD5 challenge response
authentication mechanism specified by IAX allows passive and active adversaries to launch
several attacks. These attacks include offline dictionary attacks on credentials and pre-
computed dictionary attacks. Additionally, the MD5 authentication mechanism is
susceptible to a middle person attack and possibly vulnerable to a downgrade attack
(depending upon the implementation). The IAX draft RFC makes no recommendations for
protecting against these attacks, making the authentication process a key target for malicious
users. Lastly, several denial of service attacks are possible, which add to the availability
concerns of IAX. These issues, along with many other concerns discussed in this whitepaper,
open up the debate on whether IAX is truly a more secure alternative for VolIP
communication.

For more information on the IAX architecture, see http://www.ietf.org/internet-drafts/draft-
guy-iax-02.txt

! For the latest version of this paper and accompanying tools, please refer to
http://www.isecpartners.com/BlackHat

2 All references to IAX pertain to version 2 of the protocol (IAX2)

® Client endpoint is defined as any soft or hard phone that supports the IAX protocol
* See Appendix A for more information on buffer overflows and flooding attacks

http://www.asterisk.org/
www.isecpartners.com

The security aspects supported by IAX implementations are discussed in the whitepaper,
specifically authentication, password protection, and availability. The results derived from
focused research on IAX implementation, the supported authentication methods, reliability,
and security features; however this paper should not be regarded as an exhaustive security
analysis of the IAX protocol and its implementations. The following sections discuss each
topic in detail.

1.0 Authentication Background

IAX supports three authentication methods, including plaintext authentication, MD5
authentication, and RSA authentication. In the MD5 authentication process, IAX endpoints
use a challenge response system based on MD5 hashes. The MD5 authentication method
protects against passive eavesdroppers who could view a clear-text password over the
network as well as protection against replay attacks. The authentication scheme is
vulnerable to common authentication attacks, including dictionary attacks that may allow a
compromise of the endpoints credentials. The protocol also requires storage of the actual
password as the password verifier?, increasing the harm of server compromise.

In general, MD5 allows any weak or strong password to be hashed without sending the
password over the network in clear-text. For example, if an endpoint were to use the
password of ‘Sonia’, which is a weak password since it only has 5 characters and no
numbers, the MD5 hash that would be used is CCD5614CD5313D6091A96CE27C38EB22.
Creating an MD5 hash of the password of Sonia ensures the password is not sent over the
next in clear text; however, it exposes another problem which is the use of password-
equivalent values. For example, the MD5 hash of the password of Sonia will always be the
same, making it vulnerable to a replay attack. An attacker could simply sniff the MD5 hash
over the network and replay it, allowing them to be authenticated instantly. The attacker
does not need to know what the real password is, but simply capture the MD5 hash (the
password equivalent value) and sent it over to the authenticating device. Furthermore, to
speed-up the process, the attacker could simply create a MD5 hash for every word in the
dictionary (pre-computed attack) and send those values to the authenticating device. While
the attacker would not know the correct password, eventually they would send a MD5 hash
that matches that hash for the correct password.

In order to prevent replay attacks, the challenge response method is supported by IAX. The
MD5 authentication used by IAX (and other Challenge-Response solutions) does not require
the use of a password or a replayable password equivalent. The challenge response method
of authentication is where the authenticator, such as an Asterisk server, sends a challenge to
the endpoint for each unique authentication request. For example, if an IAX endpoint tried
to authenticate 5 different times, they would be given 5 different challenges, one for each
authenticating attempt. Once the endpoint receives the challenge from the authenticator, the
endpoint will concatenate the challenge with its password and create a MD5 hash. This MD5
hash, which is now derived from the challenge from the authenticator and the endpoint’s

® Password verifiers are the data that must be stored in order to authenticate a peer. Ideally password
verifiers are not passwords, or password equivalents, and attackers who can read the verifier store
gain only the ability to launch dictionary attacks on passwords with tools like “Crack”.

password, is sent over the network to the authenticating device. The authenticating device,
also knowing the challenge and password, will create an MD5 hash using the challenge they
produced for the endpoint and the correct password. If the MD5 hash generated by the
authenticator matches the MD5 hash sent over the network by the endpoint, then the
authenticator knows the correct password was used by the endpoint. If the MD5 hash sent
over the network by the endpoint does not match the one created internally by the
authenticating device, then the authenticator knows the correct password was not used (and
the endpoint is not successfully authenticated). Figure 1.1 is an example of the IAX
authentication process:

Figure 1.1
Auth Reguest
Challenge
Q @ MD5 Hash
.
IAX Endpoint H
Asterisk
H H
(Challenge + Password) =MD5 Hash :
+
(Chalienge + Password) = MQE Hash
i
Does the MD5 hash from the IAX endpoint match the MDS hash created by the Asterisk sarver?
Yes = Correct password was used for the hash creation process, therefore the
client is authenticated
No = Incorrect password was used for the hash creation process, therefore the
client is not authenticated

The challenge/response method prevents replay attacks, as a unique challenge is used for
every authentication request. If an attacker sniffs the authentication of an endpoint, the
attacker will not be able to replay the response as the challenge used to create that hash was
only valid for that unique authentication request. Hence, the attacker would be trying to
replay a MD5 hash that was created with a challenge tied to another session , which is
therefore useless.

The following sections describe a few of the authentication weaknesses identified by iSEC,
including protocol weaknesses and implementation weaknesses:

- Protocol Weaknesses: Section 1.1.1, 1.1.2, and 1.1.3
- Implementation Weaknesses: Section 1.2.1

1.1.1 Offline Dictionary Attack

The IAX MD5 authentication method protects against passwords being exposed in clear-text
and against the replaying of intercepted authentication; however, it is still vulnerable to
some common authentication attacks. These attacks include an offline dictionary attack that
allows the credential compromise when insufficiently strong passwords are in use.

As shown in figure 1.1, a challenge is sent by the Asterisk server to the IAX endpoint over
the network. This challenge is a component used to create the MD5 authentication response
that is also sent over the network. Both the challenge and the response that is included in
authentication process are available to a passive adversary listening on the network. While
the authentication hash is not useful for direct replay, it can be used in conjunction with the
challenge used to create it. Unlike an online brute-force attack, where an attacker would
attempt to authenticate using a guessed passwords over and over (before being locked-out)
the offline dictionary attack allows an attacker to quickly try passwords computationally on
their own system, checking if they are correct without access to the targeted system. For
example, if a person knew how to count, but did not know how to add, and wanted to solve
the problem of 8 + x = 15, she would only need 7 attempts (1 thru 7) before brute-forcing the
correct answer. The same idea applies to an offline dictionary attack. If an attacker knows
the challenge sent by an attacker is 214484840 and the resulting MD5 hash is
fc7131a20c49c3d96ba3e2e27d27, she can test any given password by concatenating the
password with the challenge and computing the MD5. If the result is equal to the hash the
attacker sniffed over the network, the attacker has guessed the correct password. See figure
1.2 and table 1.3 for more details.

Figure 1.2
Auth Request
Challenge: 214484840
% MD5 Hash: fc7131a20c49c3d96bale2e27d27
1AX Endpoint 4

Asterisk

¥ :
(214484840 + Password) = fc7131a20c49c3d96hade2ed7d27 :
¥

(214484840 + Password) = fc7131a20c49c3d96ba3e2e27d27
Sniffing the Network

4
Chalienge: 214484840
MD35 Hash: fe7131a20c49c3d96bale2e27d27
% Password=?

Attacker

Table 1.3 Passive Dictionary Attacks

Hash = (Challenge + Password) MD5
Sniffed Information:

Challenge: 214484840

HASH: fc7131a20c49c3d96ba3e2e27d27
(214484840 + Hello) MD5 = cl15bc53e22ea97bcOcdfdab7754d5001
(214484840 + My) MD5 = b29419fd0def440dbabb364449ee067b
(214484840 + Name) MD5 = 7132e2197625814931838e63F1b05197
(214484840 + Is) MD5 = 6e36348e6963f75b7c18722b2ab6c0d3
(214484840 + Sonia) MD5 = 1beb71d8a6e7a968cf6118e8b328b319
(214484840 + My) MD5 = b29419fd0def440dbabb364449ee067b
(214484840 + Voice) MD5 = d63bfd9e48b2ea84c067848350F040b3
(214484840 + 1Is) MD5 = 6e36348e6963f75b7c18722b2ab6c0d3
(214484840 + My) MD5 = b29419fd0def440dbabb364449ee067b
(214484840 +Passport)MD5 = 140611b567a289b074bdcd43494b92F9
(214484840 + 123voiptest) MD5 = Fc7131a20c49c3d96bf69ba3e2e27d27

Notice the last row in table 1.3, where the generated MD5 hash matches the sniffed MD5
hash capture over the network. This information allows the attacker to verify they have
identified the correct password, which was “123voiptest”. Furthermore, unlike other
password attacks, the attacker only needs to capture a challenge and MD5 hash once to
perform this attack. The challenge will always be valid for the MD5 hash sniffed over the
network, which all the information required to perform the passive attack.

iSEC has released a proof of concept tool called IAX.Brutes, which automatically performs a
passive dictionary attack with an intercepted challenge and corresponding hash from a valid
authentication response. iSEC’s testing shows a dictionary file of 280,000 words will take less
that one minute to test on a Thinkpad T42 with an Intel PIV processor (running 1.83GHz).

1.1.2 Active Dictionary Attack

In addition to the passive attack, IAX is also vulnerable to a pre-computed dictionary attack.
Unlike the passive dictionary attack where the attacker sniffs the challenge and MD5 hash
over the network, the pre-computed attack would require the attacker to take a known
challenge and concatenate it with a list of password to create a long list of MD5 hashes. Once
a list of pre-computed hashes are created, the attacker would inject a challenge, the same
challenge that was used to create the pre-computed hashes, to an IAX client endpoint.
When the endpoint receives the challenge from the attacker, it will respond with an MD5
hash, which is derived from the attacker’s challenge and the endpoint’s password. Since the
challenge was sent by the attacker, the attacker does not need to brute-force the MD5 hash,
but rather simply match the hash sent by the endpoint to a pre-computed hash created by

® Further discussed in Section 3.1 of this paper

the attacker. Once the one of the hashes match, the attacker knows he or she has
compromised the password.

The pre-computed dictionary attack significantly reduces the time required to gain an
endpoint’s password since the long list of MD5 hashes has already been created.
Additionally, since the attacker is allowed to inject a challenge during the authentication
process, by spoofing the source IP of the Asterisk server and predicting the sequence
information of the IAX packet, the attacker is guaranteed that their challenge will be used by
the endpoint in order to create the MD5 authentication hash. For example, if an attacker
concatenates ‘101320040” with every word in the English dictionary, they have a list of pre-
computed hashes. The only step the attacker would need to do is inject a packet to the
endpoint with the challenge of “101320040". When the endpoint receives the challenge, they
will send the MD5 hash over the network. The attacker can simply sniff the response and
compare it to the pre-computed list. Once one of the pre-computed MD5 hash matches the
one capture from the target, the attacker knows the password. Figure 1.4 shows the example
of the pre-computed attack using active packet injection.

Figure 1.4
Auth Reguest
Challenge: 101320040

% DS Hash: T1e8b2ed19dB87e9370c2b1dB2166¢cc12

. n
IAX Endpoint H

Asterisk

H H

(101320040 + Password) =71e8b2ed19dB7e5370c2b1d82166cc12

o

Attacker
injected Challenge: 101320040

Pre-Computed Hashes with the challenge of: 101320040

(101320040 + Bello) = 772chidcEdPaiicifbaedziFiddel 6Fds e

(101320040 + My) = fechldcf2chd? fidcic7Iadedciblse?

(101320040 + Name) = TfA0c21d76a25 881992 2def80bd7he ik

(101320040 + Ts) = §96847dF42afi7 3T7R56E foafdéadolad R .

(1013200480 + Sonia) = Gedfi5267cidbdaiiia 20aika ATThe Bk Sniffed MD5 Hash: 71e8b2ed19d67e9370c2b1d582166¢¢12

(101320040 + 123voiptest) = Tiefb2edldd8Te93T0cLbldizl 6oy =—t=———p Pra.Compuited Password = 123voiptest

Notice in figure 1.4, the attacker has created a list of pre-computed hashes based on the
challenge of 101320040 (shown on the lower left). The attacker then injects the challenge of
101320040 during the endpoint’s authentication process. The client creates an MD5 hash
from using the attacker’s challenge. Unlike the passive dictionary attacker where the
attacker needs to brute-force the password, once the attacker sniffs the MD5 hash over the
network, they can simply match the sniffed MD5 hash to one of the pre-computed MD5
hashes. If a match appears, the attacker has just gain access to the endpoint’s password.

1.1.3 Middle Person Attack?”

In addition to active attacks, IAX’s support of the challenge response authentication method
makes it vulnerable to a middle person attack. The middle person attack would require an
attacker to perform an attack on the network via ARP cache poisoning or DNS spoofing
techniques. Once the attacker is routing traffic between a legitimate endpoint and the
Asterisk server, he/she can perform a middle person attack and authenticate to the Asterisk
server without knowing a valid username/password.

During an attack, the malicious user monitors the network to identify when an IAX
endpoint sends an authentication request to the Asterisk server. When the authentication
request occurs, the attacker would intercept the packets, since they are performing a middle
person attack , and prevent it from reaching the real Asterisk server. The attacker would
then send their own authentication request to the Asterisk server. Using the challenge
response method for authentication, the Asterisk server will send a challenge to the attacker.
The attacker receives the challenge and then sends the same challenge to the legitimate
endpoint, who was wishing to authenticate in the first step. The legitimate endpoint would
then send a valid MD5 hash to the attacker (derived from the real password and Asterisk’s
challenge), thinking the attacker is the actual Asterisk server. Once the attacker has the valid
MDS5 hash from the legitimate endpoint, the attacker would send the hash to the Asterisk
server and become successfully authenticated. See figure 1.5 for details.

Figure 1.5

1A X Endpoint Middie Person Attack
b”/ Asterisk

1. Auth Request + 2. Auth Request

TR CCL L L L L L L LI L LI LI >
4. Challenge: 214484840 3. Challenge: 214484840
5. MD5 : fc7131a20c49c3d96bale2e27d27 Attacker 6. MD5 : fe7131a20c49c3d96bale2e27d27

T T T T T T T

7. Authenticated!

-------- Intercepted Communication

Actual G fcation

The middle person attack significantly increases the attack surface on IAX implementations,
allowing an attacker become authenticated to the Asterisk server without or brute-forcing a
single username/password.

" Middle Person attack is also know as a Man-in-the-Middle (MITM) attack

1.2.1 MD5 to Plaintext Downgrade Attack

The IAX protocol specification does not mention some important security protections,
leaving implementations potentially vulnerable to active attacks. This susceptibility to active
attacks arises from the fact that no integrity protection is provided in the IAX protocol. Due
to the lack of integrity protection, both the endpoint and the Asterisk server can never be
sure that their communication has not been tampered with on the wire.

Previously, IAX clients built with the IAX implementation library ‘iaxclient’ were vulnerable
to an authentication downgrade attack. Vulnerable IAX implementations could be
downgraded to plain-text during the authentication process. The downgrade attack caused
an endpoint to send its password in clear-text, when it would normally use a MD5 Digest for
authentication.

In order to perform this attack, the attacker needs to complete a few steps. First, the attacker
would need to sniff the networks, watching for an endpoint attempting to register to the
Asterisk Server (AS) using a Registration Request (REGREQ) packet. The attacker would
then need to parse out the required sequence values from the REGREQ packet, including the
Destination Call ID (DCID), Outbound Sequence Number (oseq), Inbound Sequence
Number (iseq), Username Length, and Username. Once the information has been gathered,
the attacker needs to increase the iseq value to correspond with the existing session
originally created by the AS (making it valid for a spoofed REGAUTH packet). After the
sequence information is increased appropriately, the attacker would then inject a REGAUTH
packet, which is spoofed from the AS to the endpoint, specifying that only plaintext
authentication is allowed. If the spoofed packet wins the race back to the endpoint (ahead of
the AS’s real packet that requires MD5 authentication), the endpoint will send another
REGREQ packet across the network with the password in plaintext. This allows the attacker
to recover the password from the network with a standard sniffer such as Wireshark®. See
figure 1.6 for an example.

8 All exposures listed in the whitepaper require access to the network traffic between any victim
endpoints and an Asterisk server. Gaining access to network traffic in a switched environment is
outside the scope of this document, but is generally considered a trivial attack. For example, see
papers such as http://www.sans.org/resources/idfag/switched_network.php and tools such as arpspoof
in the dsniff package http://www.monkey.org/~dugsong/dsniff/.

% http://www.wireshark.org

Figure 1.6

Registration Request (REGREQ)

Plaintext Only (REGAUTH)

\\ MDS5 Only (REGAUTH) \\

IAX Endpoint

Asterisk
Response: 123voiptest (REGREQ) \

Attacker

Figure 1.6 shows an endpoint attempting to register to the Asterisk server. During the
authentication process, the attacker pulls the required session information from this packet.
Once the information is extracted, the attacker will then inject a REGAUTH packet
specifying only plaintext authentication is allowed, spoofed from the Asterisk server to the
endpoint. When the endpoint receives the spoofed packet, it will respond with another
REGREQ with the password in plaintext (in this case, the sample password “123voiptest” is
shown.) Because this password is sent in plaintext, it can be easily sniffed by an attacker.

During the course of testing, iSEC contacted the iaxclient library developers and worked
with them to resolve this issue. The iaxclient developers responded by removing plaintext
authentication functionality entirely from the library. Since this issue has been resolved in
the latest version of iaxclient, iSEC Partners has released an automated Python tool, called
IAXAuthJack.py, to test if existing iaxclients are vulnerable to this attack. The tool is
described further in Section 3.2

2.0 Denial of Service Attacks

A Denial of Service (DoS) attack can leave an endpoint unusable or unavailable for an
extended period of time. The severity of DoS attacks are often different between one
environment and the next. For example, a DoS attack on a NFS daemon may prevent end-
users from gathering files over the network; however, a DoS attack on a VoIP network might
prevent one user from calling 911 in case of an emergency. While any type of DoS attack is
not desired, the severity of a DoS on VoIP networks can often be higher due to the
dependencies of end users on voice communication.

Similar to the downgrade attack against authentication, the Denial of Service attacks against
IAX are the result of predictable session information and a lack of integrity protection. This
allows an active attacker to spoof control frames. While DoS issues are openly discussed in
the IAX RFC, iSEC Partners wishes to demonstrate the ease in which some of the attacks can
be performed. Additionally, it should be noted that even if AES encryption is used during a
call, these attacks are still valid as all session information remains in the clear.

The following section discusses a few of the DoS attacks identified in the IAX protocol.

2.1 The Registration Reject (REGRE]) Attack

The Registration Reject attack is aimed at preventing an endpoint from registering to the
Asterisk Server (AS). In this attack, an attacker monitors the network for a victim endpoint
attempting to register to the AS via a Registration Request (REGREQ) packet. The attacker
parses out the required values from the REGREQ packet, such as the Destination Call ID
(DCID), Outbound Sequence Number (oseq), Inbound Sequence Number (iseq), Username
Length, and Username. Once the information have been enumerated, the attacker needs to
increase the iseq value to correspond with the existing session originally created by the AS
(making it valid for a spoofed REGRE] packet). After the sequence information in increased
appropriately, the attacker would then inject a REGRE] packet spoofed from the AS to the
victim. This attack depends on the attacker’s packet winning the race against the server’s
REGAUTH packet, which would allow the registration process to continue. See figure 2.1 for
an example.

Figure 2.1

Registration Regquest (REGREQ)

Registration Reject (REGREJ)

‘ N — .) e o 1 -
~ Chalienge: 214484840

IAX Endpoint

Asterisk Server

Registration Reject ACK

S

Altacker

Figure 2.1 shows an endpoint attempting to register to an Asterisk server. During the
authentication process, the attacker then pulls the required session information from this
packet. Once the information is enumerated, the attacker will then inject a REGRE] packet,
specifying the authentication process has failed. When the endpoint receives the spoofed
packet, it will believe registration process has failed and ignore the server’s MD5 challenge.

2.2 The HangUP Attack

The HangUP attack disconnects calls that are in progress between two endpoints. During
the attack, a malicious endpoint monitors the network for the many items that indicate a call
is in progress, such as an ANSWER packet, a Mini voice packet, a PING or PONG packet.
The attacker then parses out required values from one of these packets, such as the Source
Call ID (SCID), Destination Call ID (DCID), Inbound Sequence Number (iseq), and
Outbound Sequence Number (oseq). Once the information has been parsed, the attacker
must manipulates the iseq and oseq values so they will be valid for a spoofed HANGUP
packet, ensuring their sequence information increases correctly to match the values sniffed
over the network. Finally, the attacker injects the spoofed HANGUP packet with the correct
information, which will cause a call to be torn down. See figure 2.2 for an example.

Figure 2.2

WMEDIA

PING %
; IAX Endpoint B

1AX Endpoint A ACK
HANGUP
‘+-—in e e e e e e e e e e e e e |
HANGUP ACK !
I
I
MEDIA I

Atftacker

Figure 2.2 shows an existing call between to endpoints, with media flowing in both
directions. During a phone call, a control frame is sent across the network (a PING in our
example), which contains session information an attacker needs to complete this attack.
From the session information sniffed by the attacker, a spoof HANGUP packet is created
and sent to endpoint A. Once Endpoint A receives the information, the existing phone call
will be torn down. From this point on, Endpoint A will no longer continue the call even
though Endpoint B continues sending media as it is unaware the HANGUP has taken place.

iSEC has created IAXHangup.py, which is a Python-based tool to automate this attack. The
tool is described further in Section 3.3.

2.3 The Hold (QUELCH) Attack

The Hold (QUELCH) attack is aimed at disrupting calls which are in progress between two
endpoints. The attack occurs by one placing one side on ‘Hold” while not notifying the other
side. In this attack, a malicious endpoint monitors the network for the many signs indicating
a call is in progress, such as an ANSWER packet, a Mini voice packet, a PING or PONG
packet. The attacker parses out required values from one of the packets, such as the Source
Call ID (SCID), Destination Call ID (DCID), Inbound Sequence Number (iseq), and
Outbound Sequence Number (oseq). Once the information has been parsed, the attacker
must manipulates the iseq and oseq values so they will be valid for a spoofed Hold
(QUELCH) packet, ensuring their sequence information increases correctly to match the
values sniffed over the network. Finally, the attacker injects the spoofed QUELCH packet,
which will cause one side of the conversation to unknowingly be placed on hold See figure
2.3 for an example.

Figure 2.3
MEDIA
PING
1AX Endpoint A ACK IAX Endipoint B
QUELCH
S W W —— —— — -
N\
QUELCH ACK \
\
AY
MEDIA
Attacker

Figure 2.3 shows an existing call between two endpoints, with media flowing in both
directions. During a phone call, a control frame is sent across the network (a PING in our
example), which contains session information an attacker needs to complete this attack.
From the session information sniffed by the attacker, a spoof QUELCH packet is created and
sent to endpoint A. From this point on the connection becomes one-sided (but not
disconnected) as Endpoint A will no longer send media to Endpoint B.

iSEC has created IAXHangup.py, which is a Python-based tool that can be easily modified to
automate this attack. The tool is described further in Section 3.3.

2.4 The Call Reject (REJECT) Attack

The Call Reject attack is aimed at preventing calls from being accepted. In this attack, a
malicious endpoint monitors the network for packets indicating that a call is being setup,
such as a NEW, ACCEPT, or RINGING packet. The attacker parses out required values from
one of these packets, such as the Source Call ID (SCID), Destination Call ID (DCID), Inbound
Sequence Number (iseq), and Outbound Sequence Number (oseq). Once the information has
been parsed, the attacker must manipulates the iseq and oseq values so they will be valid for
a spoofed REJECT packet, ensuring their sequence information increases correctly to match
the values sniffed over the network. The attacker then creates a spoofed packet with these
values, the source IP and MAC address of the callee, and the destination IP and MAC
address of the caller. Finally, the attacker sends the spoofed REJECT packet to the caller,
causing the caller to believe that the call has been rejected by the callee. This attack depends
on the attacker’s packet winning a race against the callee’s ANSWER packet, allowing the
call to be established. See figure 2.4 for an example.

Figure 2.4

RINGING

% ACK %
REJECT IAX Endpoint B

IAX Endpoint A

REJECT ACK ~

~
ANSWER

Attacker

Figure 2.4 shows an attacker monitoring the network for a call setup packet, in this case
RINGING, which indicates that an endpoint is attempting to place a call. The attacker then
pulls the required session information from this packet to construct and inject a spoofed
REJECT packet. When the endpoint receives this packet it believes the call has been rejected
and ignores any further control packets for this call.

3.0 VoIP Security Tools for IAX

The following sections describe iSEC’s IAX security tools for VoIP. The tools that are
include the following list:

- IAXBrute

- IAXAuthJack

- IAXHangup

3.1 Password Grinder — IAX.Brute

IAX.Brute is a passive dictionary attack tool on the challenge/response authentication
method supported in VoIP IAX implementations. The program is written primarily to test
VoIP networks that use IAX for voice communication. The proof of concept tool shows how
the challenge/response authentication process used by IAX endpoints is vulnerable to an
offline brute-force attack. This attack allows malicious users to steal passwords and hijack
endpoint identities.

IAX.Brute requires the user to sniff the challenge and the MD5 hash between two IAX
endpoints. Both the challenge and MD?5 hash are sent over the network in clear-text, making
the process an easy task. Once the user has captured both items, IAX.Brute will grind the
endpoint’s password using any dictionary file supplied by the user (IAX.Brute includes a
standard dictionary file with over 280,000 thousand common passwords). IAX.Brute will
then create an MD5 hash from the user supplied challenge and a word in the dictionary file.
Once the MD5 hash generated by the tool matches the MDS5 hash sniffed over the network,
the user has then compromised the IAX endpoint’s password using the IAX.Brute tool. See
items 3.1 thru 3.3 as an example:

Figure 3.1 show the challenge (214484840) and username (voiptestl) sniffed over the network in clear text:
= Information Element: authentication method(s): 0x0003

IE id: authentication method(s) (0x0E)

Length: 2

Authentication method(s): 0x0003
= Information Element: Challenge data for MDS/RSA: 214484840

IE id: challenge data for MDS/RSA (OxOF)

Length: G

Challenge data for MDS/RSA: 214484840

EH Information Element: Username {peer or user) for authentication: woiptestl
IE id: Username (peer or user) for authentication (0x0&)
Length: ©

Figure 3.2 show the MD5 hash sniffed over the network in clear text:

Information Element: MDS challenge result: fc7l3lazocdac3doshfegbas
IE id: MDp5 challenge result (Ox10)
Length: 32

MDS challenge result: Fc7131a20c49c3d98bT69ba3e2e27d27

Figure 3.3 shows IAX.Brute compromising the password (123voiptest):
VoIP TAX Password Tester

iSEC Partners, Copyright 20085 {c)
http://www.isecpartners.com

Written by Himanshu Dwivedi

What dictionary file do you wish to test (e.g. isec.dict.txt)?
isec.dict. txt
Loaded 279549 dictionary words from isec.dict.txt.

Please type in the captured Challenge Data value:
{"Challenge Data” in your sniffed IAX session)

214484840

Please type in the captured MDS hash value:
{"MD5 challenge result” in vour sniffed IAX session)
fc1131a20ch9c3d96bf69bade2e2 7d27

Brute forcing passwords. ..]
Testing password %71.0: retention

The password is '123woiptest’

which matches the hash of: fc7131a208c49c3d96bf69bade2e2d2?

Notice in figure 3.3, IAX.Brute simply walks through three steps to identify the password:
1. 1AX.Brute supplies dictionary file
a. isec.dict.txt is included with the tool, but any dictionary file can be used
2. User supplies challenge
a. User enters challenge sniffed over the network, which is 214484840 from figure 4.1
3. User supplies MD5 hash
a. User enters MD5 hash sniffed over the network, which his
fc7131a20c49c3d96bf69ba3e2e27d27 from figure 4.2
4. 1AX.Brute performs the passive dictionary attack
a. Done! IAX.Brute performs the passive dictionary and identifies the password,
which is “123voiptest”!

3.2 Authentication Downgrade — IAXAuthJack.py

IAXAuthJack.py is a tool used to actively perform an authentication downgrade attack and
force an endpoint to reveal its password in plaintext over the network. It performs this
attack by sniffing the network for traffic indicating that a registration is taking place, and
then injecting a REGAUTH specifying that the endpoint should authenticate in plaintext
rather then MD5 or RSA. The tool has two modes of operation, which are described below:

Targeted attack:

iaxauthjack.py -i ethO -c EndpointlP -s ServerlP

In this example, the tool will listen on the “eth0” Ethernet interface for control frames from a
specific IAX endpoint, whose IP address is specified by the “-c” argument, who is
attempting to register to the server, whose IP address is specified by the “-s” argument.
IAXAuthJack.py will then inject a REGAUTH packet spoofed from the server to the
endpoint, causing the endpoint to respond with a REGREQ packet with the password in

plaintext.

Wildcard attack:

iaxauthjack.py -i ethO -a -s ServerlP

In this example, the tool will listen on the “eth0” Ethernet interface for control frames from
ANY JTAX endpoint who is attempting to register to the server, whose IP address is specified
by the “-s” argument. IAXAuthJack.py will then inject a REGAUTH packet spoofed from the
server to the endpoint, causing the endpoint to respond with a REGREQ packet with the
password in plaintext.

Figure 3.4 shows the password in plaintext in the MD5 Challenge Result filed in Wireshark

= Information Element: Password for authentication: 123voiptest
IE id: Password for authentication (0x07)
Length: 11
Password for authentication: 123voiptest

0000 00 10 db 4a 05 20 00 OC 20 eb 30 2d 08 00 45 00 ...J. .. J.9-..E.
0010 00 44 04 40 00 00 80 11 ad 3e c0 a8 05 74 c0 a8 .D.@.... .>...T..
0020 02 66 11 d9 11 d3 00 30 b7 40 86 42 00 01 00 00 .f..... 0 .@.N....
0030 00 11 01 01 06 Od 06 05 76 6F 65 70 74 65 73 74 voiptest
0040 31 13 02 07 08 07 Ob ENER 3 Toouun. !‘gﬁ[ﬁ
0050 EENED 5t

3.3 Call Hangup - IAXHangup.py

The IAXHangup.py tool is used to disconnect IAX calls. It first monitors the network in
order to determine if a call is taking place. Once a call has been identified, it then injects a
HANGUP control frame into the call. The tool has two modes of operation, which are
described below:

Targeted attack:

iaxhangup.py -i ethO -a 1.1.1.1 -b 2.2.2.2

In this example, the tool will listen on the “eth0” Ethernet interface for control frames
indicating that a call is taking place between hosts 1.1.1.1 and 2.2.2.2. IAXHangup.py will
then inject a HANGUP and disconnect the call.

Wildcard attack:
iaxhangup.py -i ethO -e

In this example, the tool will listen on the “eth0” Ethernet interface for control frames
indicating that a call is taking place between any hosts on the network. IAXHangup.py will
then inject a HANGUP and disconnect the call.

Conclusion and Recommendation

IAX has the potential to be a very popular protocol for VoIP architectures. Key IAX features
can all make it a popular choice in VoIP hard and soft phones, including the simplistic
nature of the protocol, the use of a single UDP port, the use of one protocol for signaling and
media transfer, the use of a few network components (IAX clients and servers only versus
multiple media proxies, gateways, gatekeepers, STUN servers) and its friendliness to
network firewalls. While IAX has many operational and functional advantages over SIP or
H.323, it may not contain a better security story when compared with authentication,
encryption, and availability. The authentication weaknesses of SIP and H.323 are mirrored
in IAX. Additionally, the lack of use and/or support for encryption with RTP media transfers
is similar to the IAX in terms of voice communication. Furthermore, IAX’s susceptibility to
denial of service attacks are similar to SIP and H.323. These facts leave IAX in the same boat
with SIP, H.323, and RTP in terms of security at present.

The possible security benefits of IAX, as listed in its RFC, can be achieved once the support
for proper authentication and encryption appear on IAX endpoints and servers. For
example, IAX can support RSA public and private key pair for authentication, allowing for a
stronger authentication model from passive and active network attacks (it should be noted
that the deployment challenges with public and private keys with every VoIP phone will be
difficult). Additionally, AES encryption with a pre-set shared secret can encrypt media
communication, preventing passive attackers from eavesdropping telephone conversation
(assuming the pre-set shared secret is not vulnerable to an active or passive dictionary attack
during call setup). However, while eavesdropping will be prevented in a properly encrypted
call, IAX will still be susceptible to Denial of Service attacks due to session information
remaining in the clear.

In addition to support for RSA authentication and AES call encryption, iSEC Partners
recommends that the language in future versions of the IAX RFC be changed to note that
use of MD5 authentication should not be considered secure. Finally, IAX implementations
will need to continue to guard against implementation flaws such as authentication
downgrade attacks. Upon the arrival of these features, along with a proper way to
implement them, the IAX security story can be drastically better than current VoIP protocols
used on the market.

