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Abstract
TPM Genie is a serial bus interposer which has been designed to aid in the security
research of Trusted PlatformModule hardware. The tool demonstrates that a man-in-
the-middle on the TPM serial bus can undermine many of the stated purposes of the
TPM such as measured boot, remote attestation, sealed storage, and the hardware
random number generator.

Through TPM Genie we also reveal that an interposer device can trigger a variety of
parsing errors in the host-side driver software that is responsible for communicating
with the TPM. Here, we show that many TPM driver implementations are extremely
fragile and are affected by numerous memory corruption vulnerabilities.

Combined, these flaws allow an attacker to circumvent many of the security assur-
ances provided by a TPM, thus compromising the trusted boot process for a large
number of TPM-enabled computing platforms.
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1 Introduction
Onmany computer systems the Trusted PlatformModule (TPM) exists on a daughter card which connects to
the computer’s main board via a simple header. Through this header a serial bus is exposed, over which the
host communicates with the TPM via a simple command protocol. Typically, the communication interface is
the Low Pin Count (LPC) bus; however I2C and SPI-based TPMs are also commonplace for Internet of Things
devices that don’t use the LPC bus architecture. This exposed serial bus was the main focus of our research.

This paper, along with the accompanying Git repository, describes the process of designing and building an
interposer device which acts as a man-in-the-middle on the TPM I2C bus. The tool, which we have named
TPM Genie, has the ability to intercept and modify all traffic which is sent over the bus, and is intended to
assist vulnerability research of discrete TPMs and the host-side drivers that interact with them.

Leveraging TPM Genie, we show how an interposer device can trivially spoof measurements stored in the
Platform Configuration Register (PCR) banks. This act of spoofing PCRs serves to realize a variety of attacks
against the core functions of a TPM that rely on PCR integrity, namely: measured boot, remote attestation,
and sealed storage.

Another attack made possible by an interposer device is the ability to weaken the platform’s hardware
random number generator (RNG). This attack is conducted by altering TPM response payloads that contain
the output of the TPM’s internal hardware RNG. Consequently, an interposer could significantly impair many
types of cryptographic operations on the host operating system.

Finally, TPM Genie reveals that an adversary can attack the host machine by malforming certain TPM re-
sponse packets in order to trigger memory corruption in the host-side response parsing software. Our
research revealed approximately 30memory corruption vulnerabilitieswhichwerediscovered anddisclosed
during our research efforts. These vulnerabilities affect the majority of the TPM driver ecosystem. Many
platforms are at risk, including the Linux kernel and a variety of bootloaders such as U-Boot, coreboot, tboot,
and Tianocore EDKII.

Attacks against the TPM serial bus require that the adversary has temporary physical access to the affected
machine in order to implant an interposer device. Such an attack could be conducted in an “Evil Maid”
scenario, by a rogue employee in a data center that houses TPM-enabled enterprise servers, or by a supply
chain interdiction attack similar to those found in the NSA ANT catalogue of hardware implants.

Regrettably, physical attacks on TPM communication buses are rarely considered by those who attempt
to design secure computing systems. Many defensive security features possessed by the TPM, which are
intended to guarantee either the integrity and confidentiality of the serial bus data, are ineffective when
confronted with an interposer device.
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2 The Trusted Platform Module
The Trusted Platform Module is a cryptoprocessor whose specification was first developed in 2009 by the
consortium known as the Trusted Computing Group (TCG). The specification has slowly evolved over the
years, and at the time of writing this paper the two revisions seen most frequently in TPM deployments are
v1.2 and v2.0. There are material differences between the two specifications, but these differences have
little impact on the research presented herein.

The TCG claims that over 2 billion1 TPMs have been deployed within a variety of computing platforms.
The TPM is most commonly observed in x86 system architectures, such as enterprise servers, laptops and
desktop computers. Although it is less common, TPMs can also be found in other smart devices such as
enterprise printers and Internet of Things products. The U.S. Army and Department of Defense2 require
that every new PC has a TPM.

The host machine communicates with the TPM chip via a simple command-response protocol. The TCG
specification defines more than 100 command ordinals. This command set is leveraged by the host com-
puter to implement the various features provided by the TPM, such as random number generation, on-chip
creation of cryptographic keys, as well as a number of other cryptographic primitives.

A primary purpose of a TPM is to detect when any stage of the boot chain has been tampered with. This
is accomplished through the use of the TPM’s Platform Configuration Registers (PCR). The PCR bank is a
memory region that exists inside every TPM chip and serves as a dedicated secure storage location for a
series of cryptographic hash digests. The TCG specification states that a TPM device should contain a bank
of 24 PCRs, where each PCR is 160 bits in size - the width of a SHA-1 digest. On the other hand, the TPM v2.0
specification allows multiple PCR banks to exist, where every PCR index in the same bank must be extended
with the same hash algorithm.

During the platform’s boot sequence, each boot stage should compute a hash of the subsequent stage and
the resultant hash digest should be stored in a PCR. The TCG EFI Platform Specification suggests that the
PCR set should be organized as follows:

• PCR 0 – Core Root of Trust Measurement (CRTM), UEFI Firmware, SMI Handlers, …
• PCR 1 – SMBIOS, ACPI tables
• PCR 2 – Option ROM Code
• PCR 3 – Option ROM Configuration and Data
• PCR 4 – Initial Program Loader (IPL), Master Boot Record (MBR)
• PCR 5 – MBR Partition Table, …
• PCR 6 – Legacy BIOS, …
• PCR 7 – UEFI Secure Boot Policy, …
• PCR 8-24 – Platform or application specific

These hashes are often referred to as measurements. Using TCG terminology, a measurement is never
“written” to a PCR, but is rather “extended” into a PCR. In fact, a PCR can be extended multiple times in
order to track the integrity measurements associated with multiple critical boot parameters. Essentially, the
previous digest is combined with the new digest, as summarized by the following notation:

digest_new := hashAlg( digest_old || data_new )

This “extend” terminology is carefully chosen by the TCG to imply that a PCR value can never be cleared.

1https://trustedcomputinggroup.org/protect-data-enhance-security/
2https://www.securityfocus.com/brief/265
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In fact, the only way to reset a PCR to its original state of 20 null bytes (0x00) is to reset the TPM itself. This
means that only the first stage bootloader should observe empty PCR banks.

PCR extension is an essential property of the TPM as it implies that a PCR value cannot be arbitrarily set by
malicious code on the host machine. Malicious software can certainly attempt to extend new data into a PCR
index, but this will only serve to compute a new (and incorrect) measurement for the PCR.

Of course, this suggests that the measurements should at some point be verified and appropriate action
should be taken when the system observes that the PCR set does not match the expected values. The TCG
doesn’t define what “appropriate” means in these circumstances, as this decision is left up to the system
implementers. However, one would expect that the boot sequence should be terminated.

As expected, in order for the Measured Boot process to work as intended, the first stage bootloader must
be executed from write-protected memory. Otherwise an attacker is able to subvert the foundational code
that anchors this chain of trust. This subversion would enable an attacker to effectively control the entire
boot sequence including the ability to spoof all subsequent PCR extend operations.

In addition to the Measured Boot behavior described above, the TPM has two other important features
related to the enablement of Trusted Computing: Remote Attestation and Sealed Storage. Once again, the
properties of PCR extension are extremely useful here.

Remote Attestation enables an authorized remote party to detect software modifications that have been
made to a computer. Attestation is typically used to prevent a user (or an attacker) from tampering with their
computer in order to bypass protection measures. At a high level, an authorized remote party will request
a Quote from the TPM, which is simply a digitally signed report of platform’s PCR set.3 The remote party
is then expected to verify the quote using public key cryptography. Nonces should also be employed to
prevent an adversary from replaying a previously validated quote.

A valid quote will demonstrate to the remote party that the correct measurements were made during the
boot sequence and that the computer can be trusted because it has shown that it is running the anticipated
software. At this point, the next steps are application specific. For example, the remote party could provide
the computer with a DRM key, or a disk-decryption key, or simply provide the computer with a session token
allowing it to interact with an exposed network service.

Sealed Storage is a mechanism by which a secret can be bound to a specific PCR set. The bound secret is
stored in the TPM’s non-volatile memory, and will be released only when the platform can demonstrate to
the TPM that it has booted into the correct state. In other words, the secret can only be unsealed when the
current PCR values are identical to those that were used to initially seal the secret. Typically, sealed storage
is used to protect disk encryption keys or in DRM applications.

3Principles of Remote Attestation
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3 Attack Surface and Threat Model
There are many types of Trusted Platform Modules. The most common is the discrete TPM, which exists
on a separate semiconductor package. A TPM can also be integrated or embedded within another chip.
Firmware TPMs are usually implemented within a secure execution environment,4 such as ARM TrustZone.
Software TPMs are effectively a TPM emulator that runs as a process or kernel module, such as ibmswtpm.5
Finally, a virtual TPM is implemented in a hypervisor, perhaps themost common example of which is in Xen.6

The discrete Trusted Platform Module is often touted7 as the most secure type of TPM, at least according
to the Trusted Computing Group. Chipset manufacturers such as Infineon, ST Micro, Nuvoton, and Atmel
have implemented a variety of tamper resistant features that defend their TPMs against fault injection, side
channel, and invasive silicon attacks.

Thesedefenses are not always perfect, as demonstratedbyChristopher Tarnovsky at the BlackHatDC confer-
ence in 2010.8 Tarnovsky executed an invasive silicon attack against an Infineon SLE66 chip and successfully
extracted secrets from within the silicon package. The barrier for entry here is rather high, requiring a
focussed ion beam (FIB), acid to decap the chip and expose the inner circuitry, and conductive needles
to intercept the chip’s internal data bus. Although Tarnovsky’s research was extremely important to demon-
strate that tamper resistance is not a panacea, it also makes clear that these types of attacks are extremely
time consuming, prohibitively expensive, and are simply not portable.

It is indeed true that an attacker with physical access and unlimited resources will always win. Thus, the
defender’s task (in this case, the TPM chip vendors) is to deter the largest number of attackers by increasing
the attack cost as much as possible.

Although TPM manufacturers have expended a considerable amount of engineering effort to harden their
products against expensive invasive and semi-invasive silicon attacks, these manufacturers and the Trusted
Computing Group have both entirely ignored the path of least resistance: inexpensive circuit-level attacks
against the serial bus that the TPM uses to interact with the host machine.

Johannes Winter and Kurt Dietrich published two important papers on the topic of the TPM serial bus. The
“Hijacker’sGuide to the LPCBus”9 and “Hijacker’sGuide toCommunication Interfaces of the TrustedPlatform
Module”10 papers were both essential referencematerials for the research conducted byNCCGroup. These
papers make the important observation that although the TPM itself is tamper resistant, the serial bus that
the TPM uses to communicate with the host operating system is comparatively insecure.

3.1 Serial Bus Interposing
So then, what circuit-level attacks can be leveraged against the Trusted Platform Module?

Although discrete TPMs are sometimes soldered directly onto the computer’s main board, they are fre-
quently present on a daughter card that connects to the main board via a header. This header exposes
the serial bus to a rather straightforward means of tampering.

4TPM Mobile with Trusted Execution Environment for Comprehensive Mobile Device Security
5http://ibmswtpm.sourceforge.net/
6https://wiki.xenproject.org/wiki/Virtual_Trusted_Platform_Module_(vTPM)
7Trusted Platform Module: A Brief Introduction
8http://www.smartcard.co.uk/articles/Whatthesiliconmanufacturerhasputtogetherletnomanputasunder/
9A Hijacker’s Guide to the LPC Bus

10Hijacker’s Guide to Communication Interfaces of the Trusted Platform Module
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This act of tampering could be conducted by a simple shim-like hardware implant (“interposer”), possibly
implemented using a low-cost microcontroller. The interposer would sit in the header between the host
and the TPM daughter card, acting as a man-in-the-middle on the serial bus. The interposer would have the
ability to capture all TPM command and response traffic that is transmitted on the bus.

Figure 1: High level block diagram of Interposer on an I2C bus

Due to the convenient header, this type of attack is non-invasive and, unlike other types of circuit-level
attacks, the adversary would not need to cut traces or desolder the TPM from the main board. One simply
needs to unplug the TPM, insert the interposer into the header, and then connect the TPM to the interposer
device. A practiced adversary could pull off such an attack in mere seconds.

In addition to passively sniffing traffic, an interposer could have the facility to modify the data that is sent
over the serial bus. The following sections describe a variety of attacks made possible by a TPM interposer
that is capable of modifying both command packets (host-to-TPM) and response packets (TPM-to-host).
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4 Interposer Attacks
4.1 Attacks on PCR Extension
As previously described, there are a number of TPM features that rely on PCR integrity, such as measured
boot, remote attestation, and sealed storage. If an adversary wishes to defeat these protection measures,
they would need to target the PCR Extend command ordinal with an interposer device.

All commands are prefixed with a 10-byte header that contains three fields: a 2-byte tag (whether the
operation uses a session), a 4-byte length (the overall size of the packet) and a 4-byte ordinal (the command
being executed). Shown below is the layout of an example TPM_ORD_PcrExtend command packet. For this
particular command, the packet body contains two arguments: the PCR index that is being written (in this
case index #1), and a 20-byte digest (a SHA-1 hash of the string “hello world”).

+-----------------------------------+-----------------------------------------------------------------+
| header | body |
|-----------------------------------+-----------------------------------------------------------------|
| tag | length | ordinal | index | digest (20 bytes) |
+-------+-------------+-------------+-----------------------------------------------------------------+
00 C1 00 00 00 22 00 00 00 14 00 00 00 01 2A AE 6C 35 C9 4F CF B4 15 DB E9 5F 40 8B 9C E9 ..

After the TPM has finished processing the command, it returns the following response packet. Note that the
returned digest differs from themeasurement that was submitted in the request packet. This is an intentional
property of the TrustedPlatformModule. Remember that newmeasurements are always extended, ormixed,
with the previous measurement.

+-----------------------------------+-----------------------------------------------------------------+
| header | body |
|-----------------------------------+-----------------------------------------------------------------|
| tag | length | status | digest (20 bytes) |
+-------+-------------+-------------+-----------------------------------------------------------------+
00 C4 00 00 00 1E 00 00 00 00 54 C5 28 F7 74 CE B1 F2 70 BA 53 49 FC AB C2 A1 BD 1F 10 D4

In order to attack PCR Extension, the interposer device would simply wait until the host transmits the PCR
Extend command and then replace the 20-byte digest as it is transmitted over the serial bus. In this sense,
the interposer could cause the TPM chip would receive a different digest than what was transmitted.

Such an attack would most effectively be conducted in combination with firmware tampering. For the
sake of example, let’s assume that an attacker wishes to alter the contents of flash memory to force the
operating system to spawn the SSH daemon after bootup. Of course, this act of tampering would result in
the computation of a different measurement, which should be recognized by a remote attestation service.
To circumvent this fact, the interposer device would merely have to modify the PCR Extend packet payload,
replacing the new measurement with the original pre-tamper value. This would fool the TPM into believing
that the anticipated software was running on the platform.

8 | TPM Genie: Interposer Attacks Against the Trusted Platform Module Serial Bus NCC Group



4.2 Attacks on the Random Number Generator
The TPM’s hardware random number generator is often relied upon when the host processor does not
have its own strong RNG. The lack of an on-chip entropy source is a common deficiency in many low-cost
embedded systems, as well as x86 platforms prior to the introduction of the RdRand instruction in 2013.

Modern Linux systems that use of the tpm kernel module will by default also use the tpm_rng module. This
module ties into another kernel module named hw_rng, which is exposed to userspace via /dev/hwrng, such
that all reads on this character device will result in the TPM chip providing the requested quantity of random
bytes. Likewise, the OpenSSL TPM Engine leverages the TSS API to establish the TPM hardware RNG as
engine’s default source of randomness.

Shown below is the format of the simple TPM_ORD_GetRandom command packet. In this example, the host is
requesting 16 random bytes from the TPM’s hardware random number generator:

+-----------------------------------+-------------+
| header | body |
|-----------------------------------+-------------|
| tag | length | ordinal | rng_length |
+-------+-------------+-------------+-------------+
00 C1 00 00 00 0E 00 00 00 46 00 00 00 10

After the TPM has finished processing the command, it will reply with the following response packet. The
response contains two fields: a length (rng_length) followed by a variable-size data payload (rng_data).

+-----------------------------------+-----------------------------------------------------------------+
| header | body |
|-----------------------------------+-------------+---------------------------------------------------|
| tag | length | status | rng_length | rng_data |
+-------+-------------+-------------+-------------+---------------------------------------------------+
00 C4 00 00 00 1E 00 00 00 00 00 00 00 10 DB 7E A1 71 BC A6 F2 C1 7F 26 CE A9 3E A1 75 78

In order to attack the hardware RNG, the interposer simply needs to replace the rng_data field in the packet
bodybefore forwarding the responsepayload to the host. A TPM interposermight therefore have full control
over the platform’s entropy source, which could allow it to undermine almost all cryptographic operations
performed by the host.

4.3 Attacks on the Host-Side Response Parsers
The TPM specification is fairly complex and many of the 100+ commands contain variable-length payloads
in both the request and response packet bodies. After spending some time analyzing the TCG specification,
NCC Group investigated whether an interposer could induce other kinds of faults in the host software by
malforming these response packets.

If the response parsers happened to be fragile, then a malformed response packet could potentially induce
memory corruption. Such a vulnerability would be extremely valuable to an attacker, who might leverage
the bug to compromise a host machine after it has booted into a fully measured and attested state.

The following sections describe the process and results of hunting for this class of TPM driver vulnerability.
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5 Code Audit Results
After a short time-bounded code review effort, NCC Group discovered more than 30 memory corruption
vulnerabilities in the host-side response parsing software. These issues affect a large cross section of the
TPM driver ecosystem. The issues are summarized in the following table:
Software Quantity Patch Availability
Linux kernel 6 Patches available in 4.16 kernel
U-Boot 3 Patches available in master branch
Coreboot 1 Patches not yet available, but present in the public bug tracker
tboot 13 Patches not yet available
Tianocore EDKII 10 Patches not yet available

The subsequent sections perform an in-depth analysis of a handful of these vulnerabilities.

5.1 Chipset-Specific Vulnerabilities
Some of the discovered vulnerabilities happened to be chipset specific. These bugs affect only the lowest
layer of the TPM driver and exist primarily within the vendor-specific chip interfaces.

For example, a common flaw among many kernel drivers was to blindly trust the length value contained
within the TPM response header. The kernel drivers were architected such that, when reading a TPM re-
sponse packet, they first read the 10-byte header, extract the 4-byte length field, and use that length to
determine the size of the following read operation.

The TPM response header is structured as follows:

struct tpm_output_header {
__be16 tag;
__be32 length;
__be32 return_code;

} __packed;

Listing 1: drivers/char/tpm/tpm.h
Although many vendor drivers were affected by this flaw, the ST Micro driver implementation is suitable to
illustrate this bug. The vulnerable code is shown below:

static int st33zp24_recv(struct tpm_chip *chip, unsigned char *buf, size_t count)
{

int size = 0;
int expected;
...
size = recv_data(chip, buf, TPM_HEADER_SIZE);
...
expected = be32_to_cpu(*(__be32 *)(buf + 2));
if (expected > count) {

size = -EIO;
goto out;

}

size += recv_data(chip, &buf[TPM_HEADER_SIZE], expected - TPM_HEADER_SIZE);
...

}

Listing 2: drivers/char/tpm/st33zp24/st33zp24.c
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Above we see that recv_data is first called to retrieve the 10-byte header (TPM_HEADER_SIZE) from the TPM’s
data FIFO. Next, 4 bytes are extracted from the header and are then assigned to the expected variable. This
value represents the overall length of the TPM response packet (sizeof(header)+sizeof(body)). Finally,
expected is checked to ensure that it is not too large (>count), however, no checks are performed to ensure
that it is not smaller than TPM_HEADER_SIZE. In this case, the operation expected-TPM_HEADER_SIZE would
underflow, which would result in the driver reading an excessive quantity of bytes from the TPM, overflowing
the destination buffer.

The patch is, of course, very straight forward:
- if (expected > count) {
+ if (expected > count || expected < TPM_HEADER_SIZE) {

A serial bus interposer could freely manipulate the contents of the TPM response header, and this code is
executed long before the response packet is unmarshalled and verified by the upper layers of the driver.

Curiously, this flawed coding pattern was observed to be nearly identical across all TPM chipset vendors,
indicating that these manufacturers simply copy-and-pasted each other’s driver code.

5.2 Command-Specific Vulnerabilities
Other vulnerabilities were observed to affect the upper layers of the TPM driver stack. This code is respon-
sible for sending specific TPM commands and parsing the response payloads. In multiple instances, this
parsing logic was fragile, and once again appeared to blindly trust size fields supplied in the variable-length
response packet. Between the Linux kernel, tboot and Tianocore EDK2, a large number of commands were
affected, such as:
• TPM_ORD_PcrRead
• TPM_ORD_GetRandom
• TPM_ORD_GetCapability
• TPM_ORD_Seal
• TPM_ORD_Unseal
• TPM_ORD_NV_ReadValue

The Linux kernel’s TPM_ORD_GetRandom command handler will be used for the purposes of illustration. The
tpm_get_random function is called by the Hardware RNG kernel module whenever the character device
/dev/hwrng is accessed from userspace. For example, if the user requests 64 random bytes, the caller will
pre-allocate a 64-byte buffer pointed at by out, and the argument max will be equal to 64.

int tpm_get_random(u32 chip_num, u8 *out, size_t max) {
struct tpm_cmd_t tpm_cmd;
u32 recd, num_bytes = min_t(u32, max, TPM_MAX_RNG_DATA);
u8 *dest = out;
...
tpm_cmd.header.in = tpm_getrandom_header;
tpm_cmd.params.getrandom_in.num_bytes = cpu_to_be32(num_bytes);
err = tpm_transmit_cmd( chip, &tpm_cmd, TPM_GETRANDOM_RESULT_SIZE + num_bytes );
...
recd = be32_to_cpu(tpm_cmd.params.getrandom_out.rng_data_len);
memcpy(dest, tpm_cmd.params.getrandom_out.rng_data, recd);
...

}

Listing 3: drivers/char/tpm/tpm-interface.c
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The tpm_get_random function calls the tpm_transmit_cmd, which will send the TPM_ORD_GetRandom command
to the TPM chip, and read the resulting response. The tpm_cmd structure is a union that contains both the
request and the response data structures. The response body is contained within the field tpm_cmd.params
.getrandom_out, and its declaration is shown below:

struct tpm_getrandom_out {
__be32 rng_data_len;
u8 rng_data[TPM_MAX_RNG_DATA];

} __packed;

Listing 4: drivers/char/tpm/tpm.h

In the event that the TPM’s entropy pool has been exhausted, the TCG specification allows for a situation
where the TPM may return fewer random bytes than were requested.11

Set randomBytesSize to the number of bytes available from the RNG. This number MAY be less
than bytesRequested.

This helps explain why the response structure for the TPM_ORD_GetRandom command is variable length, where
rng_data_len indicates the number of bytes that follow. However, the specification does not explainwhether
a TPM could ever return more bytes than were requested by the caller. A serial bus interposer could easily
manipulate the response packet, setting a very large value in the rng_data_len field.

Therefore, the unsafe code in tpm_get_random can be summarized in only two lines:

recd = be32_to_cpu(tpm_cmd.params.getrandom_out.rng_data_len);
memcpy(dest, tpm_cmd.params.getrandom_out.rng_data, recd);

This code trusts the rng_data_len field that was received from the TPM chip. If an interposer replaces this
length with a value that is longer than max, then a trivial kernel overflow of the dest buffer is triggered. And
once again, the patch is very simple:

recd = be32_to_cpu(tpm_cmd.params.getrandom_out.rng_data_len);
+ recd = min_t(u32, recd, num_bytes);

memcpy(dest, tpm_cmd.params.getrandom_out.rng_data, recd);

5.3 TPM v2.0 Vulnerabilities
Of particular interest was the TPM2B structure which is used widely throughout drivers that implement the
TPM v2.0 specification. This structure is used to describe a generic outline of a variable-length packet.

Although other platforms made similar mistakes, for the purposes of illustration, we will highlight tboot’s
use of the TPM2B structure. The following code shows the packet format for responses to TPM2_ORD_NV_READ
commands:

1113.6 TPM_GetRandom, TPM Main Part 3 Commands, Specification Version 1.2

12 | TPM Genie: Interposer Attacks Against the Trusted Platform Module Serial Bus NCC Group

https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-3-Commands_v1.2_rev116_01032011.pdf


typedef struct {
uint16 size;
u8 buffer[1];

} TPM_2B;

typedef struct {
u16 size;
u8 buffer[MAX_NV_INDEX_SIZE];

} MAX_NV_BUFFER_2B;

typedef union {
MAX_NV_BUFFER_2B t;
TPM2B b;

} TPM2B_MAX_NV_BUFFER;

Listing 5: tboot/include/tpm_20.h
The intention of the TCG specification is that the size field will always match the length of the buffer. How-
ever, this assumption could be trivially broken by an interposer that carefullymalforms the response payload.
In many cases, if the size was greater than expected, the host-side response parser code would copy too
many bytes into a fixed-length destination buffer, resulting in memory corruption. The following code block
shows how tboot issues the NV Read command, and how it parses the variable-length response structure.

static bool tpm20_nv_read(struct tpm_if *ti, uint32_t locality,
uint32_t index, uint32_t offset,
uint8_t *data, uint32_t *data_size)

{
tpm_nv_read_in read_in;
tpm_nv_read_out read_out;
...
if ( *data_size > MAX_NV_INDEX_SIZE )

*data_size = MAX_NV_INDEX_SIZE;

read_in.handle = index;
/* NCC: initialize rest of read_in struct */
...
ret = _tpm20_nv_read(locality, &read_in, &read_out);
...
*data_size = read_out.data.t.size;
if( *data_size > 0 )

memcpy(data, &read_out.data.t.buffer[0], *data_size);
...

}

Listing 6: tboot/common/tpm_20.c
Notice that although the data_size is checked to ensure that it is not negative, there is no validation to ensure
that it is not greater than the destination buffer pointed at by data. This results in a rather straightforward
memory overrun which could be triggered by a man-in-the-middle on the serial bus.

These same types of mistakes were repeated throughout all of the audited code. It appears the driver
developers are trusting the TCG protocol specification that has been implemented by the TPM hardware
manufacturers. In general it can be concluded that there were significant oversights in the threat modelling
exercises performed by these developers.
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6 Gaps in the TCG Specification
The question arises: Did the Trusted Computing Group anticipate serial bus attacks and are there any
provisions in the specification that can help mitigate the aforementioned vulnerabilities? The following
sections survey the effectiveness of the various defensive features of the Trusted Platform Module.

6.1 Locality
Locality is a concept that was introduced in v1.2 of the TPM specification. Locality is essentially the TPM
nomenclature for where a TPM command was issued from, designating which privilege level originated the
command.

Themain purpose of Locality is to define a simple access control policy, dictating which TPM commands can
be performed when the host is executing in a particular security context. For example, the TPM Interface
Specification states that certain PCRs can only be reset and extended when executing in specific Localities.

6.1.1 Weaknesses
Unfortunately, TPM Locality provides very little defense against aman-in-the-middle on the serial bus. In fact,
an interposer device would never need to attempt to violate the Locality policy, because the interposer is
ever-present on the bus, and canmanipulate existing commands or issue entirely new commands whenever
it pleases. In this sense, an interposer has no regard for the security context that the host-side software is
executing in.

6.2 Authorization Sessions
The classic defense against packet tampering is the use of a hash-based message authentication code
(HMAC). The computation of an HMAC involves the use of a cryptographic hash function and a secret key.

The TPM specification has a concept of authorization sessions wherein the host will append an HMAC to
the command packet, and the TPM will append an HMAC to the response. Each side is then responsible
for verifying the other’s HMAC, which not only verifies the data integrity (with the hash digest), but also
authenticates the payload (with the secret key). The HMAC key is based on the shared secret known as
“AuthData” that was established when the TPM was initially configured with the TPM_ORD_TakeOwnership
command.

In TPM v1.2 there are two types of authorization sessions: the object-independent authentication protocol
(OIAP) and the object-specific authentication protocol (OSAP). In order to initiate a session, the host must
issue either the TPM_ORD_OIAP or TPM_ORD_OSAP command to the TPM. The TPM will then respond with the
session data (an AuthHandle and a nonce) which the host uses with the AuthData to compute a HMAC that
is appended to each subsequent command.

The TPM v2.0 specification eliminates the notion ofOIAP andOSAP session types. Instead, they are replaced
with new session types allowing for the use of an HMAC as well as encryption of both command parameters
and responses. Although the notation has changed, the behavior is more or less the same as the v1.2
specification. TPM 2.0 allows these authorization sessions to be stacked which provides the user with the
flexibility needed to ensure the necessary integrity and confidentiality protection level for each transaction
over the serial bus.

In order to prevent replay attacks, sessions use rolling nonces, wherein a new 20-byte nonce is generated by
each party upon issuing or receiving a command. Nonces generated by the TPM are named “even” nonces,
and those generated by the host are named “odd” nonces.
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6.2.1 Weaknesses
Our research uncovered a number of specification flaws and host-side driver implementation errors that
serve to weaken authorization sessions.

The primary problem with authorization sessions is that their use is optional for many commands (TPMMain
Part 2 - Structures, section 5.9 “AuthData Usage”). The TPMCommandOrdinal table reveals that sessions are
not mandatory for many delicate commands such as TPM_ORD_GetRandom and TPM_ORD_PcrExtend. Through-
out all TPM interface implementations surveyed NCC Group, a general pattern was observed: When the
TCG specification described an authorization session as optional, the developer opted not use it. In these
situations, an interposer could freely manipulate these command and response payloads without detection
by the host.

Other implementation weaknesses related to the use of nonces. When sealing and unsealing data, tboot
was observed to initiate an authorization session and apply an HMAC to the command packet. However,
it would never verify the HMAC in the response packet. Therefore, an interposer could manipulate the
response payload, and tboot would never recognize that the modification had occurred.

Additionally, tboot intentionally skips the generation of the odd nonces, opting instead to use uninitialized
stack memory for the nonce, and sending that in the command payload. There are multiple problems here
with this approach. First, uninitialized stack memory is insufficiently random to serve as a nonce. If this stack
memory happened to possess the same value onmultiple iterations, then the nonce is rendered useless and
does not defend against replay attacks. Second, this represents a serious memory disclosure vulnerability -
tboot is essentially revealing 20-bytes of its memory space to an interposer device.

Similarly problematic was the Linux kernel, which uses the TPM_ORD_GetRandom command to generate a 20
byte nonce for the authorization session associatedwith the seal andunseal operations. We’ve shownhowan
interposer can take full control the hardwareRNGoutput stream, so the conclusion is obvious: The interposer
also controls the nonce value.

6.3 Alice and Bob
Through a significant investment in engineering effort, a highly motivated adversary could develop a TPM
emulator to replace the comparatively naive interposer. An emulator would behave just like a legitimate
TPM, except that it would be entirely attacker controlled and could exfiltrate all secrets that have been stored
there by the user. Once this emulator has been implanted in the victim device, the host-side software may
never realize that it is not communicating with a genuine TPM.

In general, it is difficult for the host-side driver software to verify whether it is communicatingwith a legitimate
TPM chip. If the legitimacy of the TPM cannot be assured, then the integrity guarantees provided by the
authorization sessions may be undermined. Two features in the TCG specification come close to solving this
problem, but both fall short of the mark.

The first method is the TPM’s vendor/device identifier (VIDID) register. The host can read this register to
get a 4-byte value that identifies the TPM manufacturer and part number. But the VIDDID is no better than
a serial number, and besides, an interposer can trivially spoof this value because it controls all peripheral
register reads that are performed over the serial bus.

The second method relates to the public/private key pair known as the Endorsement Key (EK) which is
embedded in a shielded location within the TPM chip. The host can request the public portion of this key by
executing the command TPM_ORD_Read_PubEK. Alongisde the PubEK, a checksum is returned in the response
payload. The host-side software is meant to validate this checksum to ensure the PubEK was not corrupted
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due to, say, an accidental glitch on the bus. But a simple checksum is not a suitable replacement for proper
key verification that would detect malicious data manipulation by an interposer.

It is extremely important that the host verify the Endorsement Key because it is used by critical TPM oper-
ations, such as the important act of taking ownership of a TPM (TPM_ORD_TakeOwnership). Here, the owner
is expected to use the PubEK to encrypt the owner’s AuthData, which is the shared secret that is used to
calculate the authorization session HMAC. Within the TPM chip, the paired PrivEK is used to decrypt the
AuthData after the command has been received. This mechanism guarantees the confidentiality of the
AuthData as it is transmitted over the serial bus.

6.3.1 Weaknesses
However, it is still possible to undermine this design. It is possible for a TPM interposer to provide its own
public key to the host in response to a TPM_ORD_Read_PubEK command. If the host driver does not verify the
attacker-controlled PubEK, then it would never realize it was communicating with a man-in-the-middle.

In this scenario, the host may unknowingly pass its AuthData to the interposer, and because the AuthData
was encrypted using the attacker’s PubEK, the attacker could also decrypt the secret. Consequently, the
interposer could still establish itself as a man-in-the-middle on the serial bus, even when the host encrypts
all of its command payloads and protect them with HMACs through the use of authorization sessions.

Figure 2: Interposer sequence diagram
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The TCG specification only partially solves this problem. A robust solution for authenticating TPM chips
should build upon robust Public Key Infrastructure (PKI) services. In fact, the TCG “Credential Profile” working
group appears to have worked on this problem by defining a unified credential format that wraps the TPM’s
Endorsement Key. This Endorsement Certificate (EC) can be retrieved from TPM’s NVRAM area (TPM Main
Structures, Section 19.1.2) and can be used to verify the EK.

However, only some TPM chips are provisioned with an Endorsement Certification. For example, ST12 and
Infineon13 both publish the EK on their website. Unfortunately, NCC Group was not able to identify any
host-side driver implementations that use the EC to properly verify the EK prior to interacting with the TPM.
12ST Trusted Platform Module Endorsement Key certificates
13Infineon Optiga TPM certificates
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6.4 Turtles All the Way Down
The following passage from the TPM specification (Design Principles, Section 8) is very revealing, and high-
lights the gaps in the threat modeling performed by the Trusted Computing Group.

Outside the TPM, a reference monitor of some kind is responsible for protecting AuthData.
AuthData should be regarded as a controlled data item (CDI) in the context of the security
model governing the reference monitor. TCG expects this entity to preserve the interests of
the platform Owner.

The TCG is encouraging the use of a reference monitor in order to protect the shared secret known as
AuthData. This AuthData is presented by the owner in order to prove ownership of, or request authorization
to use, an object within the TPM.

A wide-range of objects use AuthData. It is used to establish platform ownership, key use
restrictions, object migration and to apply access control to opaque objects protected by the
TPM.

The AuthData is therefore a highly sensitive secret in the context of a TPM. Merely knowing the 20-byte
AuthData value is sufficient to be granted access to many sensitive areas of the TPM:

Neither the TPM, nor its objects (such as keys), contain access controls for its objects [..]. If a
subject presents the AuthData, that subject is granted full use of the object based on the object’s
capabilities [..].

Given the sensitivity of the AuthData, it makes sense that it should be carefully protected. The properties of
a reference monitor can be summarized by the rather simple NEAT acronym:

• Non by-passable
• Evaluable (verifiable)
• Always invoked (always on)
• Tamper-proof (self-protecting)

Curiously, a reference monitor sounds a lot like a Trusted Platform Module. This begs the question: If a
second TPM is used to protect the AuthData associated with the first TPM, then should a third TPM be used
to protect the second TPM’s AuthData? However, this doesn’t scale.
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7 TPM Genie
On its own, code review is perhaps insufficient evidence as to the validity of the vulnerabilities described in
this paper. Although the response parsing memory corruption bugs may be apparent through code review,
vulnerabilities that affect the hardware RNG and PCR extension are more subtle and require concrete evi-
dence. We therefore decided to design and build an actual interposer device to demonstrate the legitimacy
of these attacks. This tool has been named TPM Genie.

TPM Genie is able to manipulate TPM command and response packets as they are submitted over the I2C
serial bus. Although the LPC bus is the most common bus architecture used by the TPM, the I2C protocol
was selected in our design because it simplified the interposer hardware and firmware and thus shortened
the development effort. Support for the LPC and SPI protocols is planned as a future undertaking.

As a man-in-the-middle, TPM Genie is able to actively attack PCR Extend operations executed by the host,
yielding the ability to undermine most of the stated purposes of a TPM: measured boot, remote attestation,
and sealed storage. Our interposer makes it is possible to spoof PCRmeasurements by replacing the digest
contained within the PCR Extend command as it is transmitted over the serial bus.

Additionally, TPM Genie can weaken the Linux hardware random number generator. We demonstrate that
TPMGenie has full control over the randombytes returned by the TPM, and thus is able to impair many types
of cryptographic operations on the host.

And finally, by subtly altering the contents of a certain TPM response packet, we were able to trigger one of
the previously discussed parsing vulnerabilities. As a proof of concept, a single vulnerability which affects
the TPM_ORD_GetRandom command handler was selected, and TPM Genie is able to crash the Linux kernel by
manipulating a length field in the response packet.

We have decided to make TPM Genie an open source project. The full hardware design plan, firmware
implementation, usage instructions and proof-of-concept exploits are available in the nccgroup/TPMGenie14

repository on GitHub.

14https://github.com/nccgroup/TPMGenie
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8 Conclusion
Due to time constraints, we were unable to exhaustively audit every single TPM driver in every single oper-
ating system or bootloader. In fact, our research was limited to only open source TPM drivers. Based on the
high density of parsing vulnerabilities discovered by our brief code audit, it is our belief that additional bugs
are still undiscovered and could pose further risk for TPM users.

Regrettably, the Trusted Computing Group specification does not account for attacks from local or physical
vectors. This is unfortunate because in many ways, the TPM is meant to defend a platform from physical
attacks (ex: by an adversary that tampers with firmware that resides flash memory). And yet, the TPM’s data
path itself is not resilient to trivial physical attacks, such as those against the serial bus.

TPM Genie neatly demonstrates that a TPM cannot be relied upon to make the host system robust against
cheap physical attacks. In other words, simply adding one secure component (a TPM) to an insecure system
does not make the overall system secure. We hope that by releasing these practical tools, the myth of TPM
security will be dispelled.

Ultimately, if physical vectors are part of your threat model, then using a discrete TPM can actually increase
the attack surface of your device, and lower an adversaries cost of conducting a successful attack. In order
to help mitigate circuit level attacks of the TPM’s serial bus, certain design principles should be followed.
These best practices are described in the following sections.

8.1 Patch Availability
TPM users who are concerned with physical attack vectors should apply patches for the host software vul-
nerabilities discussed in this paper. Unfortunately, at the time of writing, none of these patches are readily
available.

The Linux kernel memory corruption patches will be released in version 4.16 and also will be back ported to
a number of stable branches. However, the patches that improve the kernel’s use of authorization sessions
are still a work in progress.

The U-Boot vulnerabilities have been patched, and at the time of writing, can be found in themaster branch.

The Coreboot vulnerability report is still untouched and presently sits idle the public bug tracker.

Intel has not yet patched the vulnerabilities that affect tboot and Tianocore EDK2. In fact, Intel’s Product
Security Incident Response Team have decided that the vulnerabilities do not pose sufficient risk to require
an embargo on their public disclosure. Intel PSIRT has given NCC Group permission to disclose the vulner-
abilities.

8.2 Mitigations
In order for TPMs to defend against interposer attacks, the Trusted Computing Group should revise the
Trusted Platform Module specification. The use of authorization sessions should be made mandatory for
all TPM command ordinals. Likewise, the TCG specification needs to make Endorsement Key Certificates a
mandatory feature for all TPM hardware, and manufacturers should publish the certificates that are em-
bedded in the chip. And finally, the host-side drivers should be revised to validate the EKCert before
communicating with the TPM.

In themeantime, systems engineers should account for serial bus interposers when designing TPM-enabled
devices. First and foremost, socketed discrete TPMs should be avoided entirely because they enable an
adversary to conduct an interposer attack in mere minutes once physical access is obtained.

When designing circuit board layouts, hardware engineers should ensure that the TPM is soldered onto the
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main board, covered with a RF shield, and underfilled with epoxy resin. These steps will raise the cost of the
attack, forcing the adversary to employ more invasive circuit modification techniques to remove the TPM
and install the interposer.

Ideally, hardware engineers should also consider burying the serial bus in an inner layer of the printed circuit
board. It can be difficult to hide the traces completely if there is a need for pull-up or termination resistors,
such as is required for I2C and LPC. In such cases, system designers should seek host processors or TPM
components that have internal resistors for this purpose.

Alternatively, the most resilient solution would be to never expose the serial bus in the first place. The TPM
could be embedded within the semiconductor package of the main processor. This raises the cost for an
adversary, by requiring more expensive invasive silicon attacks.
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9 Future Work
Although TPM Genie is a useful tool that serves as a proof-of-concept for demonstrating the legitimacy of
TPM interposer attacks, much more work is needed if we wish to realize mature attacks on other platforms.

As a priority, NCC Group would like to expand TPM Genie’s support for the TPM hardware ecosystem.
Namely, we would like to:

• Test TPM Genie against additional TPM chips and vendors
• Add explicit support for version 2.0 of the TPM specification
• Add support for both SPI and LPC buses

Due to the higher data transmission rates of SPI and LPC, and themore complex v2.0 feature set, it is possible
that the current Arduino-based design will be insufficient to interpose traffic in real time. In this case, it may
be necessary to re-implement TPM Genie using an FPGA or faster microcontroller.

Although breadboards are excellent for prototype development, an actual interposer would need to mas-
querade as a legitimate computer component in order to make for a convincing hardware implant. We
would like to miniaturize TPM Genie and have it professionally silk-screened to mimic the brand markings
of a common TPM chipset vendor.

Additionally, a real hardware implant would benefit from some sort of remote access capability so that the
adversary could control the interposer remotely. We would like to investigate the possibility of adding a
low-cost, long-range radio module for remote control purposes.

We would also like to add better emulation of the TPM_ORD_Read_PubEK and TPM_ORD_TakeOwnership com-
mands. This would allow TPMGenie to steal the host’s AuthData, and then perform activeman-in-the-middle
attacks against commands that use an authorization session.

Finally, we feel that it is necessary to audit the remainder of the TPM driver ecosystem. Our initial audit
was time boxed, and as such, not all TPM-enabled platforms could be surveyed, and in particular, many
closed-source implementations were not investigated. We believe that we’ve only scratched the surface
with respect to the sorts of vulnerabilities that could be triggered by TPM Genie.
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