

© Copyright 2013 NCC Group

An NCC Group Publication

Lessons learned from 50 bugs:

Common USB driver vulnerabilities

Prepared by:

Andy Davis

Research Director

andy.davis ‘at’ nccgroup.com

NCC Group | Page 2 © Copyright 2013 NCC Group

Contents
List of Figures and Tables ... 2

1 Introduction .. 3

1.1 Previous Research .. 3

2 USB terminology overview ... 3

2.1 Enumeration .. 3

2.2 Descriptors .. 3

2.3 Class-specific communication ... 3

3 Testing methodology .. 4

3.1 VM-based .. 4

3.2 Function hooking ... 4

3.3 Bespoke hardware .. 4

3.4 Native test support .. 4

3.5 Test equipment ... 4

4 The USB driver stack ... 5

5 Common USB vulnerabilities ... 5

5.1 Unspecified DoS ... 5

5.2 Buffer overflows .. 5

5.3 Integer overflows and other length-related bugs .. 7

5.4 Format string bugs .. 12

5.5 Logic errors ... 12

6 Conclusions ... 15

7 USB Host Testing Checklist ... 17

8 References & further reading ... 20

List of Figures and Tables
Figure 1: Source code from /linux-2.6.38/include/sound/pcm.h……………………….…………….... 6

Figure 2: Source code from /linux-2.6.38/sound/usb/caiaq/audio.c…………………………………… 6

Figure 3: Summary of the 50 USB bugs referenced………………………………………...................15

Table 1: Comparison of different USB host testing approaches………………………………….…… 4

Table 2: Example String descriptor………………………………………………….……………………. 6

Table 3: Example Hub descriptor……………………………………………………….………………… 8

Table 4: Configuration descriptor…………………………………………………………………………. 9

Table 5: Example Endpoint descriptor……………………………………………………………………. 9

Table 6: Example HID descriptor………………………………………………………………………….. 8

Table 7: Example Image class data…………………………………………………………………........10

Table 8: Example Printer class data …………………………………………………………………......12

Table 9: Example HID Report descriptor………………………………………………...………………13

NCC Group | Page 3 © Copyright 2013 NCC Group

1 Introduction
Over the past few years NCC Group has identified over fifty USB driver bugs in all the major

operating systems and many of these have affected more than one OS. Based on these discoveries,

this paper presents common USB vulnerabilities and how to identify them from a black box testing
[1]

perspective. The first paper
[2]

 the author wrote on the subject of USB vulnerabilities was presented at

Black Hat USA 2011 and this paper updates and extends the information initially presented.

Although exploiting USB-based vulnerabilities often requires physical access to a host, the ability to

execute arbitrary code (sometimes with kernel privileges) purely by inserting a device into a

computer still represents a significant risk to businesses and to governments around the world.

The paper will first discuss the various different approaches to testing USB host-based drivers, some

of which are OS-specific and others which require specialist hardware and are as a result OS-

agnostic. However, all the techniques outlined in this paper essentially enable malformed data to be

inserted into USB descriptors and other class-specific fields which is then processed during the

enumeration phase that occurs when a USB device is inserted into a host. This capability facilitates

fuzz testing of USB-related host software. The remaining sections will then detail the different

vulnerability classes that have been observed in real-world drivers and more importantly, in which

USB descriptors these vulnerabilities have been identified. Conclusions are then presented about the

current state of USB driver security and the various security best-practice approaches that can be

adopted in order to mitigate the issues identified during NCC Group’s research in this domain.

1.1 Previous Research
Security researchers have been investigating USB for at least ten years and during that time some

great research has been performed
[3][4][5]

. This paper will present a range of bugs commonly

observed in USB host-based drivers and a USB testing checklist is included in an appendix to assist

security researchers and testers to quickly and easily identify vulnerabilities in future.

2 USB terminology overview
Rather than repeat information that is available elsewhere, this section only covers the main

concepts relevant to the remainder of the paper. There are a number of USB primers
[6]

 available and

the full protocol specifications
[7]

 can be downloaded free of charge from the USB Implementers

Forum.

2.1 Enumeration
When a USB device is inserted into a host nothing is known about the device and therefore, a

question-answer session begins with the host interrogating the device to identify its properties e.g.

what type of device it is, how much power it requires and which drivers need to be loaded. This

process is known as enumeration.

2.2 Descriptors
Descriptors are data structures containing information that represents various properties and

capabilities of a USB device. The majority of the vulnerabilities encountered have been in driver code

that parses the data stored in these structures.

2.3 Class-specific communication
USB devices are categorised based on their class e.g. Image class (cameras), mass storage class

(flash memory devices) and HID class (Human Interface Device – mouse / keyboard). Once the

enumeration process has completed, the device may then communicate actual data to the host and

this is known as class-specific communication. Some vulnerabilities have been observed in code that

parses this communication data.

NCC Group | Page 4 © Copyright 2013 NCC Group

3 Testing methodology
Testing USB drivers on host machines is not a straightforward process, because you either need to

emulate a USB device or proxy the traffic between a device and the host. As a result of how the

protocol works it would be extremely difficult to convert a USB host e.g. a PC into a USB device and

therefore, if you are not modifying the traffic en-route via some kind of hooking or proxy solution, you

need to use a hardware-based approach. This section details the various different approaches to

testing USB hosts and compares the relative merits of each.

3.1 VM-based
If the target can be run in a VM (Virtual Machine) then USB communication between the host

computer and the guest OS will pass through a virtualisation layer and is therefore controllable by

the tester. The use of QEMU
[8]

 for this purpose has been previously documented
[9]

 however, the

main drawback with this approach is the target must be capable of being run in a VM, so it couldn’t

be used to test the host USB stack of devices such as tablets, games consoles or Smart TVs.

3.2 Function hooking
If a specific driver is being tested then another approach is to hook functions within the driver and

modify the data presented by a real USB device before it is processed by the driver. This can be

accomplished using a tool such as Uhooker
[10]

 however, the obvious disadvantage with this

approach is it is driver-specific.

3.3 Bespoke hardware
Many researchers who have investigated USB security have concluded that the best approach is to

develop their own bespoke hardware device that enables USB devices to be emulated and their

characteristics easily manipulated. Some of these devices have been limited to only being able to

emulate specific device classes e.g. HID, however, other more recent hardware solutions, such as

Facedancer
[11]

 provide a much greater degree of flexibility.

3.4 Native test support
In some circumstances the stack natively supports test frameworks, such as the Microsoft 3.0 USB

stack
[12]

. However, as with the function hooking approach this is OS-specific.

3.5 Test equipment
The final testing option utilises commercial test equipment

[13]
, which records all the traffic between a

USB device and a host and can then replay that traffic to emulate the insertion of the device into the

host. Furthermore, before the traffic is replayed it can be modified in order to identify vulnerabilities.

The author has previously demonstrated how this testing could be automated using Frisbee
[14]

.

Table 1: Comparison of different USB host testing approaches

As can be seen in Table 1, there are pros and cons to each testing approach, however, although

more expensive (approximately $1400), the most flexible approach (and the approach favoured by

the author) is to use USB test equipment controlled using Python scripts.

Approach OS

agnostic?

Platform

agnostic?

Software-only

solution

Easy to modify data?

VM-based

Function hooking

Bespoke hardware

Native test support

Test equipment

NCC Group | Page 5 © Copyright 2013 NCC Group

4 The USB driver stack
Different operating systems implement USB in a number of subtly different ways, however one of the

simpler implementations is FreeBSD
[15]

. As explained in its documentation, drivers can be split into

three layers:

“The lowest layer contains the host controller driver, providing a generic interface to the hardware

and its scheduling facilities. It supports initialisation of the hardware, scheduling of transfers and

handling of completed and/or failed transfers. Each host controller driver implements a virtual hub

providing hardware independent access to the registers controlling the root ports on the back of the

machine.

The middle layer handles the device connection and disconnection, basic initialisation of the device,

driver selection, the communication channels (pipes) and does resource management. This services

layer also controls the default pipes and the device requests transferred over them.

The top layer contains the individual drivers supporting specific (classes of) devices. These drivers

implement the protocol that is used over the pipes other than the default pipe. They also implement

additional functionality to make the device available to other parts of the kernel or userland.”

A more modern, larger operating system such as Microsoft Windows 8 has a suitably complex USB

driver stack
[16]

. In versions of Windows earlier than Windows XP with Service Pack 2 (SP2) all USB

device drivers were required to operate in kernel mode
[17]

, however more recent Windows versions

support both kernel mode

and user mode

[18]
 drivers and therefore, if a vulnerability exists in a user

mode driver then the impact is significantly lower than in a kernel mode driver as the code is not

running at ring 0.
[19]

Depending on which descriptors are being modified and at what stage during enumeration they are

being parsed will result in different parts of the USB driver stack being tested. Sometimes the same

descriptor is requested and parsed multiple times during enumeration, each time by a different driver

and therefore, in order to fully test the driver stack each request for a descriptor should be tested.

In the next section we will discuss some real-world examples of USB vulnerabilities, the classes of

vulnerability that commonly affect USB drivers and which descriptors needed to be modified in order

to trigger them.

5 Common USB vulnerabilities
This section details the classes of vulnerability that have been observed in USB drivers and the

specific USB communications data that was manipulated in order to identify them.

5.1 Unspecified DoS
Not all USB driver bugs are exploitable in a way which is useful to an attacker. Some, such as null-

pointer dereferences
[20]

 or out-of-bound reads
[21]

 in most cases simply result in the driver crashing or

a kernel panic occurring. These are still bugs, but not considered to be security-related bugs in the

context of USB drivers.

5.2 Buffer overflows
Buffer overflows are the result of inadequate bounds checking when data is written to memory.

When excessive data is supplied, program control information is overwritten, which if carefully

crafted by an attacker can result in the modification of the control flow of a program. The most

common types of buffer overflow are stack-based overflows
[23]

 and heap-based overflows
[22]

, both of

which if successfully exploited can result in arbitrary code execution by the attacker. However, most

NCC Group | Page 6 © Copyright 2013 NCC Group

mainstream OS vendors have over the last few years started to implement exploit mitigation

strategies, such as DEP (Data Execution Prevention) and ASLR (Address Space Layout

Randomisation) to raise the bar of capability required to successfully exploit software vulnerable to

memory corruption bugs. Information leakage bugs, which used to be considered much lower impact,

are now required in order to defeat ASLR.

String descriptors

Buffer overflows are often associated with string data and therefore, String descriptors are an

obvious candidate. These descriptors provide human-readable information about a USB device,

such as the manufacturer name or model number. An example String descriptor is shown in Table 2.

Table 2: Example String descriptor

The field bLength represents the length in bytes of the whole descriptor (the length in bytes of

bString + one byte for bDescriptorType + one byte for the bLength byte). The bString field

is in UTF16-LE format so each character requires two bytes and therefore, the maximum length of
string that can be stored is 252 bytes. So, if a driver has allocated a fixed length buffer of less than
252 bytes to store the UTF-16LE representation of the string (or 126 bytes for an ASCII
representation of the string) then a buffer overflow could occur.

In one publicly reported Linux vulnerability

[24]
 the driver code looked like this:

struct snd_pcm {

 struct snd_card *card;

 struct list_head list;

 int device; /* device number */

 unsigned int info_flags;

 unsigned short dev_class;

 unsigned short dev_subclass;

 char id[64];

 char name[80];

 <cut>
Figure 1: Source code from /linux-2.6.38/include/sound/pcm.h

dev->pcm->private_data = dev;

strcpy(dev->pcm->name, dev->product_name);
Figure 2: Source code from /linux-2.6.38/sound/usb/caiaq/audio.c

In Figure 1 it can clearly be seen that a fixed length buffer of 80 bytes has been allocated and then in
Figure 2 the USB “Product Name”, which is stored in a String descriptor is copied into that buffer
resulting in a classic stack-based buffer overflow.

Field Value Meaning

bLength 52 Descriptor length (including

the bLength field)

bDescriptorType 3 String descriptor

bString “HP Color LaserJet CP1515n” The string to be stored (in

UNICODE UTF-16LE format

i.e. two bytes per character)

NCC Group | Page 7 © Copyright 2013 NCC Group

5.3 Integer overflows and other length-related bugs
“An integer overflow occurs when an arithmetic operation attempts to create a numeric value that is

too large to be represented within the available storage space”
[25]

.

If a length field representing some data is one byte long then the maximum (unsigned) length it can

represent is 255 bytes. Often memory is dynamically allocated based on a length field that

represents the length of some data that will then be copied into the newly allocated memory buffer. If

the code adds anything to the data (and accordingly to the length field) value prior to allocating the

memory and the length field is already 255 then adding more will cause it to “roll over” past zero.

This will result in a small value in the length field representing a much larger set of data. Therefore, a

small buffer is allocated and a larger amount of data is subsequently copied into it, resulting in a

heap overflow (or potentially a stack overflow where a function such as strncpy() is used). In

other scenarios that have been observed the code parsing data structures just trusts that the length

field value is correct and if it has been set to a value smaller than the actual length of the data then,

again, this can result in buffer overflow conditions.

Hub descriptors

An example that highlights this well involves the bNbrPorts field in a Hub descriptor (an example

Hub descriptor is shown in Table 3). This field (which can hold values 0-255) represents the number

of physical downstream ports on a USB hub. Now, bearing in mind that the USB specifications
[7]

state that the maximum number of physical USB devices that can be connected to a root hub is 127,

a device driver programmer might make a dangerous assumption here. This is exactly what

happened in the driver code for Apple Mac OS X Lion – by setting the bNbrPorts field to the value

0xFF (255) an attacker could trigger a buffer overflow. This was documented and released in a

public advisory
[26]

 by the author.

Configuration descriptors

Many of the USB descriptors contain length fields associated with data contained within them, in fact

all descriptors start with a bLength field that represents the total length of the descriptor. However,

another length example within a Configuration descriptor is the wTotalLength field. Configuration

descriptors contain other descriptors such as Interface and Endpoint descriptors and the

wTotalLength field represents the combined length of all these descriptors. Table 4 shows an

example Configuration descriptor.

The author has observed vulnerabilities on a number of occasions in this particular descriptor field,

where a value of 0xFFFF (65535) has resulted in a memory corruption vulnerability such as a heap

overflow.

Endpoint descriptors
As explained above, Endpoint descriptors are embedded within Configuration descriptors and also

contain a field that represents the size of some data – wMaxPacketSize. An example Endpoint

descriptor is shown in Table 5. In a publicly disclosed advisory
[27]

 the author revealed that setting this

field to be greater than a specific value, in this case 0x1125 (4389) would result in a kernel stack

overflow on Solaris 11.

A number of other vulnerabilities in different operating systems have been triggered by setting the

wMaxPacketSize field to the value 0x0000.

NCC Group | Page 8 © Copyright 2013 NCC Group

Table 3: Example Hub descriptor

HID Descriptors

Another vulnerability that was only recently discovered and reported to the vendor relates to a

different length field, wDescriptorLength, which is present in a HID descriptor (an example is

shown in Table 6) and represents the length of another descriptor – a HID report descriptor, which is

discussed later in this paper. If the value was set to 0x0000 it resulted in a kernel panic due to a

buffer overflow.

Field Value Meaning

bDescLength 9 Descriptor length (including the bLength field)

bDescriptorType 0x29 Hub descriptor

bNbrPorts 4 Number of downstream ports

wHubCharacteristics

Logical power switching mode

0 Ganged power switching

wHubCharacteristics

Compound device

0 Not Compound device

wHubCharacteristics

Over-current protection mode

0 Global over-current protection

wHubCharacteristics

TT Think time

3 32 FS bit times

wHubCharacteristics

Port Indicators support

1 Port Indicators supported

bPwrOn2PwrGood 100ms Time from power on till power good

bHubContrCurrent 100mA Max current required by hub controller

DeviceRemovable[0] 0 Reserved

DeviceRemovable[0] 0 Removable

DeviceRemovable[0] 0 Removable

DeviceRemovable[0] 0 Removable

DeviceRemovable[0] 0 Removable

PortPwrCtrlMask[1] 1 Valid

PortPwrCtrlMask[1] 1 Valid

PortPwrCtrlMask[1] 1 Valid

PortPwrCtrlMask[1] 1 Valid

NCC Group | Page 9 © Copyright 2013 NCC Group

Table 4: Example Configuration descriptor

Table 5: Example Endpoint descriptor

Table 6: Example HID descriptor

Image class data transfers

The next vulnerability relates not to a field within a descriptor, but instead to USB class-specific

communication – an Image class response to a GetDeviceInfo operation (example data is shown

in Table 7). The Image class is used for USB-based cameras to transfer images to a host computer
and as can be seen in the example data there are a number of different size fields:

 Container Length

 Operations Supported Array Size

 Events Supported Array Size

 Device Properties Supported Array Size

Field Value Meaning

bLength 9 Descriptor length (including the bLength field)

bDescriptorType 2 Configuration descriptor

wTotalLength 55 Total combined size of this set of descriptors

bNumInterfaces 2 Number of interfaces supported by this configuration

bConfigurationValue 1 Value to use as an argument to the SetConfiguration()

request to select this configuration

iConfiguration 0 Index of String descriptor describing this configuration

bmAttributes (Self-powered) 1 Self-powered

bmAttributes (Remote

wakeup)

0 No

bmAttributes (Other bits) 0x80 Valid

bMaxPower 2mA Maximum current drawn by device in this configuration

Field Value Meaning

bLength 7 Descriptor length (including the bLength field)

bDescriptorType 5 Endpoint descriptor

bEndpointAddress 0x01 Endpoint 1 - OUT

bmAttributes 0x02 Bulk data endpoint

wMaxPacketSize 0x0200 Maximum packet size is 512

bInterval 0xFF At most one NAK per 255 micro frames

Field Value Meaning

bLength 9 Descriptor length (including the bLength field)

bDescriptorType 0x21 HID

bcdHID 0x0110 HID class spec version

bCountryCode 0 Not supported

bNumDescriptors 1 Number of descriptors

bDescriptorType 34 Report

wDescriptorLength 65 Descriptor length

NCC Group | Page 10 © Copyright 2013 NCC Group

 Capture Formats Supported Array Size

 Image Formats Supported Array Size

A number of vulnerabilities have been identified in USB drivers where if any of the …Supported

Array Size fields are set to a value larger than the legitimate value or in some cases to the value

0xFFFF (65535), the bug is triggered. In some cases the bugs were buffer overflows, in others non-

exploitable out-of-bound reads. These bugs have been observed by the author in a popular tablet
device and also a well-known games console.

Printer class data transfers

Finally in this section, another example of class-specific communication, this time the printer class

and the response to a GetDeviceId operation (example data is shown in Table 8). The data is

formatted as an IEEE 1284 Device ID string
[28]

 and one of the fields is the Device ID Length. A

vulnerability discovered by the author in a popular Unix operating system resulted in a buffer

overflow if this two-byte field was set to a value greater than a specific number.

Field Value Meaning

Container Length 0x000000D3 211 bytes

Container Type 0x0002 Data Block

Operation Code 0x1001 “GetDeviceInfo”

Transaction ID 0x00000001 1

StandardVersion 0x0064 Version 1.00

VendorExtensionID 0x00000006 Microsoft Corporation

VendorExtensionVersion 0x0064 Version 1.00

VendorExtensionDesc 0 chars

FunctionalMode 0x00 Standard mode

Operations Supported

Array Size

0x00000010 16 Operations supported

Operation Supported 0x1001 GetDeviceInfo

Operation Supported 0x1002 OpenSession

Operation Supported 0x1003 CloseSession

Operation Supported 0x1004 GetStorageIDs

Operation Supported 0x1005 GetStorageInfo

Operation Supported 0x1006 GetNumObjects

Operation Supported 0x1007 GetObjectHandles

Operation Supported 0x1008 GetObjectInfo

Operation Supported 0x1009 GetObject

Operation Supported 0x100A GetThumb

Operation Supported 0x100C SendObjectInfo

Operation Supported 0x100D SendObject

Operation Supported 0x1014 GetDevicePropDesc

Operation Supported 0x1015 GetDevicePropValue

Operation Supported 0x1016 SetDevicePropValue

Operation Supported 0x101B GetPartialObject

Events Supported Array 0x00000004 4 events supported

NCC Group | Page 11 © Copyright 2013 NCC Group

Table 7: Example Image class data

Size

Event Supported 0x4004 StoreAdded

Event Supported 0x4005 StoreRemoved

Event Supported 0x4008 DeviceInfoChanged

Event Supported 0x4009 RequestObjectTransfer

Device Properties

Supported Array Size

0x00000002 2 properties supported

Device Property

supported

0xD406 Unknown property

Device Property

supported

0xD407 Unknown property

Capture Formats

Supported Array Size

0x00000000 0 formats supported

Image Formats

Supported Array Size

0x00000006 6 formats supported

Image Format

Supported

0x3001 Association (folder)

Image Format

Supported

0x3002 Script

Image Format

Supported

0x3006 DPOF

Image Format

Supported

0x300D Unknown image format

Image Format

Supported

0x3801 EXIF/JPEG

Image Format

Supported

0x380D TIFF

Manufacturer 9 chars “Panasonic”

Model 7 chars “DMC-FS7”

Device version 3 chars “1.0”

Serial number 31 chars “0000000000000000000000000000001”

NCC Group | Page 12 © Copyright 2013 NCC Group

Table 8: Example Printer class data

5.4 Format string bugs
Format string bugs

[29]
 arise due to the combination of two factors; insecure programming and the use

of “dangerous” functions in the “C” programming language. Combine them both and the result is the

ability for an attacker to read data from arbitrary memory locations and write (almost) arbitrary data

to arbitrary memory locations, therefore potentially executing arbitrary code or otherwise gaining

unauthorised control of a program. The attacker just needs to supply a carefully crafted string of

format specifiers
[30]

. It must be noted that if the driver has been compiled with a modern compiler,

such as a recent version of Microsoft’s Visual Studio
[31]

 then the “%n” format specifier has been

deprecated (and hence format string bugs which write to memory cannot be exploited).

String Descriptors

As format string bugs relate (as their name suggests) to the formatting of string data, the obvious

place to test for their presence is String descriptors. A Chrome OS developer
[32]

 recently discovered

a USB-based format string vulnerability in X11 by setting the “Device” or “Manufacturer” String

descriptors in a HID (Human Interface Device) device to “%n%n%n%n”.

Other text fields

It is not just String descriptors that are potentially vulnerable to format string bugs, as can be seen in

Table 8, the Printer class data is full of strings. There are also a number of strings in the Image class

data in Table 7. All strings processed by USB drivers are potentially vulnerable to format string bugs

if “dangerous” functions have been implemented in an insecure way.

5.5 Logic errors
Logic errors produce unintended or undesired output or other behavior as a result of specific actions

or data input. They are very implementation-specific, as the logic of driver code is often very different

in different operating systems.

Field Value Meaning

wIndex 0x0000 Interface number 0 Alternative setting 0

wValue 0x0000 Configuration Index

Device ID Length 171 IEEE 1284 device ID string length

Device ID element Key:

Value:

MFG:

Hewlett-Packard;

Device ID element Key:

Value:

CMD:

PJL,PML,PCLXL,POSTSCRIPT,PCL;

Device ID element Key:

Value:

MDL:

HP Color LaserJet CP1515n;

Device ID element Key:

Value:

CLS:

PRINTER;

Device ID element Key:

Value:

DES:

Hewlett-Packard Color LaserJet CP1515n;

Device ID element Key:

Value:

MEM:

MEM=55MB;

Device ID element Key:

Value:

COMMENT:

RES=600X8;

NCC Group | Page 13 © Copyright 2013 NCC Group

Table 9: Example HID Report descriptor

HID Report descriptors

The HID Report descriptor is a hard-coded array of bytes that describe the device's data packets.
This includes: how many packets the device supports, the size of the packets and the purpose of
each byte and bit in the packet. An example HID Report descriptor is shown in Table 9.

The HID report descriptor is a notoriously complicated structure and therefore, “the parser for the
Report descriptor represents a significant amount of code”

[33]
. This was certainly the case in a HID

driver for one major operating system tested by the author where a number of bugs were identified in
the parsing of this data structure. However, in that particular example none of the bugs were

Field Value

Usage Page (Generic Desktop Controls) 05 01

Usage (Keyboard) 09 06

 Collection (Application) A1 01

 Usage Page (Keyboard / Keypad) 05 07

 Usage Minimum (224) 19 E0

 Usage Maximum (231) 29 E7

 Logical Minimum (0) 15 00

 Logical Maximum (1) 25 01

 Report Count (8) 95 08

 Report Size (1) 75 01

 Input (Data, Variable, Absolute, Bit Field) 81 02

 Report Count (8) 95 08

 Report Size (1) 75 01

 Input (Constant, Array, Absolute, Bit Field) 81 01

 Usage Page (LEDs) 05 08

 Usage Minimum (1) 19 01

 Usage Maximum (3) 29 03

 Report Count (3) 95 03

 Report Size (1) 75 01

 Output (Data, Variable, Absolute, Bit Field) 91 02

 Report Count (1) 95 01

 Report Size (5) 75 05

 Output (Constant, Array, Absolute, Bit Field) 91 01

 Usage Page (Keyboard / Keypad) 05 07

 Usage Minimum (0) 19 00

 Usage Maximum (255) 2A FF 00

 Logical Minimum (0) 15 00

 Logical Maximum (255) 26 FF 00

 Report Count (6) 95 06

 Report Size (8) 75 08

 Input (Data, Array, Absolute, Bit Field) 81 00

End Collection C0

NCC Group | Page 14 © Copyright 2013 NCC Group

exploitable. To trigger the bugs the Usage Page entries (0x05) were replaced with the values 0x81

– Input() and 0xB1 – Feature(), which should not have been present at that point in the data

structure and hence should have generated a handled error. Full details of the HID Report descriptor
structure are available in the Device Class Definition for Human Interface Devices (HID) Firmware
Specification

[25]
.

All descriptors

The second field in all descriptors is bDescriptorType, which represents (as one would guess)

the type of the descriptor – there are different values for each e.g. the value 0x02 represents a

Configuration descriptor. The author has observed logic errors that have resulted in memory

corruption in a number of different USB implementations where this value has been set to 0xff

(255).

NCC Group | Page 15 © Copyright 2013 NCC Group

6 Conclusions
This paper has described a range of different vulnerabilities that are commonly identified in USB host

driver stacks using fifty bugs identified by the author as the primary reference. What this research

demonstrates is that bugs and potential security vulnerabilities in USB driver stacks are still relatively

common and with the right testing approach and requisite knowledge of where to look the barrier of

entry required to identify, if not exploit, is relatively low.

Unfortunately for a number of reasons NCC Group is not able to publish full details of all fifty bugs;

however Figure 3 shows the range of different USB fields in which malformed data triggered the

bugs identified during this research and also indicates how many instances of each were discovered.

Figure 3: Summary of the 50 USB bugs referenced

Some interesting statistics from the research are as follows:

 The most common class of bug identified was the buffer overflow, which included both stack
and heap-based overflows.

 The most common bug was in the processing of Image class data, more specifically length

values associated with …Supported Array Size fields.

 The most bugs discovered on one operating system were in a well-known games console,
closely followed by a well-known Unix-based operating system.

NCC Group | Page 16 © Copyright 2013 NCC Group

The list of operating systems / products in which USB bugs were identified is as follows:
(Note that not all bugs are vulnerabilities)

 Oracle Solaris

 Google Chromium OS

 Sony PlayStation 3

 Apple Mac OS X

 Apple iOS

 RIM QNX

 Microsoft Windows

 Microsoft Xbox

 Linux

Some of the vendors certainly took USB vulnerabilities more seriously than others. I have mentioned
these quotes previously, but they are worth repeating:

Quote from vendor x:
“Thank you for sending this to us. This is something that I will definitely pass on, however since this
requires physical access it’s not something that we will fix in a security update”.

Quote from vendor y:
“We think we’ve fixed this issue, but we’ll need to get you to test it as we don’t have the ability to
replicate your attack”.

With regard to mitigation strategies for USB driver writers, there are a number of best-practice

recommendations, which if followed would improve the security of drivers developed in future:

 Where possible use a modern compiler and if security features exist within compiler options

then enable them.

 If the driver can be implemented in user mode rather than kernel mode then this option

should be taken as part of a defence-in-depth approach. If vulnerabilities are subsequently

discovered in the driver then their exploitation is unlikely to result in privilege escalation.

 Never make any assumptions about length fields and other numeric values based on the

protocol specifications. Just because you can’t physically connect more than 127 devices to

a hub doesn’t mean that the eight bits that represent the number of downstream ports can’t

be set to a value greater than 127.

 Never use “dangerous” functions such as sprintf(), strcpy(),strcat() etc. and when

using functions that require format specifiers, ensure that those specifiers are hard-coded

within the program and cannot be externally influenced in any way.

 Never assume that driver code is less likely to be attacked just because emulating a USB

device to launch an attack is more difficult than attacking a network service.

 Ensure that all driver code is tested by security-aware testers using a combination of static

source code analysis and black-box fuzz testing approaches.

There are still many vulnerable USB drivers in use, as often they have not been adequately tested,

but the information provided in this paper will help USB driver developers and also security

researchers and testers to assess them more thoroughly in future.

NCC Group | Page 17 © Copyright 2013 NCC Group

7 USB Host Testing Checklist
The following tables represent many common fields parsed by USB drivers in which malformed data

may result in vulnerabilities being identified:

All classes of USB device

Descriptor Field Bug class

Device bLength Buffer overflow

Device bDescriptorType Logic error

Device bMaxPacketSize0 Buffer overflow

Configuration bLength Buffer overflow

Configuration bDescriptorType Logic error

Configuration wTotalLength Buffer overflow

Configuration bNumInterfaces Buffer overflow

Configuration -> Interface bLength Buffer overflow

Configuration -> Interface bNumEndpoints Buffer overflow

Configuration -> Endpoint bLength Buffer overflow

Configuration -> Endpoint bEndpointAddress Logic error

Configuration -> Endpoint wMaxPacketSize Buffer overflow

String bLength Buffer overflow

String bString Buffer overflow

Format String

HID class devices

Descriptor Field Bug class

Configuration -> HID bLength Buffer overflow

Configuration -> HID wDescriptorLength Buffer overflow

HID report Every field Logic error

Image class devices e.g. Cameras

Bulk-In data transfer type Field Bug class

DeviceInfo Container Length Buffer overflow

DeviceInfo Container Type Logic error

DeviceInfo Operation Code Logic error

DeviceInfo Operations Supported

Array Size

Buffer overflow

DeviceInfo Events Supported Array

Size

Buffer overflow

DeviceInfo Device Properties

Supported Array Size

Buffer overflow

DeviceInfo Capture Formats

Supported Array Size

Buffer overflow

NCC Group | Page 18 © Copyright 2013 NCC Group

DeviceInfo Image Formats Supported

Array Size

Buffer overflow

DeviceInfo Manufacturer Buffer overflow

Format String

DeviceInfo Model Buffer overflow

Format String

DeviceInfo Device version Buffer overflow

Format String

DeviceInfo Serial number Buffer overflow

Format String

StorageIDArray Container Length Buffer overflow

StorageIDArray Container Type Logic error

StorageIDArray Operation Code Logic error

StorageInfo Container Length Buffer overflow

StorageInfo Container Type Logic error

StorageInfo Operation Code Logic error

StorageInfo StorageDescription Buffer overflow

Format String

StorageInfo VolumeLabel Buffer overflow

Format String

ObjectHandleArray Container Length Buffer overflow

ObjectHandleArray Container Type Logic error

ObjectHandleArray Operation Code Logic error

ObjectHandleArray Object Handle Array Size Buffer overflow

ObjectInfo Container Length Buffer overflow

ObjectInfo Container Type Logic error

ObjectInfo Operation Code Logic error

ObjectInfo Filename Buffer overflow

Format String

ObjectInfo CaptureDate Buffer overflow

Format String

ObjectInfo ModificationDate Buffer overflow

Format String

ObjectInfo Keywords Buffer overflow

Format String

Hub class devices e.g. USB hubs or mass storage devices with embedded hubs

Descriptor Field Bug class

Hub bDescLength Buffer overflow

Hub bNbrPorts Buffer overflow

NCC Group | Page 19 © Copyright 2013 NCC Group

Printer class devices

Class request Field Bug class

Device ID string (IEEE 1284) Device ID Length Buffer overflow

Mass storage class devices

Class request Field Bug class

CBW Inquiry Response Peripheral Device Type Logic error

CBW Inquiry Response Additional length Buffer overflow

CBW Inquiry Response Vendor ID Buffer overflow

Format String

CBW Inquiry Response Product ID Buffer overflow

Format String

CBW Inquiry Response Product Revision Level Buffer overflow

Format String

NCC Group | Page 20 © Copyright 2013 NCC Group

8 References & further reading
1 - http://en.wikipedia.org/wiki/Black-box_testing

2 - http://media.blackhat.com/bh-us-11/Davis/BH_US_11-Davis_USB_WP.pdf

3 - http://www.ps3news.com/ps3-hacks-jailbreak/ps-jailbreak-ps3-exploit-reverse-engineering-is-detailed/

4 - http://recon.cx/2012/schedule/attachments/57_recon2012-goodspeedbratus.pdf

5 - http://theiphonewiki.com/wiki/index.php?title=Usb_control_msg(0x21,_2)_Exploit

6 - http://www.beyondlogic.org/usbnutshell/usb1.shtml

7 - http://www.usb.org/developers/docs/usb_20.zip

8 - http://www.qemu.org/

9 - https://muelli.cryptobitch.de/paper/2010-usb-fuzzing.pdf

10 - http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Uhooker

11 - http://hackaday.com/2012/07/05/facedancer-board-lets-your-python-programs-pretend-to-be-usb-hardware/

12 - http://msdn.microsoft.com/en-us/library/windows/hardware/jj672841(v=vs.85).aspx

13 - http://www.mqp.com/usb500.htm

14 - http://media.blackhat.com/bh-us-11/Davis/BH_US_11-Davis_USB_Slides.pdf

15 - http://www.freebsd.org/doc/en/books/arch-handbook/usb.html

16 - http://msdn.microsoft.com/en-gb/library/windows/hardware/hh406256(v=vs.85).aspx

17 - http://msdn.microsoft.com/en-gb/library/windows/hardware/hh706187(v=vs.85).aspx

18 - http://msdn.microsoft.com/en-gb/library/windows/hardware/hh706184(v=vs.85).aspx

19 - http://en.wikipedia.org/wiki/Ring_(computer_security)

20 - https://www.owasp.org/index.php/Null-pointer_dereference

21 - http://cwe.mitre.org/data/definitions/125.html

22 - http://en.wikipedia.org/wiki/Stack_buffer_overflow

23 - http://en.wikipedia.org/wiki/Heap_overflow

24 - http://labs.mwrinfosecurity.com/assets/153/mwri_caiaq-usb-drivers-buffer-overflow_2011-03-07.pdf

25 - http://en.wikipedia.org/wiki/Integer_overflow

26 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3723

27 - http://www.securityfocus.com/bid/48790/

28 - ftp://ftp.pwg.org/pub/pwg/candidates/cs-pmp1284cmdset10-20100531-5107.2.pdf

29 - http://www.thenewsh.com/~newsham/format-string-attacks.pdf

30 - http://en.wikipedia.org/wiki/Printf_format_string

31 - http://www.microsoft.com/visualstudio/

32 - http://www.outflux.net/blog/archives/2012/05/16/usb-avr-fun/

33 - http://www.usb.org/developers/devclass_docs/HID1_11.pdf

http://en.wikipedia.org/wiki/Black-box_testing
http://media.blackhat.com/bh-us-11/Davis/BH_US_11-Davis_USB_WP.pdf
http://www.ps3news.com/ps3-hacks-jailbreak/ps-jailbreak-ps3-exploit-reverse-engineering-is-detailed/
http://recon.cx/2012/schedule/attachments/57_recon2012-goodspeedbratus.pdf
http://theiphonewiki.com/wiki/index.php?title=Usb_control_msg(0x21,_2)_Exploit
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.usb.org/developers/docs/usb_20.zip
http://www.qemu.org/
https://muelli.cryptobitch.de/paper/2010-usb-fuzzing.pdf
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Uhooker
http://hackaday.com/2012/07/05/facedancer-board-lets-your-python-programs-pretend-to-be-usb-hardware/
http://msdn.microsoft.com/en-us/library/windows/hardware/jj672841(v=vs.85).aspx
http://www.mqp.com/usb500.htm
http://media.blackhat.com/bh-us-11/Davis/BH_US_11-Davis_USB_Slides.pdf
http://www.freebsd.org/doc/en/books/arch-handbook/usb.html
http://msdn.microsoft.com/en-gb/library/windows/hardware/hh406256(v=vs.85).aspx
http://msdn.microsoft.com/en-gb/library/windows/hardware/hh706187(v=vs.85).aspx
http://msdn.microsoft.com/en-gb/library/windows/hardware/hh706184(v=vs.85).aspx
http://en.wikipedia.org/wiki/Ring_(computer_security)
https://www.owasp.org/index.php/Null-pointer_dereference
http://cwe.mitre.org/data/definitions/125.html
http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://en.wikipedia.org/wiki/Heap_overflow
http://labs.mwrinfosecurity.com/assets/153/mwri_caiaq-usb-drivers-buffer-overflow_2011-03-07.pdf
http://en.wikipedia.org/wiki/Integer_overflow
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3723
http://www.securityfocus.com/bid/48790/
ftp://ftp.pwg.org/pub/pwg/candidates/cs-pmp1284cmdset10-20100531-5107.2.pdf
http://www.thenewsh.com/~newsham/format-string-attacks.pdf
http://en.wikipedia.org/wiki/Printf_format_string
http://www.microsoft.com/visualstudio/
http://www.outflux.net/blog/archives/2012/05/16/usb-avr-fun/
http://www.usb.org/developers/devclass_docs/HID1_11.pdf

