

© Copyright 2014 NCC Group

An NCC Group Publication

Fuzzing the easy way, using Zulu

Prepared by:

Andy Davis

Research Director

andy.davis ‘at’ nccgroup ‘dot’ com

NCC Group | Page 2 © Copyright 2014 NCC Group

Contents
1 Introduction .. 3

2 Tutorial One: Zulu basics.. 4

3 Tutorial Two: Proxy-based network fuzzing ... 6

4 Tutorial Three: Providing input using a PCAP file ... 13

5 Tutorial Four: File fuzzing ... 16

6 Tutorial Five: Using the USB fuzzer module ... 19

7 Tutorial Six: Using the Serial fuzzer module .. 24

8 Tutorial Seven: Integrating with Wireshark .. 28

9 Tutorial Eight: Integrating with VMware .. 30

10 Tutorial Nine: Adding length fields ... 31

11 Tutorial Ten: Configuring email notification settings ... 33

12 Tutorial Eleven: Writing and using ZuluScript ... 35

NCC Group | Page 3 © Copyright 2014 NCC Group

1 Introduction
There are many fuzzers and fuzzing frameworks available to test everything from files, to network
protocols, to interface technologies. None of them are perfect, but they all offer a range of different
capabilities to different user bases. The motivations behind the Zulu fuzzer lie in the rapid prototyping
that normally happens on a client engagement where something needs to be fuzzed within tight
timescales. Many of us will have created bespoke fuzzing scripts time and time again on client sites,
maybe tweaking and changing these scripts as requirements change from job to job. There are
various fuzzing frameworks available that provide potential solutions to this problem, but they often
have quite a steep learning curve associated with them and therefore, are not always best suited to
getting a fuzzer up and running quickly and easily. Also, the ability to see and manipulate the data
graphically is attractive to many users, as purely command line-based tools can be intimidating to
some.

Zulu is an interactive GUI-based fuzzer. It is as much as possible, input and output-agnostic so once
you are happy with using the fuzzing engine that's driven by the GUI you are only limited by the input
and output modules that have been developed for it. It is written purely in Python and has been
released under AGPL on the NCC Group Github page:

https://github.com/nccgroup/zulu

This paper serves as an introduction to using Zulu and includes a number of tutorials explaining how

to use the different features within the tool. The tutorials have been written with minimal duplication

and therefore they are intended to be read in order.

NCC Group | Page 4 © Copyright 2014 NCC Group

2 Tutorial One: Zulu basics
Before we discuss the details of specific fuzzing sessions its worth spending some time looking at
the GUI and all its elements, in addition to understanding the general workflow of the tool.

The GUI is split into a number of areas:

Figure 1: The Zulu GUI layout

 Input Data - This is where separate packets (both input and output) from a network capture
are displayed. If the input is a single file then this will be displayed as a single entry.

 Mutations - In this section details of fuzzpoints, length fields and packets to be sent
unmodified are displayed

 Hex data bytes - The hex data associated with the currently selected Input Data entry is
displayed

 ASCII data bytes - The ASCII data associated with the currently selected Input Data entry is
displayed

 Current Status - General status updates as to what Zulu is currently doing

NCC Group | Page 5 © Copyright 2014 NCC Group

Below is a screenshot to demonstrate the type of information likely to be present in each section of
the GUI:

Figure 2: The Zulu GUI, populated with data

The majority of the large-volume output is displayed in the command-line console (and also logged
to a file):

Figure 3: The Zulu console

NCC Group | Page 6 © Copyright 2014 NCC Group

The following illustrates the Zulu file structure:

 /bin - Zulu binaries and custom.py (ZuluScript Python)

 /crashfiles - When file fuzzing, files that have caused the target to crash are placed in here

 /fuzzdb - the fuzzer testcase files (these can all be modified, but there is a user-defined.txt
file which should ideally be used for custom testcases

 /images - images used by the GUI

 /logs - log files

 /pcap - when Wireshark integration is enabled, auto-generated PCAP files are placed in
here

 /PoC - when a crash occurs and a PoC is auto-generated, it is placed in here (and emailed
to the user if the email settings have been configured)

 /sessions - all the configuration options and captured packets can be saved in a session file

 /tempfiles - when file fuzzing, manipulated files are temporarily placed in this directory

 /templates - the template used to generate the PoC files is in here

3 Tutorial Two: Proxy-based network fuzzing
In this tutorial we will capture packets from a Windows Remote Desktop session via a proxy and then
start fuzzing some of the data. First, you need to set the proxy settings, which can be found in the
Configuration menu:

Figure 4: Selecting proxy settings

This will bring up the Proxy configuration window:

Figure 5: The proxy configuration window

NCC Group | Page 7 © Copyright 2014 NCC Group

 Target host - the target host on which the network service is listening

 Target port - the port associated with the target service

 Local port - the local port used for the proxy

 Max packets - the maximum number of packets to capture

 Use UDP - if the network service uses UDP instead of TCP, select this checkbox

Next, select Input Method > Start Network Capture:

Figure 6: Starting the network capture

The status is now updated to show that the proxy is running:

Figure 7: Network capture status

Now configure your client to connect to the service, via the proxy:

Figure 8: Configuring the network client software

NCC Group | Page 8 © Copyright 2014 NCC Group

The packets are displayed as they are captured and the "output" packets (which are the ones sent to

the target and can therefore be fuzzed) are highlighted in blue. When you are ready to end the

capture select Input Method > Stop Network Capture:

Figure 9: The displayed captured data

The currently selected packet is highlighted in dark blue and the data within the packet is displayed

in the Hex and ASCII areas. For this fuzzing session we will send the first packet unmodified so with

the first packet selected, click on the Send data unmodified button:

Figure 10: Specifying data to be sent unmodified

NCC Group | Page 9 © Copyright 2014 NCC Group

You can see that the first packet has changed colour to green to indicate that this will be sent

unmodified. Next select some bytes in packet #2 to be a fuzzpoint (all the bytes you select to be a

fuzzpoint will be replaced with each testcase when the fuzzer runs). Right click and select Add

Fuzzpoint.

Note: If you want to select a series of consecutive bytes as individual fuzzpoints you can use Add

Fuzz Range.

Figure 11: Adding a fuzzpoint

Next, select the Mutators that you wish to use for the fuzzing session (to see the actual mutator

testcases click on the small light blue button next to each name and the information will be displayed

in notepad):

Figure 12: Selectable mutators

NCC Group | Page 10 © Copyright 2014 NCC Group

As you can see, the Fuzzpoint bytes have changed colour to orange and the Fuzzpoint information

has been added to the Mutations area. Next, select Output Method > Network Fuzzer:

Figure 13: Selecting the network fuzzer

This will bring up the Network fuzzer configuration window:

Figure 14: The network fuzzer settings

 Target host - this is by default the target that was used in the proxy capture, but you can

change it to a different target if you wish

 Target port - again, this is by default the target port that was used in the proxy capture, but

you can change this too

 TCP connect retries - Zulu detects if the service has crashed if a TCP connect fails

(currently there is no detection for UDP). This is the number of times to try connecting before

deciding a crash has occurred

 Receive timeout - the time to wait for the target to respond to a fuzz packet sent to it

 Delay between fuzzcases - self explanatory

 Use UDP - if the service is UDP-based, select this checkbox

NCC Group | Page 11 © Copyright 2014 NCC Group

Now, we can start fuzzing - select Fuzzing > Start Fuzzing:

Figure 15: Starting the network fuzzer

If the target crashes (as has been demonstrated here), an orange warning triangle is displayed and a

PoC (Proof-of-Concept) exploit is automatically generated based on the last fuzzcase that was sent

to the target (Zulu makes the assumption that it is likely, although not guaranteed, that the last

fuzzcase sent was the one that caused the crash). Also, if email settings have been configured

(Configuration > Email Notifcation Settings) it will also send the PoC as an attachment to an

email to inform you of the crash. If a PoC has been generated the Launch Latest PoC button is

highlighted in orange and can be used to send the PoC to the target as many times as you like, just

by pressing the button.

Figure 16: Indicators that the target has crashed

NCC Group | Page 12 © Copyright 2014 NCC Group

The console output can be seen below (the "Email send failure" message indicates that in this

instance email settings have not been configured):

Figure 17: Console output when the target has crashed

When a Zulu thinks that a crash has occurred it pauses the fuzzing session, so if it turns out to be a

false-positive you can just restart the fuzzing by selecting Fuzzing > Start Fuzzing again or stop the

session by selecting Fuzzing > Stop Fuzzing:

Figure 18: Stopping the fuzzer

NCC Group | Page 13 © Copyright 2014 NCC Group

4 Tutorial Three: Providing input using a PCAP file
In this tutorial we will provide input data to Zulu via a PCAP file generated by Wireshark .

Note: Please ensure that you have captured the data on a specific interface when capturing on Linux,
rather than using the Any interface, which results in the Link layer not being Ethernet II, but instead
Linux Cooked Capture - a pseudo-protocol used by libpcap on Linux.

First, capture your data in Wireshark, select a packet from the stream of data you wish to fuzz and
Follow TCP Stream:

Figure 18: Filtering out data stream using Wireshark

Then save the capture

Note: ensure that you have selected to save the packets Displayed rather than all packets Captured

NCC Group | Page 14 © Copyright 2014 NCC Group

Figure 19: Saving the captured data stream

In Zulu, select Input Method > Import PCAP:

Figure 20: Importing a PCAP file into Zulu

Select the PCAP file and click Open:

Figure 20: Selecting the PCAP file

NCC Group | Page 15 © Copyright 2014 NCC Group

The data is then displayed, as in Tutorial two, but with one difference - TCP control packets are also
shown e.g. SYN, ACK etc. These can be ignored from a fuzzing perspective as they will
automatically be regenerated where required by Zulu:

Figure 21: The imported PCAP file in Zulu

Note: If the PCAP file was generated on another network and involves a target with a different IP
address or even a different port, this information can be changed in Output Method > Network
Fuzzer otherwise it will just be inherited from the PCAP file.

NCC Group | Page 16 © Copyright 2014 NCC Group

5 Tutorial Four: File fuzzing
In this tutorial we will use Zulu to fuzz a target process which opens a file.

First we select Input Method > import File to select a file to use as the fuzzing template:

Figure 22: Importing a file to fuzz

Select a file then click Open:

Figure 23: Selecting the source file

NCC Group | Page 17 © Copyright 2014 NCC Group

Then select the file fuzzer module with Output Method > File Fuzzer:

Figure 24: Selecting the file fuzzer module

The File fuzzer configuration window is displayed:

Figure 25: The file fuzzer configuration

 Process to fuzz - the target process that will be automatically spawned and provided with
each fuzzcase

 Command line args - self explanatory

 process run time - the length of time the process will run for before it is killed

 Shutdown method - either kill() or terminate() (terminate() uses the win32 API)

NCC Group | Page 18 © Copyright 2014 NCC Group

Select the process to fuzz:

Figure 26: Selecting the process to fuzz

Then select Fuzzing > Start Fuzzing. If the process dies as a result of opening the fuzzcase, the in-
built debugger will trap the crash, display EIP at the time of the crash and copy the fuzzfile
responsible for the crash to the /crashfiles directory:

Figure 27: The debugger indicating the address where the process crashed

NCC Group | Page 19 © Copyright 2014 NCC Group

6 Tutorial Five: Using the USB fuzzer module
In this tutorial we will perform some USB fuzzing by integrating with external hardware - the Packet-
Master USB500 AG from MQP Electronics (NCC Group has no affiliation with MQP Electronics):

http://www.mqp.com/usb500.htm

We start by capturing some USB traffic using GraphicUSB (the GUI application shipped with the
USB500):

Figure 28: The GraphicUSB packet capture window

Next, you need to create a generator script:

Figure 29: The GraphicUSB generator script window

http://www.mqp.com/usb500.htm

NCC Group | Page 20 © Copyright 2014 NCC Group

Launch Zulu and select Input Method > Import USB Generator Script:

Figure 30: Importing a USB generator script into Zulu

Then select the saved script:

Figure 31: Selecting the generator script

NCC Group | Page 21 © Copyright 2014 NCC Group

The packets are loaded into Zulu just as if they were network packets:

Figure 32: USB generator script imported into Zulu

Add a fuzzpoint and select your Mutators:

Figure 33: Adding fuzzpoints and mutators to USB data

NCC Group | Page 22 © Copyright 2014 NCC Group

Select Output Method > USB Fuzzer:

Figure 34: Selecting the USB fuzzer module

The USB Fuzzer configuration window will be displayed:

Figure 35: USB fuzzer configuration

 Path to GraphicUSB - this is the USB application that will be controlled by Zulu

 Target IP address - If the target is connected to a network then ICMP is used for
instrumentation, as most USB vulnerabilities result in kernel panics

NCC Group | Page 23 © Copyright 2014 NCC Group

Finally, start the fuzzer and Zulu will automatically control the GraphicUSB software in order to
control the Packet-Master USB analyser hardware:

Figure 36: The USB fuzzer running

If a crash is detected, the status will be updated as follows:

Figure 37: The target USB host crashing

NCC Group | Page 24 © Copyright 2014 NCC Group

7 Tutorial Six: Using the Serial fuzzer module
In this tutorial we will perform some serial fuzzing of a modem using the Hayes AT command set.

First, select Input Method > Serial Data Capture:

Figure 38: Selecting serial data capture

Click the Port Settings button:

Figure 39: Selecting serial port settings

Select the serial port settings to use and click OK:

Figure 40: Serial port settings for capture

NCC Group | Page 25 © Copyright 2014 NCC Group

Click the Connect to serial port button:

Figure 41: Connecting to the serial port

Enter some serial data - in this instance the AT command ati1:

Figure 42: Capturing serial data

NCC Group | Page 26 © Copyright 2014 NCC Group

When you have finished, click the Disconnect from serial port button:

Figure 43: The captured serial data displayed in Zulu

Add any fuzzpoints you wish - here we are fuzzing the number after the ati command:

Figure 44: Selecting fuzzpoints in the serial data

NCC Group | Page 27 © Copyright 2014 NCC Group

Select Output Method > Serial Fuzzer:

Figure 45: Selecting the serial fuzzer module

Select the serial port settings to use for fuzzing along with an IP address of the device (if
appropriate) for instrumentation and click OK:

Figure 46: Selecting the target serial settings

Start fuzzing:

Figure 47: The console output during serial fuzzing

NCC Group | Page 28 © Copyright 2014 NCC Group

8 Tutorial Seven: Integrating with Wireshark
In this tutorial we will integrate Zulu with Wireshark to take advantage of its dissectors to interpret
network protocols. First, configure Zulu to perform a network capture, but before starting the capture
select the Enable Wireshark integration checkbox:

Figure 48: Enabling wireshark integration

Zulu will then ask where the Wireshark executable is located (opening in the default location). Select
the executable:

Figure 49: Selecting the Wireshark binary

Next start the network capture (Input Method > Start Network Capture). When all the traffic
required has been captured and the capture has been stopped (Input Method > Stop Network
Capture), a PCAP file of the captured traffic is generated and provided to Wireshark which is opened
to display the packets captured by Zulu:

NCC Group | Page 29 © Copyright 2014 NCC Group

Figure 50: Wireshark displaying the data captured by Zulu

Note: Ignore any Wireshark warnings about packet ordering – the PCAP file is generated from
scratch so the TCP sequence numbers and packet timestamps are “invented”

NCC Group | Page 30 © Copyright 2014 NCC Group

9 Tutorial Eight: Integrating with VMware
In this tutorial we show how VMware can be controlled by Zulu to either restart guest processes or
the whole VM.

Before starting any fuzzing perform the steps below, firstly, select Configuration > VMware
settings:

Figure 51: Selecting VMware settings

Depending on whether you want to control a VM guest process of the whole VM, choose either OS
Control or Process Control:

Figure 52: VMware OS control settings Figure 53: VMware process control settings

 Username - the username of a guest OS administrator

 Password - the password of the guest OS administrator

 Path to process - the full path to the process in the guest OS to control

 Path to VM - self explanatory

 Path to vmrun.exe - vmrun is the command line tool that Zulu uses to control VMware (it is
installed by default)

 VMware product - self explanatory

 Restart time - the time to wait for the VM to restart (if OS Control is selected)

Note: If the Zulu session is saved, the password is currently stored as cleartext in the session file

NCC Group | Page 31 © Copyright 2014 NCC Group

Before starting fuzzing, select the Enable VMware integration checkbox:

Figure 54: Enabling VMware integration

If during fuzzing the target crashes, Zulu will then control the VM as configured above.

10 Tutorial Nine: Adding length fields
In this tutorial we will add a length field to a network packet. This would be required if the mutator
used changes the length of a packet and a length field needs to be updated, based on the new size
of each fuzzcase.

First, select the bytes that represent the length field (this can be either one, two or four bytes). Then
right click and select Add Length Field:

Figure 55: Adding a length field to captured data

A dialogue box is then displayed, which asks you to now select the bytes to be counted (you can
also select the byte order of the length field in the combo box). Select the bytes to be counted and
click OK.

NCC Group | Page 32 © Copyright 2014 NCC Group

Figure 56: Highlighting the bytes to be counted

If a fuzzpoint is now selected within the configured length field calculation area and any of the
mutators selected modify the length of the packet, the configured length field will now automatically
be updated during the fuzzing process:

NCC Group | Page 33 © Copyright 2014 NCC Group

Figure 57: The length field is now inserted

11 Tutorial Ten: Configuring email notification settings
In this tutorial we will configure the email settings so that Zulu can send crash notifications via email.

First, select Configuration > Email notification settings:

Figure 58: Selecting the email notification settings

NCC Group | Page 34 © Copyright 2014 NCC Group

This will display the Email configuration window:

Figure 59: The email notification settings

The example below, in brackets applies to Google Gmail

 SMTP Server address:port - the address and port that the SMTP server is listening on
(smtp.gmail.com:587)

 SMTP Username - your login name (username@googlemail.com)

 SMTP Password - your password

 SMTP From address - your email address to send from (username@googlemail.com)

 SMTP To address - the address to send to (name.surname@nccgroup.com)

 Use TLS - select if encryption is used (select checkbox)

Note: If the Zulu session is saved then the SMTP password is currently stored in cleartext within the
session file

If during network fuzzing a crash occurs, the auto-generated PoC will be emailed to the configured
email account

NCC Group | Page 35 © Copyright 2014 NCC Group

12 Tutorial Eleven: Writing and using ZuluScript
In this tutorial we will introduce the concept of ZuluScript and look at an example.

There will sometimes be situations where a process needs to be performed on a packet after it has

been modified by a mutator, but before it has been processed by the target - this is where ZuluScript

can be used.

ZuluScript is just Python script stored in a special file (/bin/custom.py). The default file, which

includes a test() function and an UpdateContentLengthField() function is shown below:

Zulu custom script file - when ZuluScript is enabled, this script will be executed prior to

each packet being sent

(including unmodified packets), but after any fuzz data has

been applied to the packet

Variables that can be referenced:

self.packets_selected_to_send = list of packets selected to send [[packet number,

data],[packet number, data]...]

self.all_packets_captured = list of all packets captured [[[source IP,source port],data],

[[source IP,source port],data]...]

self.modified_data = list of all the data in the current packet (after any modification

with fuzzpoint data) [byte1, byte2, byte3...]

self.current_packet_number = the number of the current packet being processed (packet 0 is

the first packet)

Below are two example functions:

test() just proves that ZuluScript is functioning correctly and demonstrates the data that

can be accessed

UpdateContentLengthField() is an example script to update a Content Length field within an

HTTP packet

class ZuluScript:

 """

 Zulu custom scripting interface

 """

 def __init__(self,zulu):

 print "---ZuluScript started---"

 self.zulu = zulu

 #self.test()

 self.UpdateContentLengthField(0)

 print "---ZuluScript complete---"

 return

 def test(self):

 print "-----------------------------"

 print "ZuluScript test:"

 print

 print "self.packets_selected_to_send"

NCC Group | Page 36 © Copyright 2014 NCC Group

 print

 print self.zulu.packets_selected_to_send

 print

 print "self.all_packets_captured"

 print

 print self.zulu.all_packets_captured

 print

 print "self.modified_data"

 print

 print self.zulu.modified_data

 print

 print "self.current_packet_number"

 print

 print self.zulu.current_packet_number

 print

 print "-----------------------------"

 return

 def UpdateContentLengthField(self, packet_num):

 # UpdateContentLengthField() - Updates an HTTP Content length field within a packet

after fuzz data has been inserted

 # packet_num - the number of the packet containing the length field

 if self.zulu.current_packet_number != packet_num:

 return

 length = 0

 lengthtext = ""

 length_lst = []

 data = ""

 temp_data = ""

 field_pos = 0

 x = 0

 while x < len(self.zulu.modified_data):

 data += self.zulu.modified_data[x]

 x+=1

 field_pos = data.find("Content-Length")

 if field_pos == -1:

 print "No Content-Length header"

 return

 field_pos += 15

 start = data.find("\r\n\r\n")

 if start == -1:

 print "No POST data"

 return

 start += 4

 end = len(self.zulu.modified_data)-1

 length = end - start

 lengthtext = "%d" % length

 x = 0

 while x < field_pos:

 temp_data += self.zulu.modified_data[x]

 x+=1

NCC Group | Page 37 © Copyright 2014 NCC Group

 temp_data += " "

 temp_data += lengthtext

 temp_data += "\x0a"

 while self.zulu.modified_data[x] != "\x0a":

 x+=1

 x+=1

 while x < end:

 temp_data += self.zulu.modified_data[x]

 x+=1

 x=0

 self.zulu.modified_data = []

 while x < len(temp_data):

 self.zulu.modified_data.append(temp_data[x])

 x+=1

Figure 60: Example ZuluScript

As shown at the top of the file, there are a number of variables that can be referenced:

 self.packets_selected_to_send = list of packets selected to send [[packet number,

data],[packet number, data]...]

 self.all_packets_captured = list of all packets captured [[[source IP,source port],data],

[[source IP,source port],data]...]

 self.modified_data = list of all the data in the current packet (after any modification with

fuzzpoint data) [byte1, byte2, byte3...]

 self.current_packet_number = the number of the current packet being processed (packet 0

is the first packet)

In the ZuluScript constructor you can see that it prints a message to say that ZuluScript has started,

creates a "zulu" object and executes self.UpdateContentLengthField(0) which will update the HTTP

Content-Length field in packet zero each time a fuzzcase is run. To enable ZuluScript, just select the

Enable ZuluScript checkbox:

Figure 61: Enabling ZuluScript

If you can write Python then this makes Zulu practically infinitely extendible.

