

Zcash FROST Security Assessment

Zcash Foundation
Version 1.1 – October 19, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Zcash Foundation. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the

information contained herein. Use of NCC Group’s services does not guarantee the security of a system,

or that computer intrusions will not occur.

Prepared By

Paul Bottinelli

Thomas Pornin

Eli Sohl

Prepared For

Deirdre Connolly

Natalie Eskinazi

Jack Gavigan

Conrado Gouvea

Maria Pilar Guerra-Arias

Chelsea Komlo

1 Executive Summary

Synopsis

In Summer 2023, the Zcash Foundation engaged NCC Group to conduct a security

assessment of the Foundation’s FROST threshold signature implementation, based on the

paper FROST: Flexible Round-Optimized Schnorr Threshold Signatures1
. This project

implements v12 of the draft FROST specification
2
 in Rust, with a variety of options available

for underlying elliptic curve groups. The review was performed by three consultants over 25

person-days of effort, including a retest phase performed a few weeks after the original

engagement.

Scope

The scope targeted the project’s v0.6.0 release (corresponding to commit 5fa17ed), and

covered the project’s main crates:

frost-core

frost-ed25519

frost-ed448

frost-p256

frost-secp256k1

frost-ristretto255

as well as the dependency reddsa at tagged version 0.5.1. Parts of Ed448-Goldilocks were

also in scope, particularly those components used by frost-ed448 .

Limitations

No noteworthy limitations were encountered during this project. It is noted that this

engagement focused on reviewing the given FROST implementation and matching it to the

reference implementation and paper, rather than on reviewing these source materials

themselves.

Key Findings

No critical or high-severity findings were identified. A number of Medium, Low, and

Informational findings were reported; among these, the following are highlighted:

Finding "Insufficient Participant Commitment List Checks", in which a malicious adversary

may perform elaborate attacks against participants, including denial-of-service attacks

and potential forgeries by crafting malicious Signing Packages that are undetected by

other participants.

Finding "Missing Length Check in Identifiers List", where the failure to ensure that a

custom list of identifiers is consistent with the threshold parameters of the scheme may

facilitate denial-of-service attacks and result in a potential loss of security provided by

the threshold assumption.

Finding "Ed448 Base Field Incorrect Negation", where the Ed448 implementation voids

the security guarantees of the formal verification of the fiat-crypto primitives through the

misuse of the fiat-crypto API.

This report also includes an Engagement Notes section, a semi-structured collection of

observations that did not warrant findings, but that may be of independent interest to the

Zcash team. Additionally, a FROST Security Requirements section collecting requirements

from the latest FROST draft specification was developed during the course of the

engagement.

The project concluded with a retest phase that confirmed all findings were fixed.

Additionally, the Zcash team diligently addressed all but two of the observations in the

Engagement Notes section.

•

•

•

•

•

•

•

•

•

1. https://eprint.iacr.org/2020/852

2. https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-12.html

2 / 44 – Executive Summary

https://github.com/ZcashFoundation/frost/commit/5fa17ed15ca1494c778492ad6d54d545d6463fda
https://github.com/ZcashFoundation/frost/commit/5fa17ed15ca1494c778492ad6d54d545d6463fda
https://github.com/ZcashFoundation/frost/commit/5fa17ed15ca1494c778492ad6d54d545d6463fda
https://github.com/ZcashFoundation/frost/releases/tag/frost-core%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-core%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-core%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed25519%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed25519%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed25519%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed448%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed448%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed448%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-p256%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-p256%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-p256%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-secp256k1%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-secp256k1%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-secp256k1%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ristretto255%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ristretto255%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ristretto255%2Fv0.6.0
https://github.com/ZcashFoundation/reddsa/releases/tag/0.5.1
https://github.com/ZcashFoundation/reddsa/releases/tag/0.5.1
https://github.com/ZcashFoundation/reddsa/releases/tag/0.5.1
https://eprint.iacr.org/2020/852
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-12.html

Strategic Recommendations

Overall, the project is well implemented and the code contains extensive comments, making

navigation and understanding of these complex cryptographic primitives easier. NCC Group

encourages the Zcash Foundation team to maintain this standard of quality as the library

matures.

A number of findings discuss issues related to the lack of input validation, particularly in

functions accepting potentially untrusted input. Consider performing a pass over the code

base and adding parameter validation checks where appropriate, prioritizing functions that

are exposed externally. Consider using the section FROST Security Requirements as a

companion reference to ensure the necessary checks are in place.

The existing “FROST Book” could be greatly expanded. For instance, it could be augmented

with usage examples, description of library structure, discussion of how concepts from the

FROST paper and draft specification map onto the implementation, etc. In particular, well-

commented usage examples covering the library’s full range of features would significantly

reduce the likelihood of API misuse by end users.

Some of this material already exists - for instance, some usage examples are provided within

individual backend crates - but could be better publicized and collected for easy

discoverability, and could be expanded to cover newer library features such as DKG.

3 / 44 – Executive Summary

2 Dashboard

Target Data Engagement Data

Name Zcash FROST Type Cryptography and

Implementation Review

Type Cryptographic Library Method Source Code Review

Platforms Rust Dates 2023-07-05 to 2023-07-26

Consultants 3

Level of Effort 25 person-days

Targets

frost-core v0.6.0 A generic implementation of FROST in Rust

frost-ed25519 v0.6.0 A backend for frost-core adding support for Ed25519

frost-ed448 v0.6.0 A backend for frost-core adding support for Ed448

frost-p256 v0.6.0 A backend for frost-core adding support for P-256

frost-ristretto255 v0.6.0 A backend for frost-core adding support for Ristretto255

frost-secp256k1 v0.6.0 A backend for frost-core adding support for Secp256k1

reddsa v0.5.1 An implementation of RedDSA used by frost-core

Ed448-Goldilocks An implementation of Ed448-Goldilocks used by frost-448

Finding Breakdown

Critical issues 0

High issues 0

Medium issues 3

Low issues 3

Informational issues 2

Total issues 8

Category Breakdown

Cryptography 3

Data Validation 4

Denial of Service 1

Component Breakdown

Ed448-Goldilocks 3

frost-core 5

 Critical High Medium Low Informational

4 / 44 – Dashboard

https://github.com/ZcashFoundation/frost/releases/tag/frost-core%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-core%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-core%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed25519%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed25519%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed25519%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed448%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed448%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ed448%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-p256%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-p256%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-p256%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ristretto255%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ristretto255%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-ristretto255%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-secp256k1%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-secp256k1%2Fv0.6.0
https://github.com/ZcashFoundation/frost/releases/tag/frost-secp256k1%2Fv0.6.0
https://github.com/ZcashFoundation/reddsa/releases/tag/0.5.1
https://github.com/ZcashFoundation/reddsa/releases/tag/0.5.1
https://github.com/ZcashFoundation/reddsa/releases/tag/0.5.1
https://github.com/crate-crypto/Ed448-Goldilocks
https://github.com/crate-crypto/Ed448-Goldilocks
https://github.com/crate-crypto/Ed448-Goldilocks

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Ed448 Base Field Incorrect Negation Fixed 72Y Medium

Insufficient Participant Commitment List Checks Fixed AW3 Medium

Missing Length Check in Identifiers List Fixed 9XW Medium

Potential Timing Attacks in Ed448 Implementation Fixed T3P Low

Unchecked Accesses to Data Structures Fixed 4VP Low

Missing Signing Package Validation May Cause a

Panic

Fixed 2WM Low

Lack of Zeroization in Ed448 Scalar Inversion Fixed HGL Info

Minimum Participant Constraint Enforcement

Improvements

Fixed XLV Info

5 / 44 – Table of Findings

4 Finding Details

Ed448 Base Field Incorrect Negation

Overall Risk Medium

Impact High

Exploitability None

Finding ID NCC-E008263-72Y

Component Ed448-Goldilocks

Category Cryptography

Status Fixed

Impact

Through misuse of the fiat-crypto API, the Ed448 implementation voids the security

guarantees of the formal verification of the fiat-crypto primitives. An actual miscomputation

in the context of FROST does not seem possible, though.

Description

The Ed448-Goldilocks crate, used by the Zcash implementation of the FROST(Ed448,

SHAKE256) ciphersuite, relies itself on two possible backends for the implementation of

operations over the curve base field (integers modulo q = 2
448

 - 2
224

 - 1). The u32 backend

is intended for 32-bit architectures, whereas 64-bit architectures should use the fiat_u64

backend (selected by default), which is a wrapper around the fiat-crypto implementation of

computations in specific finite fields. Fiat-crypto consists of automatically generated

routines, using a methodology that also outputs mathematical proofs of correctness of the

result for all possible inputs. Use of fiat-crypto code is a great step toward ensuring that the

implementation operates properly, even on maliciously crafted input; however, this applies

only if the fiat-crypto routines are used appropriately.

Within the fiat-crypto implementation of operations modulo q on a 64-bit architecture (using

the p448_solinas_64 module), values can use two internal representations. Both split the

integer over eight limbs, in base 2
56

, but they differ on the allowed ranges for the limb

values. In recent fiat-crypto versions (e.g. version 0.1.20), the two representations have

distinct Rust type names:

fiat_p448_tight_field_element : limb values must be between 0 and 2
56

 (inclusive).

fiat_p448_loose_field_element : limb values must be between 0 and 3×2
56

 (inclusive).

“Tight” values can be trivially converted into “loose” values (since the allowed limb range of

the latter includes that of the former), but transforming a “loose” representation into a “tight”

representation of the same value requires some carry propagation, which is done by the

fiat_p448_carry() function. Each implementation of arithmetic primitives is typed, e.g.

addition (fiat_p448_add()) expects “tight” inputs, but produces a “loose” output. The formal

verification of the implementation is guaranteed only as long as only “tight” values are

provided as parameters to functions that expect such “tight” values.

Links above are to the most recent fiat-crypto crate version at the time of writing, which is

0.1.20. The Ed448-Goldilocks crate uses an older version (0.1.4). In that older version, the

same arithmetic routines are used, but there are no separate type aliases for tight and loose

values; instead, both use the generic [u64; 8] type. In any case, even in version 0.1.20, the

two types are really type aliases on [u64; 8] , and are interchangeable with each other;

thus, it is up to the caller to ensure that loose values are reduced into tight values where

necessary. The lack of really distinct Rust types means that if a necessary reduction is

omitted, this will not be detected by the compiler through type analysis.

Medium

•

•

6 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks
https://github.com/mit-plv/fiat-crypto
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L29
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L29
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L29
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L25C10-L25C39
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L25C10-L25C39
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L25C10-L25C39
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L402
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L402
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L402
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L441
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L441
https://github.com/mit-plv/fiat-crypto/blob/e34854f80833d0976cc4ba98a540481a7ea91c0a/fiat-rust/src/p448_solinas_64.rs#L441

Such a reduction step is missing in the implementation of the FieldElement56::negate()

function. The FieldElement56 type, defined in the Ed448-Goldilocks crate, is a simple

wrapper around an array of eight 64-bit limbs:

The actual contents are not documented, but the internal array is passed as-is to the fiat-

crypto functions that expect tight values, such as fiat_p448_add() ; we must therefore

assume that FieldElement56 should contain only tight values. This is consistent with how,

for instance, addition on FieldElement56 values is implemented:

add_no_reduce() and strong_reduce() wrap around fiat_p448_add() and fiat_p448_carry() ,

respectively: the former outputs a loose value, which the latter reduces into a tight value;

the inter_res variable transiently contains a loose value, but upon exiting the add()

function, it has been normalized to a tight value.

The implementation of negation does not include the normalization step:

The fiat_p448_opp() function outputs loose values (with limbs up to 2
57

 - 2). If a negated

FieldElement56 value is used in other arithmetic operations, then this will imply using a

loose representation of a field element with fiat-crypto functions that expect tight

representations, thereby voiding the security guarantees offered by the formal verification of

the fiat-crypto code.

In practice, the following code demonstrates how that issue can lead to an incorrect output:

The negation of zero should still be zero, and its only valid (canonical) encoding is a

sequence of 56 bytes of value 0x00. The test_negate() function should execute

successfully, per the API of FieldElement56 , but in practice it fails. In the test code above,

y.to_bytes() does not yield an all-zero output, but instead the little-endian encoding of q

(the field modulus). Internally, negate() returns the integer 2q, and to_bytes() performs a

single conditional subtraction of q (to attempt to normalize the value into the 0 to q-1

range), hence the obtained result.

#[derive(Copy, Clone, Debug)]

pub struct FieldElement56(pub(crate) [u64; 8]);

impl Add<FieldElement56> for FieldElement56 {

type Output = FieldElement56;

fn add(self, rhs: FieldElement56) -> Self::Output {

let mut inter_res = self.add_no_reduce(&rhs);

inter_res.strong_reduce();

inter_res

}

}

/// Negates a field element

pub(crate) fn negate(&self) -> FieldElement56 {

let mut result = FieldElement56::zero();

fiat_p448_opp(&mut result.0, &self.0);

result

}

#[test]

fn test_negate() {

let x = FieldElement56::zero();

let y = x.negate();

assert_eq!(y.to_bytes(), [0u8; 56]);

}

7 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/fiat_u64/prime_field.rs#L13

Manual analysis of the fiat-crypto routines indicates that they in fact support a larger range

of limb values on input, especially when used only through the FieldElement56 wrappers,

which enforce reduction to a tight representation after each addition and subtraction. It

appears that the only case of an incorrect output is the one demonstrated here: negation of

(exactly) the value zero, and subsequent encoding of that value into bytes, with no

arithmetic operation on the value between negation and encoding. This situation cannot be

reached through the external API of the Ed448-Goldilocks crate: negation of field elements

can happen by calling the negate() or torque() functions on an ExtendedPoint , but

encoding into bytes happens only from the ExtendedPoint::compress() function, and is

preceded by conversion to affine coordinates, which involves multiplication of field elements

by the inverse of the internal Z coordinate. Multiplication always produces a properly

reduced (tight) representation.

The issue presented here is therefore not immediately exploitable. It still implies the loss of

the formal verification guarantees, and thus should be fixed.

Recommendation

A call to fiat_p448_carry() should immediately follow the call to fiat_p448_opp() , to ensure

proper reduction.

Location

Ed448-Goldilocks/src/field/fiat_u64/prime_field.rs, lines 164-168

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 29 of the Ed448-Goldilocks crate,

and observed that a call to fiat_p448_carry() had been introduced following the call to

fiat_p448_opp() . This is aligned with the recommendation above. As such, this finding has

been marked “Fixed”.

8 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/fiat_u64/prime_field.rs#L164
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/fiat_u64/prime_field.rs#L164
https://github.com/crate-crypto/Ed448-Goldilocks/pull/29/files
https://github.com/crate-crypto/Ed448-Goldilocks/pull/29/files#diff-ccad58cf7815a250ac339ac8439255813e573cb5122ead83db1868608f9ae5c9R168
https://github.com/crate-crypto/Ed448-Goldilocks/pull/29/files#diff-ccad58cf7815a250ac339ac8439255813e573cb5122ead83db1868608f9ae5c9R168
https://github.com/crate-crypto/Ed448-Goldilocks/pull/29/files#diff-ccad58cf7815a250ac339ac8439255813e573cb5122ead83db1868608f9ae5c9R168

Insufficient Participant Commitment List

Checks

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E008263-AW3

Component frost-core

Category Data Validation

Status Fixed

Impact

A malicious adversary may perform elaborate attacks against participants, including denial-

of-service attacks and potential forgeries by crafting malicious Signing Packages that are

undetected by other participants.

Description

The FROST signature process is split into two rounds: in a first round, participants generate

nonces and their corresponding public commitment values (which are sent to the

Coordinator, who collates them with a Message in a Signing Package); in a second round,

participants “sign” the Message by computing their respective signature shares on the

Signing Package.

In the implementation, this Signing Package is represented by the structure SigningPackage

defined in frost-core/src/frost.rs, and excerpted below (with some annotations left out for

ease of presentation).

The field signing_commitments highlighted in the code excerpt above is the data structure

mapping the nonce commitments generated by participants during round 1 to their

respective identifiers. This list of commitments is used to compute the group commitment

during the signature share generation process performed by the sign() function, located in

the file frost-core/src/frost/round2.rs, as can be seen in the highlighted in the excerpt of the

function below.

Medium

185

186

187

188

189

pub struct SigningPackage<C: Ciphersuite> {

/// The set of commitments participants published in the first round of the

/// protocol.

pub signing_commitments: BTreeMap<Identifier<C>, round1::SigningCommitments<C>>,

// ...

/// Message which each participant will sign.

///

/// Each signer should perform protocol-specific verification on the

/// message.

message: Vec<u8>,

// ...

/// Ciphersuite ID for serialization

ciphersuite: (),

}

pub fn sign<C: Ciphersuite>(

signing_package: &SigningPackage<C>,

signer_nonces: &round1::SigningNonces<C>,

key_package: &frost::keys::KeyPackage<C>,

) -> Result<SignatureShare<C>, Error<C>> {

9 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L186-L187
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L186-L187
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L185
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L185

In the implementation above, the signing_commitments field (a member of the

signing_package structure passed as a parameter to the sign() function) is never checked

to be valid and consistent with the participant’s view. Finding "Missing Signing Package

Validation May Cause a Panic" discusses a potential panic that may occur when a

participant’s identifier is missing. However, this finding highlights that participants also do

not ensure that the commitments associated to their identifiers are the ones they initially

sent, nor that the list does not contain unexpected entries, such as duplicate values. The

function also does not ensure that the number of participants tracked in the

signing_commitments list is consistent with the minimum and maximum number of signers

specified for this signing round.

This contravenes the FROST specification, which, under Section 5.2. Round Two - Signature

Share Generation, states that:

each participant MUST ensure that its identifier and commitments (from the first

round) appear in commitment_list.

In practice, an adversary may be able to perform a number of attacks on participants. A

straightforward attack against a target participant consists in the tampering of that

participant’s commitments, which will go undetected until the aggregation phase, at which

point the signature verification process will fail and that participant will be identified as the

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

// Encodes the signing commitment list produced in round one as part of generating

[`BindingFactor`], the

// binding factor.

let binding_factor_list: BindingFactorList<C> =

compute_binding_factor_list(signing_package, &key_package.group_public, &[]);

let binding_factor: frost::BindingFactor<C> =

binding_factor_list[key_package.identifier].clone();

// Compute the group commitment from signing commitments produced in round one.

let group_commitment = compute_group_commitment(signing_package,

&binding_factor_list)?;

// Compute Lagrange coefficient.

let lambda_i = frost::derive_interpolating_value(key_package.identifier(),

signing_package)?;

// Compute the per-message challenge.

let challenge = challenge::<C>(

&group_commitment.0,

&key_package.group_public.element,

signing_package.message.as_slice(),

);

// Compute the Schnorr signature share.

let signature_share = compute_signature_share(

signer_nonces,

binding_factor,

lambda_i,

key_package,

challenge,

);

Ok(signature_share)

}

10 / 44 – Finding Details

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-round-two-signature-share-g
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-round-two-signature-share-g

culprit. However, more complex attacks might be performed by adversaries with larger

consequences. The original FROST paper
3
 describes, under Section 2.5 – Attacks on

Parallelized Schnorr Multisignatures, some attacks that can be leveraged by adversaries

with control of the commitments, such as a signature forgery using a ROS Solver
4
. Such an

attack could potentially be carried out here, given that an attacker would essentially have

entire control over the commitment values. Additionally, an adversary also has significant

freedom over the inputs to the function compute_signature_share() (called on line 211 of the

excerpt above) which involves the participant’s long-term private key, and selectively

providing certain inputs could potentially lead to some leak of private information, for

example via side-channel attacks. These attacks were not investigated in more depth due to

the time-boxed nature of the engagement.

Recommendation

Add checks to validate that the signing_commitments field contains the participant’s

identifier and that the commitments listed for that identifier correspond to the commitments

sent to the Coordinator during phase 1. Additionally, for the purpose of defence in depth,

consider whether some additional checks could be performed to provide assurance of the

validity of the commitments of other participants. For example, if the signer had access to

the number of participants or the expected threshold, they could check whether the length

of the map is consistent with the known participant number.

Location

frost-core/src/frost/round2.rs

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 480, and observed that a new

min_signers field had been added to the KeyPackage structure, which is now used to check

that the number of Signing Commitments in a Signing Package is sufficient prior to a signing

operation (see updates to the file frost-core/src/frost/round2.rs). Together with the changes

introduced in pull request 452 to address finding "Missing Signing Package Validation May

Cause a Panic", this finding is now appropriately mitigated and has been marked “Fixed” as a

result.

Client Response

Several of the defense in depth recommendations can easily be circumvented by an

adversary. For example, checking if the set of commitments is equal to the assumed

number of signers can easily be circumvented by an adversary that adds random group

elements to the set of commitments. As such, the performance overhead of performing

these checks do not seem to outweigh the benefits.

It is unclear to us how the participant’s long-lived secret key could leak even if the

adversary had complete control over the inputs to determine the binding factor and the

challenge. It is clear that ROS attacks are viable if the participant does not ensure that

their commitments are represented in the commitment set.

The function generate_secret_shares is assumed to be performed by a trusted dealer. If

the dealer is not trusted, then all security is lost. If the dealer is untrusted, then a DKG

should be used, to generate key material in such a way that no single entity is trusted.

1.

2.

3.

3. https://eprint.iacr.org/2020/852.pdf

4. https://eprint.iacr.org/2020/945.pdf

11 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L185
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L185
https://github.com/ZcashFoundation/frost/pull/480/files
https://github.com/ZcashFoundation/frost/pull/480/files#diff-d7740d87f0ce6b076dda16f45b68fac6567867398ae3c7070f7282a7895dcb44R190-R193
https://github.com/ZcashFoundation/frost/pull/480/files#diff-d7740d87f0ce6b076dda16f45b68fac6567867398ae3c7070f7282a7895dcb44R190-R193
https://github.com/ZcashFoundation/frost/pull/452/files
https://eprint.iacr.org/2020/852.pdf
https://eprint.iacr.org/2020/945.pdf

Missing Length Check in Identifiers List

Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-E008263-9XW

Component frost-core

Category Data Validation

Status Fixed

Impact

Failure to ensure that a custom list of identifiers is consistent with the threshold parameters

of the scheme may facilitate denial-of-service attacks and result in a potential loss of

security provided by the threshold assumption.

Description

A recent commit in the FROST repository under review introduced support for deriving

identifiers from arbitrary strings, in order to create participant identifiers from personal data

such as email addresses.

The function split() in frost-core/src/frost/keys.rs is the entry point for a Dealer to split an

existing private signing key into FROST shares to be distributed to the various participants.

The relevant arguments of that function are two unsigned 16-bit integer values representing

the maximum and the minimum number of signers in order to generate the secret

polynomial, as well as a list of identifiers. This identifiers list can either be of type Default ,

in which case default identifier values will be assigned to participants (namely “1 to

max_signers, inclusive”), or of type Custom , which represents a “user-provided list of

identifiers” (see definition of the IdentifierList enum in keys.rs).

Presumably, the size of the provided identifiers list should be consistent with the

max_signers and min_signers parameters. However, these bounds on the identifiers list size

are not enforced within the code base. The excerpt of the split() function below shows

how the execution proceeds to generate the secret shares without ever ensuring the

consistency of the identifiers list with the max_signers and min_signers parameters.

Medium

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

pub fn split<C: Ciphersuite, R: RngCore + CryptoRng>(

key: &SigningKey<C>,

max_signers: u16,

min_signers: u16,

identifiers: IdentifierList<C>,

rng: &mut R,

) -> Result<(HashMap<Identifier<C>, SecretShare<C>>, PublicKeyPackage<C>), Error<C>> {

let group_public = VerifyingKey::from(key);

let coefficients = generate_coefficients::<C, R>(min_signers as usize - 1, rng);

let default_identifiers = default_identifiers(max_signers);

let identifiers = match identifiers {

IdentifierList::Custom(identifiers) => identifiers,

IdentifierList::Default => &default_identifiers,

};

let secret_shares =

generate_secret_shares(key, max_signers, min_signers, coefficients, identifiers)?;

12 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/commit/78b5c44de0eedf34ddf4878019d25615c3846fb3
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L397
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L397

Highlighted in the split() function above, the execution then proceeds into the function ge

nerate_secret_shares() in frost-core/src/frost/keys.rs, which is provided below, for

reference.

The function above first generates the secret polynomial based on the min_signers and

max_signers parameters. Then, the function iterates over all identifiers in the highlighted

loop, evaluating the polynomial at that particular value and creating the corresponding

secret share.

Since the size of the identifiers list can be smaller than min_signers or larger than

max_signers , it can lead to a few potential issues:

If the identifiers list is larger than max_signers , the Dealer will evaluate the secret

polynomial more times than there are potential participants, which could result in

unexpected private key disclosure – if these extra shares were to be distributed. Indeed,

the reconstruction portion of the secret sharing scheme is based on polynomial

interpolation, and computing additional shares damages the threshold property of the

secret sharing scheme.

An arbitrarily large identifiers list may also result in potential denial-of-service attacks,

since providing a large list will take a long time to process (due to the numerous

polynomial evaluations required) and will require large memory allocations.

If the identifiers list is smaller than min_signers , the participants would not be able to

reconstruct the secret, which also constitute a form of denial-of-service.

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

•

•

•

pub(crate) fn generate_secret_shares<C: Ciphersuite>(

secret: &SigningKey<C>,

max_signers: u16,

min_signers: u16,

coefficients: Vec<Scalar<C>>,

identifiers: &[Identifier<C>],

) -> Result<Vec<SecretShare<C>>, Error<C>> {

let mut secret_shares: Vec<SecretShare<C>> = Vec::with_capacity(max_signers as usize);

let (coefficients, commitment) =

generate_secret_polynomial(secret, max_signers, min_signers, coefficients)?;

let identifiers_set: HashSet<_> = identifiers.iter().collect();

if identifiers_set.len() != identifiers.len() {

return Err(Error::DuplicatedIdentifier);

}

for id in identifiers {

let value = evaluate_polynomial(*id, &coefficients);

secret_shares.push(SecretShare {

identifier: *id,

value: SigningShare(value),

commitment: commitment.clone(),

ciphersuite: (),

});

}

Ok(secret_shares)

}

13 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L705
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L705

Recommendation

Add a check in the split() function (and possibly in the generate_secret_shares() function)

to ensure that the size of the identifiers list is within the [min_signers , max_signers] range. It

seems reasonable to expect the size of the identifiers list to be equal to max_signers , in

which case it would be recommended to ensure strict equality.

Location

frost-core/src/frost/keys.rs

frost-core/src/frost/keys.rs

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 481, and observed that the

split() function in frost-core/src/frost/keys.rs now ensures that the length of the identifier

list is equal to the maximum number of signers, and returns an error otherwise. This is

aligned with the recommendation above. As such, this finding has been marked “Fixed”.

•

•

14 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L705
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L705
https://github.com/ZcashFoundation/frost/pull/481/files
https://github.com/ZcashFoundation/frost/pull/481/files#diff-dc75536c782cc17b2efe96feffc073b099c52dd3565c9009c2bf5591a3210eabR477-R482
https://github.com/ZcashFoundation/frost/pull/481/files#diff-dc75536c782cc17b2efe96feffc073b099c52dd3565c9009c2bf5591a3210eabR477-R482

Potential Timing Attacks in Ed448

Implementation

Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E008263-T3P

Component Ed448-Goldilocks

Category Cryptography

Status Fixed

Impact

Non constant-time code in operations on Ed448 scalars and based field elements might be

leveraged by attackers observing the timing characteristics of the execution of code using

secret values, so as to obtain some information on these values.

Description

The Ed448 scalar field (integers modulo the subgroup 446-bit prime order p) is implemented

by Ed448-Goldilocks with the custom Scalar type. Internally, values are represented over

14 limbs in base 2
32

 (always reduced to the canonical range 0 to p-1). Montgomery

multiplication is used: for inputs x and y, Montgomery multiplication computes the integer

xy + kp for some non-negative integer k (lower than 2
448

), such that the result is a multiple

of 2
448

. A simple shift can then divide that value by 2
448

, thus yielding a result which is

necessarily less than 2p. By conditionally subtracting p (i.e. subtracting p, but adding it back

if the subtraction makes the value negative), one obtains a properly reduced representation

of xy/R modulo p, where R = 2
448

.

The conditional subtraction is performed by the sub_extra() function:

Low

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

fn sub_extra(a: &Scalar, b: &Scalar, carry: u32) -> Scalar {

let mut result = Scalar::zero();

// a - b

let mut chain = 0i64;

for i in 0..14 {

chain += a[i] as i64 - b[i] as i64;

// Low 32 bits are the results

result[i] = chain as u32;

// 33rd bit is the borrow

chain >>= 32

}

// if the result of a-b was negative and carry was zero

// then borrow will be 0xfff..fff and the modulus will be added conditionally to the

result

// If the carry was 1 and a-b was not negative, then the borrow will be 0x00000...001

(this should not happen)

// Since the borrow should never be more than 0, the carry should never be more than 1;

// XXX: Explain why the case of borrow == 1 should never happen

let borrow = chain + (carry as i64);

assert!(borrow == -1 || borrow == 0);

chain = 0i64;

for i in 0..14 {

chain += (result[i] as i64) + ((MODULUS[i] as i64) & borrow);

15 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L12
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L12
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L12
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L368
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L368
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L368

On lines 371-379, p is subtracted from the value. The subtraction yields a final “borrow”

value which can only be 0 (result is non-negative) or -1 (result is negative), since the input

value was less than 2p. Code on lines 389-396 adds back the modulus p if the borrow is -1

(i.e. the bit pattern 0xffffffffffffffff), but adds zero if the borrow is 0.

On line 387, an assert! clause verifies that borrow is indeed equal to 0 or -1. In Rust, such

assertions are retained in release builds (conversely, the debug_assert! macro would make

an assertion in debug builds only). The logical “or” operation (|| operator) may be

converted by the compiler into a conditional jump; in that case, the execution time and

memory access pattern of the code would depend on whether borrow was 0 or -1 at that

point (a jump misprediction typically induces a pipeline flush and a delay of a dozen clock

cycles; loading of the instructions from memory may induce cache misses that can increase

that delay to hundreds of cycles). Such variance is potentially detectable by attackers who

are in position of observing the timing behaviour of the implementation, e.g. if the code

executes in a security enclave (such as Intel SGX) or if the attacker can control a virtual

machine co-hosted on the same hardware as the target system. Each information leak can

thus be about one bit of information on the involved scalar values. In particular, the secret

signing shares of FROST members are used repeatedly in multiplications with other

changing values, and a one-bit leak per protocol execution could lead to private share

extraction in as little as a few hundreds of observations.

Another similar leak is in the 32-bit backend for operations on the base field of curve

Ed448 (in Ed448-Goldilocks/src/field/u32/prime_field.rs, function strong_reduce() , line 331):

In this case, the strong_reduce() function is called only when encoding a field element into

bytes, or when converting a curve point to affine coordinates. The borrow (scarry) will

almost always be -1, because in that field implementation, values are “weakly reduced” and

almost never exceed the modulus value. Moreover, the u32 backend is used only when

selecting it explicitly in the compilation process, presumably to better support 32-bit

architectures. Thus, this leak is less likely to be a practical issue than the first one presented

above.

Recommendation

The two assert! clauses should be either converted to a single constant-time test, or

simply removed.

392

393

394

395

396

397

398

399

324

325

326

327

328

329

330

331

// Low 32 bits are the results

result[i] = chain as u32;

// 33rd bit is the carry

chain >>= 32;

}

result

}

// There are two cases to consider; either the value was >= p or it was <less than

p

// Case 1:

// If the value was more than p, then the final borrow will be zero. This is

scarry.

// Case 2:

// If the value was less than p, the final borrow will be -1.

// The only two possibilities for the borrow bit is -1 or 0.

assert!(scarry == 0 || scarry + 1 == 0);

16 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/u32/prime_field.rs#L331
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/u32/prime_field.rs#L331
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/u32/prime_field.rs#L331
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/u32/prime_field.rs#L331

Location

Ed448-Goldilocks/src/field/scalar.rs, line 387

Ed448-Goldilocks/src/field/u32/prime_field.rs, line 331

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 31 of the Ed448-Goldilocks crate,

and observed that the two offending assert calls had been removed, as suggested in the

recommendation above. As such, this finding has been marked “Fixed”.

•

•

17 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L387
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L387
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/u32/prime_field.rs#L331
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/u32/prime_field.rs#L331
https://github.com/crate-crypto/Ed448-Goldilocks/pull/31/files

Unchecked Accesses to Data Structures

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008263-4VP

Component frost-core

Category Denial of Service

Status Fixed

Impact

Unchecked accesses to different data structures in the code base may lead to unhandled

panics, eventually crashing the application.

Description

This finding lists a few instances where data structures are accessed at indices that may not

exist, which would result in unhandled panics. These instances relate to the arguments of

the aggregate() function, which does not ensure its three inputs represent a valid,

consistent set of data.

Public Key Package

The structure PublicKeyPackage defined in frost-core/src/frost/keys.rs contains the public

keys of all signers, as well as the group public key data.

The signer_pubkeys map is used during the aggregation process performed by the

Coordinator in the aggregate() function, in frost-core/src/frost.rs. The signature of that

function is provided below.

The aggregate() function accesses the signer_pubkeys member of the pubkeys parameter

at an index coming from the signature_shares parameter, as can be seen in the excerpt

below.

Low

604

605

606

607

608

609

610

611

368

369

370

371

372

417

418

419

420

421

422

423

424

pub struct PublicKeyPackage<C: Ciphersuite> {

/// When performing signing, the coordinator must ensure that they have the

/// correct view of participants' public keys to perform verification before

/// publishing a signature. `signer_pubkeys` represents all signers for a

/// signing operation.

pub(crate) signer_pubkeys: HashMap<Identifier<C>, VerifyingShare<C>>,

/// The joint public key for the entire group.

pub(crate) group_public: VerifyingKey<C>,

pub fn aggregate<C>(

signing_package: &SigningPackage<C>,

signature_shares: &HashMap<Identifier<C>, round2::SignatureShare<C>>,

pubkeys: &keys::PublicKeyPackage<C>,

) -> Result<Signature<C>, Error<C>>

// Verify the signature shares.

for (signature_share_identifier, signature_share) in signature_shares {

// Look up the public key for this signer, where `signer_pubkey` =

G.ScalarBaseMult(s[i]),

// and where s[i] is a secret share of the constant term of _f_, the secret polynomial.

let signer_pubkey = pubkeys

.signer_pubkeys

.get(signature_share_identifier)

.unwrap();

18 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L604
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L604
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L368
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L368

While it seems unlikely to occur in practice, there is a possibility that the signature_share_id

entifier is not contained in the signer_pubkeys map, leading to a panic due to the unwrap()

call on line 424, which the code does not gracefully handle. The principle of defense in

depth could be followed by checking that all the identifiers in the signature_shares are

present in the pubkeys .

Signing Package

The structure SigningPackage defined in frost-core/src/frost.rs and excerpted below, keeps

track of the commitments issued by the different participants during the first round of the

signature generation protocol. This structure maintains a BTreeMap , the

signing_commitments , mapping participant’s identifiers to their commitments.

Accessing a specific participant’s commitments is performed by calling the

signing_commitment() function in frost-core/src/frost.rs, which essentially acts as a wrapper

returning the signing commitments of the provided identifier in the underlying BTreeMap ,

see below.

This function does not ensure that the identifier is present in the map before accessing it.

Looking up an identifier which is not present in the signing_commitments would result in an

unhandled panic. The signing_commitment function is called from the aggregate() function,

and is used to verify the individual shares in case the aggregated signature is invalid, see

snippet below.

This constitutes another instance where a look-up index (the signature_share_identifier) is

taken from a data structure different than the one being accessed (the signing_package),

which could result in an unhandled panic.

Binding Factor List

The structure BindingFactorList is used to store the participants binding factors in a

BTreeMap , indexed by their identifiers, see the excerpt provided below from frost-core/src/

frost.rs.

186

187

188

189

233

234

235

236

74

75

76

pub struct SigningPackage<C: Ciphersuite> {

/// The set of commitments participants published in the first round of the

/// protocol.

pub signing_commitments: BTreeMap<Identifier<C>, round1::SigningCommitments<C>>,

/// Get a signing commitment by its participant identifier.

pub fn signing_commitment(&self, identifier: &Identifier<C>) ->

round1::SigningCommitments<C> {

self.signing_commitments[identifier]

}

// Verify the signature shares.

for (signature_share_identifier, signature_share) in signature_shares {

// ...

// Compute the commitment share.

let R_share = signing_package

.signing_commitment(signature_share_identifier)

.to_group_commitment_share(&binding_factor);

/// A list of binding factors and their associated identifiers.

#[derive(Clone)]

pub struct BindingFactorList<C: Ciphersuite>(BTreeMap<Identifier<C>, BindingFactor<C>>);

19 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L186
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L186
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L233
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L233
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L74
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L74
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L74
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L74

A few lines below that structure definition, an index function is implemented to facilitate

accessing the data stored in the underlying map.

Once more, this function does not check that the identifier provided as parameter is in the

BindingFactorList , and would panic if it weren’t. Furthermore, in this specific instance, the

FROST specification explicitly mandates an error be returned in case the participant is

unknown, under algorithm binding_factor_for_participant() in Section 4.3. List Operations.

This function is currently used in frost-core/src/frost.rs on line 429:

And in frost-core/src/frost/round2.rs on line 195:

Recommendation

Remediation of this finding could be performed by first checking that the keys are present in

their respective data structure before accessing them. Additionally, consider adding logic

ensuring the three inputs to the aggregate() function are consistent with each other, namely

that the expected identifiers are present in all three data structures.

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

429

194

195

impl<C> Index<Identifier<C>> for BindingFactorList<C>

where

C: Ciphersuite,

{

type Output = BindingFactor<C>;

// Get the binding factor of a participant in the list.

//

// [`binding_factor_for_participant`] in the spec

//

// [`binding_factor_for_participant`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-

frost-11.html#section-4.3

fn index(&self, identifier: Identifier<C>) -> &Self::Output {

&self.0[&identifier]

}

}

Inputs:

...

Outputs:

...

Errors:

- "invalid participant", when the designated participant is

not known.

def binding_factor_for_participant(binding_factor_list, identifier):

for (i, binding_factor) in binding_factor_list:

if identifier == i:

return binding_factor

raise "invalid participant"

let binding_factor = binding_factor_list[*signature_share_identifier].clone();

let binding_factor: frost::BindingFactor<C> =

binding_factor_list[key_package.identifier].clone();

20 / 44 – Finding Details

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#section-4.3
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L429
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L429
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L195
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L195

Modify the behavior around accessing the binding_factor_list such that it returns an error

when the participant was unknown, as also mandated in the FROST specification.

Location

frost-core/src/frost.rs on line 423

frost-core/src/frost.rs on line 235

frost-core/src/frost.rs on line 106

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 477, and observed that a number

of measures had been put in place to address the issues listed in this finding:

The Index implementation of a BindingFactorList was replaced by a get() function,

which now has an Option return type, and returns None in case the given identifier was

not found. This addresses the issue described under the subheading “Binding Factor

List”.

The signing_commitment() function was updated to return an Option type, and returns

None in case the given identifier was not present in the underlying data structure. This

addresses the issue described under the subheading “Signing Package”.

The aggregate() function has been augmented with a check ensuring that the Signing

Commitments and the Signature Shares have the same set of identifiers, and that they all

are present in the Signer Pubkeys. This addresses the issue described under the

subheading “Public Key Package”.

In addition, a few other improvements related to unchecked accesses were introduced as

part of this PR. This finding has been marked “Fixed” as a result.

•

•

•

•

•

•

21 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L423
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L423
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L235
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L235
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L106
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L106
https://github.com/ZcashFoundation/frost/pull/477/files
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R92-R94
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R92-R94
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R92-R94
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R258-R263
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R258-R263
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R258-R263
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R406-R418
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R406-R418
https://github.com/ZcashFoundation/frost/pull/477/files#diff-428e8750676a9cd9dc3b5db1108005a894dcbd49640ca9cf03f162b7ab43bda5R406-R418

Missing Signing Package Validation May Cause

a Panic

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008263-2WM

Component frost-core

Category Data Validation

Status Fixed

Impact

A potentially malicious Coordinator may perform a denial-of-service against a participant by

inducing a crash triggered by the reception of a Signing Package which is missing that

participant’s commitment.

Description

From the participants’ point of view, the FROST signature process is split into two rounds: in

a first round, participants generate nonces and their corresponding public commitment

values (which are sent to the Coordinator, who collates them with a Message in a Signing

Package); in a second round, participants “sign” the Message by computing their respective

signature shares on the Signing Package.

Under Section 5.2. Round Two - Signature Share Generation, the FROST draft specification

states that participants must validate the commitment_list list received from the

Coordinator:

Moreover, each participant MUST ensure that its identifier and commitments (from

the first round) appear in commitment_list.

In the implementation, that commitment list is a field (signing_commitments) of the structure

SigningPackage , which is one of the parameters to the signature share generation process

(and received by participants from the Coordinator). This signature share generation is

performed by participants by calling the function sign() , located in the file round2.rs, and

partially excerpted below.

Low

185

186

187

188

189

190

191

192

193

194

195

196

197

198

pub fn sign<C: Ciphersuite>(

signing_package: &SigningPackage<C>,

signer_nonces: &round1::SigningNonces<C>,

key_package: &frost::keys::KeyPackage<C>,

) -> Result<SignatureShare<C>, Error<C>> {

// Encodes the signing commitment list produced in round one as part of generating

[`BindingFactor`], the

// binding factor.

let binding_factor_list: BindingFactorList<C> =

compute_binding_factor_list(signing_package, &key_package.group_public, &[]);

let binding_factor: frost::BindingFactor<C> =

binding_factor_list[key_package.identifier].clone();

// Compute the group commitment from signing commitments produced in round one.

let group_commitment = compute_group_commitment(signing_package,

&binding_factor_list)?;

22 / 44 – Finding Details

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-round-two-signature-share-g
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L185
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs#L185

The sign() function above does not ensure that the participant’s identifier is present in the

commitment list, in what appears to be a contradiction to the FROST specification. As a

result, a participant receiving a SigningPackage missing their commitment entry will build a

binding_factor_list (see line 192 above) that does not include their entry. A panic will then

be triggered when trying to access the binding_factor_list at a non-existent index (i.e.,

thread 'check_sign_with_dealer' panicked at 'no entry found for key') in the line

highlighted above.

While a malicious coordinator is not explicitly covered by the FROST threat model
5
,

performing thorough input validation is recommended. These considerations may become

particularly more crucial if the role of the coordinator were to be removed and distributed

among the participants themselves, as described in Section 7.5. Removing the Coordinator

Role.

Recommendation

Ensure that the signing_package received as argument in the sign() function contains the

participant’s identifier (i.e., key_package.identifier) before proceeding further into the

signature share generation process.

Location

frost-core/src/frost/round2.rs

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 452, and observed that the sign()

function in frost-core/src/frost/round2.rs now ensures that the signer’s commitment is

present in the signing package, and that the signing commitment received as parameter

corresponds to the expected one. This is aligned with the recommendation above. As such,

this finding has been marked “Fixed”.

5. https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-15.html#name-security-considerations

23 / 44 – Finding Details

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-removing-the-coordinator-ro
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-removing-the-coordinator-ro
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round2.rs
https://github.com/ZcashFoundation/frost/pull/452/files
https://github.com/ZcashFoundation/frost/pull/452/files#diff-d7740d87f0ce6b076dda16f45b68fac6567867398ae3c7070f7282a7895dcb44R192-R204
https://github.com/ZcashFoundation/frost/pull/452/files#diff-d7740d87f0ce6b076dda16f45b68fac6567867398ae3c7070f7282a7895dcb44R192-R204
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-15.html#name-security-considerations

Lack of Zeroization in Ed448 Scalar Inversion

Overall Risk Informational

Impact High

Exploitability None

Finding ID NCC-E008263-HGL

Component Ed448-Goldilocks

Category Cryptography

Status Fixed

Impact

Non-zeroized values in heap-allocated buffers might be harvested as a consequence of

other attacks. In the FROST context, scalar inversion is used only on non-secret values, and

therefore cannot leak any secret.

Description

Memory zeroization is about ensuring that secret values do not linger in the system RAM

long after they ceased to be used; indeed, some specific attack scenarios (e.g. cold-boot

attacks) may allow attackers to observe the state of the system memory after sensitive

information has been processed. Since memory zeroization is a second line of defence, and

can be expensive and/or cumbersome to apply systematically on all values, it is customary

to reserve it for heap-allocated buffers: it is expected that stack buffers are “wiped”

promptly after deallocation, since all functions use the same stack space repeatedly.

In the Ed448-Goldilocks crate, inversion of a scalar value is done through exponentiation

(using Fermat’s little theorem: the inverse of x modulo p is equal to x
p-2

). To speed up the

inversion, the Scalar::invert() function uses a square-and-multiply algorithm with wNAF

recoding of the exponent, and a precomputed window of low (odd) powers of the input:

In Fermat’s little theorem, the exponent is not secret (it’s p-2, and p is public), but the value

to invert may be a secret scalar. The precomputed values are stored in the pre_comp vector,

which is heap-allocated, and is not zeroized before release. Therefore, in case inversion is

called on a secret scalar, the implementation allows secret values to remain indefinitely in

the heap (until the buffer is reused, which may take a long time).

Within the FROST context, scalar inversion is used only on denominators in Lagrange

polynomials; these scalars depend only upon the share identifiers, which are public

Info

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

pub fn invert(&self) -> Self {

let mut pre_comp: Vec<Scalar> = vec![Scalar::zero(); 8];

let mut result = Scalar::zero();

let scalar_window_bits = 3;

let last = (1 << scalar_window_bits) - 1;

// precompute [a^1, a^3,,..]

pre_comp[0] = montgomery_multiply(self, &R2);

if last > 0 {

pre_comp[last] = montgomery_multiply(&pre_comp[0], &pre_comp[0]);

}

for i in 1..=last {

pre_comp[i] = montgomery_multiply(&pre_comp[i - 1], &pre_comp[last])

}

24 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L181
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L181
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L181

information (contrary to the share values). This potential lack of zeroization has thus no

impact in the Zcash FROST implementation.

Recommendation

Since the precomputed window has a known, fixed length (8 elements), it should be

allocated on the stack, as a simple [Scalar; 8] array. This would avoid leaking secret

values to the heap, and may also be slightly faster in practice.

Location

Ed448-Goldilocks/src/field/scalar.rs, line 182

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 33 of the Ed448-Goldilocks crate,

and observed that the precomputed window was now defined as a [Scalar; 8] array, as

suggested in the recommendation above. As such, this finding has been marked “Fixed”.

25 / 44 – Finding Details

https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L182
https://github.com/crate-crypto/Ed448-Goldilocks/blob/30946a3dcba264102a6812946f7fcacbcbd65f22/src/field/scalar.rs#L182
https://github.com/crate-crypto/Ed448-Goldilocks/pull/33/files

Minimum Participant Constraint Enforcement

Improvements

Overall Risk Informational

Impact Medium

Exploitability Low

Finding ID NCC-E008263-XLV

Component frost-core

Category Data Validation

Status Fixed

Impact

Some invalid participant parameters are not detected early enough in the execution, and

may result in an unhandled panic.

Description

The FROST protocol is run with a group of participants from which a sufficient threshold is

required in order to produce a valid signature. Section 5. Two-Round FROST Signing Protocol

of the specification provides constraints on these parameters:

The protocol is configured to run with a selection of NUM_PARTICIPANTS signer

participants and a Coordinator. NUM_PARTICIPANTS is a positive integer at least

MIN_PARTICIPANTS but no larger than MAX_PARTICIPANTS, where

MIN_PARTICIPANTS <= MAX_PARTICIPANTS, MIN_PARTICIPANTS is a positive non-

zero integer and MAX_PARTICIPANTS is a positive integer less than the group order.

Note that the language here provides explicit constraints on these values, but does not

formally specify requirements (e.g. using a MUST statement), and as such may easily be

missed by implementers.

The minimum and maximum numbers of participants are required during the key generation

procedure, during which the group signing key is split into multiple shares. In the

implementation, the process by which the private key is split into shares is performed in the

function split() in keys.rs, an excerpt of which is provided below.

In the code excerpt above, an unhandled panic may occur in debug mode when providing a

minimum number of signers equal to 0. Since min_signers is of unsigned type, subtracting 1

results in an attempt to subtract with overflow panic. Note that this happens in debug

mode only. In release mode, the computation will wrap around, and will result in a

min_signers value much larger than the maximum number of signers. This inconsistency

would later be caught by the function generate_secret_polynomial() in keys.rs, which is

Info

pub fn split<C: Ciphersuite, R: RngCore + CryptoRng>(

key: &SigningKey<C>,

max_signers: u16,

min_signers: u16,

identifiers: IdentifierList<C>,

rng: &mut R,

) -> Result<(HashMap<Identifier<C>, SecretShare<C>>, PublicKeyPackage<C>), Error<C>> {

let group_public = VerifyingKey::from(key);

let coefficients = generate_coefficients::<C, R>(min_signers as usize - 1, rng);

26 / 44 – Finding Details

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-11.html#name-two-round-frost-signing-pro
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L650
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L650

called later in the execution and ensures that min_signers is larger than 1 and not greater

than max_signers , as can be seen in the code excerpt below.

However, the split() function being the main entry point for key generation, validity checks

should arguably be performed upon calling that function.

Note that the unhandled panic described above may also happen in two other places within

the code base

In frost-core/src/frost/keys/dkg.rs, in the function part1() :

In frost-core/src/frost/keys/repairable.rs, in the function repair_share_step_1() :

Recommendation

Consider adding validity checks on the minimum and maximum number of signers in the

split() function itself (and in the functions part1() and repair_share_step_1()).

Location

frost-core/src/frost/keys.rs

frost-core/src/frost/keys/dkg.rs

frost-core/src/frost/keys/repairable.rs

Retest Results

2023-09-20 – Fixed

NCC Group reviewed changes introduced in pull request 453, and observed that a new

function, called validate_num_of_signers , had been introduced. This function performs

appropriate checks on the number of signers, and is now called where appropriate, notably

as the first instruction in the split() function. This is aligned with the recommendation

above. As such, this finding has been marked “Fixed”.

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

1.

250

2.

20

•

•

•

pub(crate) fn generate_secret_polynomial<C: Ciphersuite>(

secret: &SigningKey<C>,

max_signers: u16,

min_signers: u16,

mut coefficients: Vec<Scalar<C>>,

) -> Result<(Vec<Scalar<C>>, VerifiableSecretSharingCommitment<C>), Error<C>> {

if min_signers < 2 {

return Err(Error::InvalidMinSigners);

}

if max_signers < 2 {

return Err(Error::InvalidMaxSigners);

}

if min_signers > max_signers {

return Err(Error::InvalidMinSigners);

}

let coefficients = generate_coefficients::<C, R>(min_signers as usize - 1, &mut rng);

let rand_val: Vec<Scalar<C>> = generate_coefficients::<C, R>(helpers.len() - 1, rng);

27 / 44 – Finding Details

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L250
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L250
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/repairable.rs#L20
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/repairable.rs#L20
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L436
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L250
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L250
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/repairable.rs#L20
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/repairable.rs#L20
https://github.com/ZcashFoundation/frost/pull/453/files
https://github.com/ZcashFoundation/frost/pull/453/files#diff-dc75536c782cc17b2efe96feffc073b099c52dd3565c9009c2bf5591a3210eabR670-R688
https://github.com/ZcashFoundation/frost/pull/453/files#diff-dc75536c782cc17b2efe96feffc073b099c52dd3565c9009c2bf5591a3210eabR670-R688
https://github.com/ZcashFoundation/frost/pull/453/files#diff-dc75536c782cc17b2efe96feffc073b099c52dd3565c9009c2bf5591a3210eabR670-R688

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these recommendations

are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a

small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability, as

well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

28 / 44 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

29 / 44 – Finding Field Definitions

6 Engagement Notes

This section includes various remarks and minor observations that are not considered

security vulnerabilities, but that the NCC Group team deemed worth reporting.

After the initial engagement, the Zcash team diligently addressed all but two of the below

observations. Brief explanations and links to the relevant pull requests have been added in

the various notes below, on paragraphs starting with “Update”.

General Notes on frost-core

The function reconstruct() defined in frost-core/src/frost/keys.rs does not ensure that

the minimum amount of signers’ shares is provided, as also described in that function’s

documentation, see below.

This constitutes a slight deviation from the FROST specification, which states that an

invalid parameters error should be returned in that case. The relevant excerpt from

Section D.1. Shamir Secret Sharing is highlighted below.

Consider updating the reconstruct() function to return an error if too few input shares

are provided.

Update: pull request 482 addresses the above observation.

The documentation preceding the generic deserialize() function in frost-core/src/lib.rs

states that it may fail if the deserialization process results in a zero scalar, as highlighted

in the code excerpt below.

•

748

749

750

751

752

753

754

755

•

85

86

87

88

89

90

91

92

/// The caller is responsible for providing at least `min_signers` shares;

/// if less than that is provided, a different key will be returned.

pub fn reconstruct<C: Ciphersuite>(

secret_shares: &[SecretShare<C>],

) -> Result<SigningKey<C>, Error<C>> {

if secret_shares.is_empty() {

return Err(Error::IncorrectNumberOfShares);

}

Errors:

- "invalid parameters", if fewer than MIN_PARTICIPANTS input shares

are provided.

def secret_share_combine(shares):

if len(shares) < MIN_PARTICIPANTS:

raise "invalid parameters"

s = polynomial_interpolate_constant(shares)

return s

/// A member function of a [`Field`] that attempts to map a byte array `buf` to a

[`Scalar`].

///

/// Fails if the input is not a valid byte representation of an [`Scalar`] of the

/// [`Field`]. This function can raise an [`Error`] if deserialization fails or if the

/// resulting [`Scalar`] is zero

///

/// <https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-11.html#section-3.1-3.9>

fn deserialize(buf: &Self::Serialization) -> Result<Self::Scalar, FieldError>;

30 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L748
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L748
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-shamir-secret-sharing
https://github.com/ZcashFoundation/frost/pull/482/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/lib.rs#L85
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/lib.rs#L85

However, the specialized implementations all seem to allow deserialization of a zero

scalar. Consider for example the implementation of deserialize() for Ed25519 located in

frost-ed25519/src/lib.rs and provided below, for reference:

Note that the implementation is actually consistent with the FROST draft reference,

which specifically allows, in Section 3.1. Prime-Order Group, the deserialization of the

zero scalar. The generic DeserializeScalar() function is defined as follows.

In Section 6.1. FROST(Ed25519, SHA-512), an example of the specialized version of that

function for Ed25519 is defined, which allows deserializing zero, as highlighted in the

excerpt below.

Consider updating the documentation of the deserialize() function and drop the “or if

the resulting [Scalar] is zero” part.

Update: pull request 483 fixes the documentation discrepancy.

There seems to be a minor optimization potential in frost-core/src/frost/keys.rs, where a

default list of identifiers is allocated even if there already exists a custom list of

identifiers. However, the relatively small size of the parameters make this optimization

likely futile.

Update: pull request 481 performs the optimization suggested above.

The multi-scalar multiplication functions (i.e., the function optional_multiscalar_mul() in

frost-core/src/scalar_mul.rs and also reproduced in reddsa/src/scalar_mul.rs) could

check that the iterators of base points and scalars have the same length (after having

iterated over them). The excerpt below shows how the function iterates over scalars to

obtain the nafs vector, and over elements to obtain lookup_tables .

66

67

68

69

70

71

•

447

448

449

450

451

•

178

179

180

181

182

183

184

fn deserialize(buf: &Self::Serialization) -> Result<Self::Scalar, FieldError> {

match Scalar::from_canonical_bytes(*buf).into() {

Some(s) => Ok(s),

None => Err(FieldError::MalformedScalar),

}

}

DeserializeScalar(buf): Attempts to map a byte array buf to a Scalar s. This function

raises an error if deserialization fails; see Section 6 for group-specific input

validation steps.

DeserializeScalar(buf): Implemented by attempting to deserialize a Scalar from a little-

endian 32-byte string. This function can fail if the input does not represent a Scalar in

the range [0, G.Order() - 1]. Note that this means the top three bits of the input MUST

be zero.

let default_identifiers = default_identifiers(max_signers);

let identifiers = match identifiers {

IdentifierList::Custom(identifiers) => identifiers,

IdentifierList::Default => &default_identifiers,

};

fn optional_multiscalar_mul<I, J>(scalars: I, elements: J) -> Option<Element<C>>

where

I: IntoIterator,

I::Item: Borrow<Scalar<C>>,

J: IntoIterator<Item = Option<Element<C>>>,

{

let nafs: Vec<_> = scalars

31 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-ed25519/src/lib.rs#L66
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-ed25519/src/lib.rs#L66
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-prime-order-group
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-frosted25519-sha-512
https://github.com/ZcashFoundation/frost/pull/483/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L447-L451
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L447-L451
https://github.com/ZcashFoundation/frost/pull/481/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/scalar_mul.rs#L178
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/scalar_mul.rs#L178
https://github.com/ZcashFoundation/reddsa/blob/b1bbad7bac08331c0b2cb7b91da6e94e698f8021/src/scalar_mul.rs#L210
https://github.com/ZcashFoundation/reddsa/blob/b1bbad7bac08331c0b2cb7b91da6e94e698f8021/src/scalar_mul.rs#L210

It is not uncommon to encounter fairly trivial multi-signature verification bypasses when

function execution iterates over lists of different lengths. This does not seem possible in

the implementation under review, as signatures and public verification keys are added as

a tuple to a verification batch. In the spirit of defense in depth, consider adding

consistency checks for these two vectors.

Update: pull request 494 ensures the respective vectors are of equal lengths.

In the distributed key generation process, implemented in frost-core/src/frost/keys/

dkg.rs, a small discrepancy with the FROST paper
6
 exists in the computation of the

challenge c_i . In addition to the context string Φ being dropped (which was explicitly

called out by the Zcash team) the verification key and the commitment are swapped, as

can be seen in the two lines highlighted below.

While this does not seem to pose a security vulnerability, it may lead to interoperability

issues.

Update: pull request 484 addresses the above discrepancy.

In general, there is a lack of clarity around the maximum number of signers supported by

the FROST implementation. Documentation preceding the generate_with_dealer()

function in frost-core/src/frost/keys.rs indicates that

[The] number of signers is limited to 255.

The max_signers variable used throughout the code case is set as a u16 , whereas a u8

would be enough to store that value. Additionally, it is unclear what prevents values

larger than 255 to be used, as the implementation does not seem to enforce this upper

bound. In comparison, the FROST specification first states (under Section 5. Two-Round

FROST Signing Protocol) that:

MAX_PARTICIPANTS is a positive integer less than the group order.

However, the specification also states under Appendix D.1. Shamir Secret Sharing on that:

185

186

187

188

189

190

191

192

•

254

255

256

257

258

259

260

261

262

263

•

.into_iter()

.map(|c| NonAdjacentForm::<C>::non_adjacent_form(c.borrow(), 5))

.collect();

let lookup_tables = elements

.into_iter()

.map(|P_opt| P_opt.map(|P| LookupTable5::<C, Element<C>>::from(&P)))

.collect::<Option<Vec<_>>>()?;

// Round 1, Step 2

//

// > Every P_i computes a proof of knowledge to the corresponding secret

// > a_{i0} by calculating σ_i = (R_i, μ_i), such that k ← Z_q, R_i = g^k,

// > c_i = H(i, Φ, g^{a_{i0}} , R_i), μ_i = k + a_{i0} · c_i, with Φ being

// > a context string to prevent replay attacks.

let k = <<C::Group as Group>::Field>::random(&mut rng);

let R_i = <C::Group>::generator() * k;

let c_i = challenge::<C>(identifier, &R_i, &commitment.0[0].0).ok_or(Error::DKGNotSupp

orted)?;

6. https://eprint.iacr.org/2020/852.pdf

32 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/pull/494/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L263
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L263
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L263
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys/dkg.rs#L263
https://github.com/ZcashFoundation/frost/pull/484/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L411
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L411
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-two-round-frost-signing-pro
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-two-round-frost-signing-pro
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-shamir-secret-sharing
https://eprint.iacr.org/2020/852.pdf

MAX_PARTICIPANTS, the number of shares to generate, an integer less than

2^16.

Further clarifications on that topic would be welcome.

Update: pull request 485 removes some ambiguities listed in the above note.

The documentation of the structure PublicKeyPackage in frost-core/src/frost/keys.rs is

slightly imprecise in that it states that the map signer_pubkeys “represents all signers for

a signing operation”. This map actually tracks all the participants , even if they don’t

partake in the signing process.

Update: pull request 485 also clarifies this ambiguity.

The FROST specification, under Section 3.1. Prime-Order Group is very explicit in its

definition of the DeserializeElement(buf) function, stating that:

This function raises an error if deserialization fails or if A is the

identity element of the group

The implementation fulfills this requirement; trying to deserialize the point at infinity

results in a GroupError::InvalidIdentityElement error. Specifically, this prevents users of

the library to deserialize the group identity as a VerifyingKey , defined in frost-core/src/

verifying_key.rs. However, the NCC Group team noticed that it is still possible to

instantiate a VerifyingKey from the identify point, as can be seen in the following

example.

Alternatively, a VerifyingKey corresponding to the group identity can also be instantiated

from a SigningKey set to the zero scalar, which itself can be deserialized as follows.

It is important to note that the verification of a trivial Schnorr signature (namely σ = (R, z)

= (point-at-infinity, 0)) with a key equal to the point-at-infinity will successfully pass for

any message, which may be an unwanted behavior. While this observation may not pose

any meaningful risk, it does allow adversaries to arbitrarily inflate batches that will still

verify.

Update: pull request 496 added a guard ensuring the zero scalar couldn’t be deserialized

as a SigningKey .

•

604

605

606

607

608

609

610

611

•

pub struct PublicKeyPackage<C: Ciphersuite> {

/// When performing signing, the coordinator must ensure that they have the

/// correct view of participants' public keys to perform verification before

/// publishing a signature. `signer_pubkeys` represents all signers for a

/// signing operation.

pub(crate) signer_pubkeys: HashMap<Identifier<C>, VerifyingShare<C>>,

/// The joint public key for the entire group.

pub(crate) group_public: VerifyingKey<C>,

let inf = <C::Group as Group>::identity();

let vk2: VerifyingKey<C> = VerifyingKey::<C>::new(inf);

let encoded_zero = <<<Ed25519Sha512 as Ciphersuite>::Group as

Group>::Field>::zero().to_bytes();

let sk = SigningKey::<Ed25519Sha512>::deserialize(encoded_zero).unwrap();;

let r = VerifyingKey::<Ed25519Sha512>::from(&sk);

33 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/pull/485/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L604
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/keys.rs#L604
https://github.com/ZcashFoundation/frost/pull/485/files
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-prime-order-group
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/verifying_key.rs#L23
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/verifying_key.rs#L23
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/verifying_key.rs#L23
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/verifying_key.rs#L23
https://github.com/ZcashFoundation/frost/pull/496/files

Notes on RedDSA

The different hash function definitions for reddsa/src/frost/redjubjub.rs (and similarly for

reddsa/src/frost/redpallas.rs) slightly differ, in spirit, from the specifications in the FROST

draft specification. Consider the definition of the hash function H1 defined for the Jubjub

curve:

In comparison, H1 is defined as follows, for the ciphersuite FROST(Ed25519, SHA-512):

where contextString is set to "FROST-ED25519-SHA512-v1" .

While the definition in the reddsa crate do not seem to contravene the requirements listed in

the specification, it may be advisable to update the instantiation of the function above with

something along the lines of HStar::<sapling::SpendAuth>::new(b"FROST-Jubjub-BLAKE2b-512-

v1") . This comment applies equally to the other hash functions, H2 , H3 , H4 , H5 and to

some extent to HDKG as well, as well as the corresponding functions for the Pallas curve.

Observations on Batch Verification

An implementation of batch signature verification is defined in frost-core/src/batch.rs, and

follows Appendix B.1 RedDSA batch validation of the Zcash Protocol Specification.

The sampling range for the blinding factor does not strictly follow the protocol

specification. In the implementation, sampling is performed by calling the random()

function on line 119 of batch.rs:

This function is defined generically in frost-core/src/lib.rs and generates a random value

in the [0, l-1] range, with l the prime order of the group, as can be seen in the excerpt

below.

This constitutes a slight divergence from the protocol specification, where the sampling

range is explicitly set to {1 .. 2
128

 − 1}, see below.

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

•

119

68

69

70

71

impl Ciphersuite for JubjubBlake2b512 {

const ID: &'static str = "FROST(Jubjub, BLAKE2b-512)";

type Group = JubjubGroup;

type HashOutput = [u8; 64];

type SignatureSerialization = [u8; 64];

/// H1 for FROST(Jubjub, BLAKE2b-512)

fn H1(m: &[u8]) -> <<Self::Group as Group>::Field as Field>::Scalar {

HStar::<sapling::SpendAuth>::new(b"FROST_RedJubjubR")

.update(m)

.finalize()

}

H1(m): Implemented by computing H(contextString || "rho" || m), interpreting the 64-byte

digest as a little-endian integer

let blind = <<C::Group as Group>::Field>::random(&mut rng);

/// Generate a random scalar from the entire space [0, l-1]

///

/// <https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-11.html#section-3.1-3.3>

fn random<R: RngCore + CryptoRng>(rng: &mut R) -> Self::Scalar;

34 / 44 – Engagement Notes

https://github.com/ZcashFoundation/reddsa/blob/b1bbad7bac08331c0b2cb7b91da6e94e698f8021/src/frost/redjubjub.rs#L119
https://github.com/ZcashFoundation/reddsa/blob/b1bbad7bac08331c0b2cb7b91da6e94e698f8021/src/frost/redjubjub.rs#L119
https://github.com/ZcashFoundation/reddsa/blob/b1bbad7bac08331c0b2cb7b91da6e94e698f8021/src/frost/redpallas.rs#L121
https://github.com/ZcashFoundation/reddsa/blob/b1bbad7bac08331c0b2cb7b91da6e94e698f8021/src/frost/redpallas.rs#L121
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-frosted25519-sha-512
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/batch.rs#L119
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/batch.rs#L119
https://zips.z.cash/protocol/protocol.pdf#reddsabatchverify
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/batch.rs#L119
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/lib.rs#L68

Note that this small discrepancy mostly affects the upper bound, since a non-normative

note allows the sampling range to include zero.

Update: Tracked under issue 444, the Zcash team decided not to address this for now.

The project team noticed that an empty batch successfully passes batch signature

verification. For example, the following test in the context of the test suite in frost-core/

src/tests/batch.rs successfully passes.

Note that this does not constitute a forgery; however, this behavior does not strictly

follow the fail-safe default principle. Technically, it can be argued that in a batch

containing no signatures, all signatures are valid. Thus, the batch does not contain any

invalid signature, and as such a returned value of true can be considered as the correct

one. However, this behavior is currently not documented in the API.

Update: pull request 487 updated the verify() function to return an error if the batch

size is 0.

In the batch verification function defined in frost-core/src/batch.rs, consider replacing

the highlighted instances of self.signatures.len() with n in the following code excerpt:

Update: pull request 487 also addresses this.

Notes on the Different FROST Versions

The latest FROST draft is currently at version 14
7
 and was published on July 10, 2023, while

the security review was ongoing. Even though most of the code base under review seems to

•

•

106

107

108

109

110

111

112

113

/// Test batch verification with a Ciphersuite.

pub fn empty_batch_verify<C: Ciphersuite, R: RngCore + CryptoRng>(mut rng: R) {

let batch = batch::Verifier::<C>::new();

assert!(batch.verify(rng).is_ok());

}

pub fn verify<R: RngCore + CryptoRng>(self, mut rng: R) -> Result<(), Error<C>> {

let n = self.signatures.len();

let mut VK_coeffs = Vec::with_capacity(n);

let mut VKs = Vec::with_capacity(n);

let mut R_coeffs = Vec::with_capacity(self.signatures.len());

let mut Rs = Vec::with_capacity(self.signatures.len());

let mut P_coeff_acc = <<C::Group as Group>::Field>::zero();

7. https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html

35 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/issues/444
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/tests/batch.rs
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/tests/batch.rs
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/tests/batch.rs
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/tests/batch.rs
https://github.com/ZcashFoundation/frost/pull/487/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/batch.rs#L106
https://github.com/ZcashFoundation/frost/pull/487/files
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html

implement the draft version 11, the project also follows a few of the most recent updates,

notably the inclusion of the group public key into the binding computation.

The code base references several different versions of the FROST draft. The version

most frequently referenced is v11, for which there are over fifty direct links. However, the

code base also references version 10 a total of three times, see below for examples.

Figure 1: frost-core/src/frost.rs

Figure 2: frost-core/src/frost.rs

The third instance is in frost-rerandomized/src/lib.rs which also includes a reference to

version 12 on line 129, see below.

Update: pull request 488 updates the relevant links.

One other important change introduced by this latest version is a modification of the

ciphersuite-specific Context Strings used in the different hash functions. Interestingly,

the FROST specification maintained the “v11” version component throughout versions 11,

12 and 13. For example, consider the following excerpt from Section 6.1. FROST(Ed25519,

SHA-512) version 13:

The value of the contextString parameter is “FROST-ED25519-SHA512-v11”.

In version 14, the version component of the context string has been updated to v1, as can

be seen in the excerpt of the same section for the latest version of the draft

specification.

The value of the contextString parameter is “FROST-ED25519-SHA512-v1”.

The implementation uses the v11 context string, as can be seen in frost-ed25519/src/

lib.rs:

The different context strings will have to be updated to adhere to the latest specification.

Update: pull request 438 updates the different context strings and the test vectors, as

highlighted above.

•

•

148

149

150

151

/// [`compute_binding_factors`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-

frost-10.html#section-4.4

/// [`compute_group_commitment`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-

frost-10.html#section-4.5

// [`aggregate`]: https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-12.html#section-5.3

/// Context string 'FROST-ED25519-SHA512-v11' from the ciphersuite in the [spec]

///

/// [spec]: https://www.ietf.org/archive/id/draft-irtf-cfrg-

frost-11.html#section-6.1-1

const CONTEXT_STRING: &str = "FROST-ED25519-SHA512-v11";

36 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L112
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L112
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L298
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L298
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-rerandomized/src/lib.rs#L32
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-rerandomized/src/lib.rs#L32
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-rerandomized/src/lib.rs#L129
https://github.com/ZcashFoundation/frost/pull/488/files
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-13.html#name-frosted25519-sha-512
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-13.html#name-frosted25519-sha-512
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-frosted25519-sha-512
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-ed25519/src/lib.rs#L148-L151
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-ed25519/src/lib.rs#L148-L151
https://github.com/ZcashFoundation/frost/pull/438/files

Notes on the IETF Draft

Under section 5.3. Signature Share Aggregation, an incorrect list is provided as argument

to the call to derive_interpolating_value() , see below.

The variable x_list should be replaced with participant_list .

Update: pull request 448 of the draft performs the suggested update.

Under section 7.2. Optimizations, there is a typo in the spelling of RECOMENDED , which

should be spelled with two Ms; RECOMMENDED .

Update: pull request 447 of the draft fixes the typo above.

Minor Documentation Notes on the Source Code

This section lists a number of relatively minor observations pertaining to the code base

documentation.

The function derive_interpolating_value() defined in the file frost-core/src/frost.rs does

not directly reference the FROST specification, contrary to other functions in the code

base that are direct implementations of functions defined in the FROST specification.

The documentation of the function new() for the BindingFactorList in frost-core/src/

frost.rs states that it takes a vector of binding factors while it actually requires a

BTreeMap of Identifier s and BindingFactor s.

A comment preceding the definition of a NonceCommitment in frost-core/src/frost/round1.rs

refers to a Ristretto point. This seems to be an outdated comment since the frost-core

code base is now ciphersuite-agnostic.

•

•

•

151

152

153

•

78

79

80

81

82

83

84

85

86

•

106

107

108

109

110

111

Compute the interpolating value

participant_list = participants_from_commitment_list(

commitment_list)

lambda_i = derive_interpolating_value(x_list, identifier)

As such, the optimization is NOT RECOMENDED, and it is not covered in this document.

/// Generates the lagrange coefficient for the i'th participant.

#[cfg_attr(feature = "internals", visibility::make(pub))]

fn derive_interpolating_value<C: Ciphersuite>(

impl<C> BindingFactorList<C>

where

C: Ciphersuite,

{

/// Create a new [`BindingFactorList`] from a vector of binding factors.

#[cfg(feature = "internals")]

pub fn new(binding_factors: BTreeMap<Identifier<C>, BindingFactor<C>>) -> Self {

Self(binding_factors)

}

/// A Ristretto point that is a commitment to a signing nonce share.

#[derive(Clone, Copy, PartialEq, Eq)]

#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]

#[cfg_attr(feature = "serde", serde(try_from = "ElementSerialization<C>"))]

#[cfg_attr(feature = "serde", serde(into = "ElementSerialization<C>"))]

pub struct NonceCommitment<C: Ciphersuite>(pub(super) Element<C>);

37 / 44 – Engagement Notes

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-signature-share-aggregation
https://github.com/cfrg/draft-irtf-cfrg-frost/pull/448/files
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-optimizations
https://github.com/cfrg/draft-irtf-cfrg-frost/pull/447/files
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L153
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L153
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L78
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L78
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L78
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L78
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round1.rs#L106
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round1.rs#L106

In the following code excerpt from frost-core/src/frost/round1.rs, it is slightly unclear

what B refers to in the documentation of the function encode_group_commitments() .

In comparison, the FROST specification under the relevant section (see section 4.3. List

Operations) states:

This list MUST be sorted in ascending order by identifier.

A similar observation can be made about the following comment in frost-core/src/frost.rs:

The documentation at the beginning of the file frost-core/src/frost.rs seems slightly

outdated, as the distributed key generation is now implemented.

There are two outstanding TODO s in the code base (not including ones in tests):

Figure 3: frost-core/src/frost.rs

Figure 4: frost-core/src/scalar_mul.rs

Update: pull request 489 addresses the miscellaneous documentation notes provided

above.

Notes on the FROST Book

The FROST Book’s tutorial page (https://frost.zfnd.org/tutorial.html), when describing

how to add FROST to a project, suggests adding the following to Cargo.toml :

This is clearly out of date and will cause the following example code to fail to compile

due to function signature mismatches.

Also out of date are the remarks around serialization, which describes it as an application

responsibility and remarks that “The ZF FROST library will also support serde in the

•

313

314

315

316

317

318

319

320

321

322

318

•

•

252

20

21

•

•

/// Implements [`encode_group_commitment_list()`] from the spec.

///

/// Inputs:

/// - commitment_list = [(j, D_j, E_j), ...], a list of commitments issued by each

signer,

/// where each element in the list indicates the signer identifier and their

/// two commitment Element values. B MUST be sorted in ascending order

/// by signer identifier.

///

/// Outputs:

/// - A byte string containing the serialized representation of B.

// Ala the sorting of B, just always sort by identifier in ascending order

//! This implementation currently only supports key generation using a central

//! dealer. In the future, we will add support for key generation via a DKG,

//! as specified in the FROST paper.

// TODO: when serde serialization merges, change this to be simpler?

// TODO: remove this function and use `div_ceil()` instead when `int_roundings`

// is stabilized.

[dependencies]

frost-ristretto255 = "0.3.0"

38 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round1.rs#L318
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost/round1.rs#L318
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-list-operations
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#name-list-operations
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L318
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L318
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L6-L8
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L6-L8
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L252
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/frost.rs#L252
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/scalar_mul.rs#L20
https://github.com/ZcashFoundation/frost/blob/5fa17ed15ca1494c778492ad6d54d545d6463fda/frost-core/src/scalar_mul.rs#L20
https://github.com/ZcashFoundation/frost/pull/489/files
https://frost.zfnd.org/tutorial.html

future, which will make this process simpler”. Serialization support had already been

added (using the serde feature) at the time of the engagement.

The tutorial page describes trusted-dealer key generation in section 2 , while distributed

key generation is relegated to section 2.1 ; this mismatch is somewhat surprising. This

page also makes no mention of the fact that full code samples for trusted-dealer key

generation and key use exist within backend crates’ documentation.

The subpage for DKG (section 2.1) uses incomplete code samples with inconsistent

formatting, and is missing critical logic, as can be seen in this code snippet reproduced

verbatim:

It is not clear, for instance, how participant_identifier should be created, what its type

signature should be, what properties it should or should not have, etc. Full working

example code will dramatically reduce the likelihood of errors in user code written by

consumers of this crate.

Update: pull request 491 addresses the various notes provided above.

•

•

use rand::thread_rng;

use std::collections::HashMap;

use frost_ristretto255 as frost;

let mut rng = thread_rng();

let max_signers = 5;

let min_signers = 3;

// create `participant_identifier` somehow

let (round1_secret_package, round1_package) = frost::keys::dkg::part1(

participant_identifier,

max_signers,

min_signers,

&mut rng,

)?;

39 / 44 – Engagement Notes

https://github.com/ZcashFoundation/frost/pull/491

7 FROST Security Requirements

This section aims at collecting security requirements from the latest FROST draft

specification
8
. While many requirements are explicitly stated (for example, using MUST

statements), some requirements are implicit and could be missed by implementers.

The table below tracks these requirements. The first column represents the section or

appendix in which the requirement was found. While the requirements using key words

described in RFC2119 and RFC8174 such as “MUST” are straightforward, some requirements

are stated using the lowercase version of these key words, and other requirements are

implicitly stated, without using any associated key word. The second column identifies the

type of requirement, and uses “Implicit” when no key word is attached to that requirement.

In the third column, the corresponding snippets from the reference are provided. Most

excerpts are copied from the specification as is, although some excerpts have been slightly

altered for easier understanding.

Finally, the FROST specification imposes some implicit restrictions on the values of certain

parameters, for example by specifying that variables are of type NonZeroScalar . These

implicit requirements were left out of the following table.

Section Type Requirement

2. Implicit we assume that secrets are sampled uniformly at random using a

cryptographically secure pseudorandom number generator (CSPRNG)

3.1. Implicit we use the type NonZeroScalar to denote a Scalar value that is not

equal to zero, i.e., Scalar(0)

3.1. Implicit DeserializeElement(buf): Attempts to map a byte array buf to an

Element A, and fails if the input is not the valid canonical byte

representation of an element of the group.

3.1. Implicit DeserializeElement(buf): (…) This function raises an error if

deserialization fails or if A is the identity element of the group.

3.1. Implicit DeserializeScalar(buf): (…) This function raises an error if

deserialization fails.

3.2. SHOULD For concrete recommendations on hash functions which SHOULD be

used in practice, see Section 6.

4.2. Implicit Under Errors in the derive_interpolating_value() function: “invalid

parameters”, if 1) x_i is not in L, or if 2) any x-coordinate is represented

more than once in L

4.3. MUST Under Inputs in the encode_group_commitment_list() function: This list

MUST be sorted in ascending order by identifier.

4.3. MUST Under Inputs in the participants_from_commitment_list() function:

This list MUST be sorted in ascending order by identifier

4.3. Implicit Under Errors in the binding_factor_for_participant() function:

“invalid participant”, when the designated participant is not known.

4.4. MUST Under Inputs in the compute_binding_factors() function: This list

MUST be sorted in ascending order by identifier.

4.5. MUST Under Inputs in the compute_group_commitment() function: This list

MUST be sorted in ascending order by identifier.

8. https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html

40 / 44 – FROST Security Requirements

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#ciphersuites
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html

Section Type Requirement

5. Implicit MIN_PARTICIPANTS <= MAX_PARTICIPANTS , MIN_PARTICIPANTS is a positive

non-zero integer and MAX_PARTICIPANTS is a positive integer less than

the group order.

5. Implicit NUM_PARTICIPANTS is a positive integer at least MIN_PARTICIPANTS but no

larger than MAX_PARTICIPANTS .

5. MUST An identifier, which is a NonZeroScalar value denoted i in the range [

1, MAX_PARTICIPANTS] and MUST be distinct from the identifier of every

other participant.

5. SHOULD The Coordinator SHOULD abort if the signature is invalid

5. Implicit FROST assumes that all inputs to each round, especially those of

which are received over the network, are validated before use.

5. Implicit Any value of type Element or Scalar is deserialized using

DeserializeElement and DeserializeScalar.

5. Implicit All messages sent over the wire are encoded appropriately, e.g., that

Scalars and Elements are encoded using their respective functions.

5. Implicit FROST assumes reliable message delivery between the Coordinator

and participants in order for the protocol to complete.

5. Implicit in order to identify misbehaving participants, we assume that the

network channel is additionally authenticated; confidentiality is not

required.

5.1. should The outputs nonce and comm from participant P_i should both be

stored locally and kept for use in the second round.

5.1. MUST NOT The nonce value is secret and MUST NOT be shared

5.1. MUST NOT The nonce values produced by this function MUST NOT be used in

more than one invocation of sign

5.1. MUST the nonces MUST be generated from a source of secure randomness

5.2. require Signers additionally require locally held data

5.2. MUST Each participant MUST validate the inputs before processing the

Coordinator’s request

5.2. MUST In particular, the Signer MUST validate commitment_list, deserializing

each group Element in the list using DeserializeElement from Section

3.1.

5.2. MUST If deserialization fails, the Signer MUST abort the protocol

5.2. MUST each participant MUST ensure that its identifier and commitments

(from the first round) appear in commitment_list

5.2. require Applications which require that participants not process arbitrary input

messages are also required to perform relevant application-layer input

validation checks

5.2. MUST Under Inputs in the sign() function: This list MUST be sorted in

ascending order by identifier.

5.2. MUST Each participant MUST delete the nonce and corresponding

commitment after completing sign

41 / 44 – FROST Security Requirements

https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#dep-pog
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#dep-pog

Section Type Requirement

5.2. MUST NOT [Each participant] MUST NOT use the nonce as input more than once

to sign .

5.3. MUST Before aggregating, the Coordinator MUST validate each signature

share using DeserializeScalar.

5.3. MUST If validation fails, the Coordinator MUST abort the protocol as the

resulting signature will be invalid.

5.3. MUST Under Inputs in the aggregate() function: This list MUST be sorted in

ascending order by identifier

5.3. SHOULD The Coordinator SHOULD verify this signature using the group public

key before publishing or releasing the signature.

5.3. should Recall that the Coordinator is configured with “group info” which

contains the group public key PK and public keys PK_i for each

participant, so the group_public_key and PK_i function arguments

should come from that previously stored group info.

5.3. MUST Under Inputs in the verify_signature_share() function: This list MUST

be sorted in ascending order by identifier

5.3. Implicit If the aggregate signature verification fails, the Coordinator can verify

each signature share individually to identify and act on misbehaving

participants.

5.4. SHOULD When the signing protocol does not produce a valid signature, the

Coordinator SHOULD abort

5.4. Implicit FROST assumes the network channel is authenticated to identify

which signer misbehaved.

6. must A FROST ciphersuite must specify the underlying prime-order group

details and cryptographic hash function.

6. RECOMMENDED The RECOMMENDED ciphersuite is (ristretto255, SHA-512)

6. MUST The DeserializeElement and DeserializeScalar functions instantiated

for a particular prime-order group corresponding to a ciphersuite

MUST adhere to the description in Section 3.1.

6. MUST Future ciphersuites MUST describe how input validation is done for

DeserializeElement and DeserializeScalar.

6. MUST Future ciphersuites MUST also adhere to these requirements.

6.1. MUST Note that this means the top three bits of the input MUST be zero.

6.1. MUST implementations MUST check the group equation

[8][z]B = [8]R + [8][c]PK

6.2. MUST Note that this means the top three bits of the input MUST be zero.

6.3. MUST implementations MUST check the group equation

[4][z]B = [4]R + [4][c]PK

6.6. MUST Future documents that introduce new ciphersuites MUST adhere to the

following requirements.

6.6. Implicit H1, H2, and H3 all have output distributions that are close to

(indistinguishable from) the uniform distribution.

6.6. MUST All hash functions MUST be domain separated with a per-suite context

string.

42 / 44 – FROST Security Requirements

Section Type Requirement

6.6. MUST The group MUST be of prime-order

6.6. MUST deserialization functions MUST output elements that belong to their

respective sets of Elements or Scalars, or failure when deserialization

fails.

6.6. Implicit The canonical signature encoding details are clearly specified

7. may The Coordinator may also abort upon detecting a misbehaving

participant to ensure that invalid signatures are not produced.

7.1. Implicit Mitigating these side-channels requires implementing G.ScalarMult() ,

G.ScalarBaseMult() , G.SerializeScalar() , and G.DeserializeScalar()

in constant (value-independent) time

7.2. NOT

RECOMMENDED

As such, the optimization is NOT RECOMENDED [sic], and it is not

covered in this document.

7.3. MUST The randomness produced in this procedure MUST be sampled

uniformly at random.

7.3. MAY The Coordinator MAY further hedge against nonce reuse attacks by

tracking participant nonce commitments used for a given group key, at

the cost of additional state.

7.5. Implicit We assume that every participant receives as input from an external

source the message to be signed prior to performing the protocol

7.5. Implicit After having received all signature shares from all other participants,

each participant will then perform verify_signature_share and then

aggregate directly.

7.5. must the channel simply must be reliable

7.5. may To avoid this denial of service, implementations may wish to define a

mechanism where messages are authenticated, so that cheating

players can be identified and excluded.

7.6. must the entire message must be known in advance of invoking the signing

protocol

7.6 MUST pre-hashing MUST use a collision-resistant hash function with a

security level commensurate with the security inherent to the

ciphersuite chosen.

7.6 RECOMMENDED It is RECOMMENDED that applications which choose to apply pre-

hashing use the hash function (H) associated with the chosen

ciphersuite in a manner similar to how H4 is defined.

7.6 SHOULD a different prefix SHOULD be used to differentiate this pre-hash from

H4 .

7.7. RECOMMENDED it is RECOMMENDED that applications take additional precautions and

validate inputs so that participants do not operate as signing oracles

for arbitrary messages

C. Implicit The function prime_order_verify (…) assumes that signature R

component and public key belong to the prime-order group.

43 / 44 – FROST Security Requirements

Section Type Requirement

D. Implicit The dealer that performs trusted_dealer_keygen is trusted to 1)

generate good randomness, and 2) delete secret values after

distributing shares to each participant, and 3) keep secret values

confidential

D. MUST Under Inputs in the trusted_dealer_keygen() function: secret_key , a

group secret, a Scalar, that MUST be derived from at least Ns bytes of

entropy.

D. Implicit It is assumed the dealer then sends one secret key share to each of

the NUM_PARTICIPANTS participants, along with vss_commitment

D. MUST After receiving their secret key share and vss_commitment , participants

MUST abort if they do not have the same view of vss_commitment.

D. MUST Furthermore, each participant MUST perform

vss_verify(secret_key_share_i, vss_commitment) , and abort if the

check fails.

D. MUST The trusted dealer MUST delete the secret_key and secret_key_shares

upon completion.

D. Implicit Use of this method for key generation requires a mutually

authenticated secure channel between the dealer and participants to

send secret key shares, wherein the channel provides confidentiality

and integrity.

D.1. Implicit Under Inputs in the function secret_share_shard() :

MAX_PARTICIPANTS, the number of shares to generate, an integer less

than 2^16.

D.1. MUST i MUST never equal 0

D.1. Implicit Under Errors in the function secret_share_combine() : “invalid

parameters”, if fewer than MIN_PARTICIPANTS input shares are

provided.

D.2. MUST If vss_verify fails, the participant MUST abort the protocol, and failure

should be investigated out of band.

E.1. Implicit Failure to implement DeserializeScalar in constant time can leak

information about the underlying corresponding Scalar.

44 / 44 – FROST Security Requirements

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Ed448 Base Field Incorrect Negation
	Insufficient Participant Commitment List Checks
	Missing Length Check in Identifiers List
	Potential Timing Attacks in Ed448 Implementation
	Unchecked Accesses to Data Structures
	Missing Signing Package Validation May Cause a Panic
	Lack of Zeroization in Ed448 Scalar Inversion
	Minimum Participant Constraint Enforcement Improvements

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes
	General Notes on frost-core
	Notes on RedDSA
	Observations on Batch Verification
	Notes on the Different FROST Versions
	Minor Documentation Notes on the Source Code
	Notes on the FROST Book

	FROST Security Requirements

