
NCC Group Whitepaper

Secure Messaging for Normal People
October 27, 2015 – Version 1.0

Prepared by
Justin Engler — Principal Security Consultant

Cara Marie — Senior Security Consultant (Diagrams)

Abstract
"Secure" messaging programs and protocols continue to proliferate, and crypto ex-

perts can debate their minutiae, but there is very little information available to help the

rest of the world differentiate between the different programs and their features. This

paper discusses the types of attacks used against a variety of messaging models and

discusses how secure messaging features can defend against them. The goal of this

paper is to help inform those who are tech-savvy but not crypto-experts to make smart

decisions on which crypto applications to use.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 What is a message? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Cryptography is magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Cryptobabble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Your own threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Adversary types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Why are you keeping secrets? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Messages without encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Encryption endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Key validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Trust on first use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Out-of-band validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Transitive trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.4 Validation is forever until it isn't . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Group messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 Ice cream attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Membership changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.3 Group chat protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Open source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.1 Security audits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2 Does it do what it says? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.3 Did we get the program we analyzed? (reproducible builds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.4 Operating systems and open source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.5 How many operating systems are on your device? And what do they run on? . . . . . . . . . . . . . . . . 18

8 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.1 Direct collection of metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.2 Inferring metadata as a global passive adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.3 Identifiers as metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 | Secure Messaging for Normal People NCC Group



8.4 Address book harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.5 Is there any cure for metadata? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Physical device access/seizure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9.1 Logs & transcripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9.2 Forward secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Not as Advertised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10.1 Auto-deleting messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10.2 One time pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10.3 Special crypto hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10.4 Geofencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10.5 Mesh networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10.6 Military-grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.7 Bespoke cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10.8 Multiple synchronized devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 | Secure Messaging for Normal People NCC Group



1 Introduction

Security and privacy continue to be on the minds of the public, and many users want to know how to keep their

communications private. At the same time, users are being offered more choices in how to communicate with

each other than ever before, and some of these choices purport to be "secure". By the end of this paper, you

will be able to understand what types of things the "bad guys" will try to do to access your communications

and what features messaging systems offer to thwart those attempts.

1.1 What is a message?

For the purposes of this paper, a "message" is any information you want to send to another person or group

of people. Phone calls, SMS, email, video chat, text chat, and other similar items are included, but things like

communications between your computer and a server are not messages themselves as far as we're concerned

in this paper.

A messaging client is whatever collection of systems you use to send messages. This could mean anything

from a traditional phone up to a niche messaging application on a computer.

1.2 Cryptography is magic

There are a huge number of different types of cryptographic algorithms that are used for different situations.

Algorithm choice, implementation flaws, and similar considerations can have huge impacts on the security

of your data, but such details are outside of the scope of this discussion. While reading this paper, you

can translate "encrypted" as "impossible for anyone else to read or modify", unless otherwise stated. You

shouldn't necessarily translate it that way in the real world though, you would need to have cryptography and

application security experts sign off on the actual algorithms and implementations used.

Even though we're making this assumption that encryption is unbreakable, there are plenty of other ways

adversaries could get to your data. The purpose of this paper is to explain those things and what to do about

them.

1.3 Cryptobabble

This paper attempts to simplify things as much as possible, but there are a few key cryptography terms that

we'll be using. Sometimes their meanings can be confusing if you don't already know what they are, so let's

lay a few out now.

• Key - A secret value that "unlocks" an encrypted message.

• Public Key/Private Key - These come in pairs. The idea is that you give your public key away to everyone,

but you keep the private key to yourself. Anyone with your public key can send an encrypted message that

can only be decrypted with the private key. You can imagine this as you distributing the blueprints to a lock

that will only open with your key. Now, anyone with the blueprints (public key) can build a locked container

(encrypt a message) that only the private key can open.

• Signatures - This is another use for public keys. If you have my public key, you can verify that a given

message actually came from me. Interestingly, that message can be sent unencrypted (so anyone can read

it), but you can still use the public key to validate it. For a real-world analogy, imagine that you have a

sample of my handwriting signature (public key). If I send you a document and I sign it with my pen (private

key), you can check to see if the signatures match.

• Fingerprints - Usually in cryptography a fingerprint has nothing to do with the oily smudges you leave

everywhere. Instead, when we say fingerprint, we mean a short value that can represent a longer one. Keys

can be very long (a number 925 digits long, for one example), so we use some math to boil that down into

something manageable that a person could read and compare (a 13 digit fingerprint for the previous 925

digit key). Machines will use the full key, but if a person needs to verify the value of a key, the person could

4 | Secure Messaging for Normal People NCC Group



use fingerprints instead. It's called a fingerprint because it uniquely identifies the larger value. Don't panic

if someone wants to see your fingerprints!

• Trust - If we say that we "trust" people, we're not saying we'd let them house-sit or borrow money. It simply

means that we're relying on them to vouch for someone's identity. Sometimes we'll trust an individual

person, other times we'll trust a more abstract entity.

5 | Secure Messaging for Normal People NCC Group



2 Your own threat model

It's impossible to determine what the "best" encrypted chat program is because everyone has different needs.

To decide what kinds of security you need, first understand who is trying to attack you and what they are trying

to take from you.

2.1 Adversary types

For the purposes of this talk, we're going to talk about four different types of adversary.

Opportunistic, Low-resource adversaries: These attackers aren't targeting you directly, and they aren't willing

to commit much effort, skill, and/or time on you. Novice troublemakers, corporate/educational monitoring

systems, analysis for use in advertising systems, etc.

Targeted, Low-resource adversaries: These attackers are specifically after your information, but they don't

have massive resources. Targeted hackers, organized crime, corporate espionage, harassers, and the like

make up this group.

Opportunistic, High-resource adversaries: These attackers aren't looking at you specifically, but they have

massive resources to throw at the problem of bulk surveillance. This group is likely to be a government program

doing large scale data collection, monitoring, and/or filtering.

Targeted, High-resource adversaries: These attackers are likely government actors who have already zeroed

in on you specifically. It is highly unlikely that anything we discuss in this paper will be able to protect you in

any meaningful way from this kind of attention, but hopefully we'll at least be able to explain why your choice

of secure messaging program won't be much help against this class of threat.

2.2 Why are you keeping secrets?

When choosing a messaging system, you need to consider how much you value the information you want to

keep secret. You also need to consider how much value your data has to an adversary who wants to steal it.

Both of these inform how much effort you should put into your security.

Different types of data will have different value. This paper is mostly concerned with the value of the actual

content of your messages, but we will also discuss some other types of data and why it is important.

Here are a few common scenarios:

Privacy-concerned average citizen: You don't have anything in particular you're trying to hide in most of

your messages. You're concerned about keeping financial data, medical records, and similar information

confidential, but you don't often discuss that data over messaging clients. You might also be interested in

encrypted communications simply because you believe in privacy as a principle, or to help give legitimacy to

other crypto users.

Business users: Businesses often have employees who need to discuss confidential information such as trade

secrets or financial data.

Activists: People who do things that might draw government attention. We're going to stay away from politics

in this paper and just assume that there are causes that are both morally/ethically just and are simultaneously

oppressed by some government that can bring punishment to bear.

Harassed: People whose social or political beliefs are unpopular with specific individuals or groups or are

targeted for harassment for other reasons (celebrities or other media personalities might fall into this category).

The harassers might try to read messages to publicly air them or try to uncover a physical address or current

location.

6 | Secure Messaging for Normal People NCC Group



People who send nude pictures of themselves: If you want to send pictures to someone, it's likely you want

that picture to only be readable by the people you actually sent it to.

7 | Secure Messaging for Normal People NCC Group



3 Messages without encryption

To help explain how encrypted messaging systems can and cannot protect users, first, let's examine an unen-

crypted messaging system.

Figure 1: Alice, Bob and the Evil Eavesdroppers

On the Internet, messages passed between Alice

and Bob will move from their devices to the local

network, then across an undefined set of Internet

devices, then to the receivers' local network and

onto the receiving device. If the communications

aren't encrypted, eavesdroppers in any of the

attacker groups above can read the message in

most cases.

The situation for SMS messages and phone

calls is comparable, though the technical details

vary. For mobile networks, although these

technologies are not always encrypted in a

meaningful way, eavesdropping on them is often

more difficult than eavesdropping on IP networks.

At the time of this writing, it is probably

safe to assume that low-resource, non-targeted

adversaries are not able to intercept SMS and mobile phone calls. Attacks against mobile phone technologies

are getting easier every day, so it's likely that these types of communications will continue to get easier.

You could also envision more esoteric architectures, like bluetooth mesh networks, that also follow this same

general pattern.

8 | Secure Messaging for Normal People NCC Group



4 Encryption endpoints

The most common form of communications encryption on the Internet is Transport Layer Security (TLS).1 This

technology is designed to secure communications between a client and server. The diagram would look

something like this.

This is much better than before, as it shuts out most eavesdroppers at the network layer. It does highlight a

specific, powerful attacker.

Figure 2: Malicious servers can still read TLS traffic

Traffic fromAlice to the server is encrypted, and

then it is encrypted again from the server to Bob.

The server is in the middle of the traffic and can

read, store, or change any messages. Even if

you trust the operators of the server, the more

popular it becomes, the more likely it is to be

targeted by those who want to observe message

traffic. Additionally, the server operators will

be operating under some legal jurisdiction, and

most jurisdictions require at least some level of

access to the data by law enforcement.

We also need a way to confirm that the server

we're talking to is actually the correct one, and

not just a server pretending to be the legitimate

chat server. This is handled as an integral part

of TLS. Your operating system or application has

a list of trusted certificate authorities (CAs) that

your system trusts to "vouch for" a given site's identity. This system can be abused in a few ways. Your system

trusts a huge number of CAs by default, and it trusts any of them to vouch for any website. This means that

anyone who can access or influence any CA can forge a certificate for any server, and therefore vouch for a

fake server. As mentioned above, for messaging systems that use this architecture, the encryption ends at the

server, so in this case it would end at the fake server.

Another way to abuse these systems is to add extra CAs to the list of CAs that your system trusts. Many

businesses do this automatically for their computers and networks, so that the business can monitor commu-

nications for security problems or lazy workers. Some public networks have also been known to require users

to install custom CAs. Attackers can try to convince users to add attacker-controlled CAs to the trusted list for

a given computer. Finally, sometimes software errors will simply skip the verification step, allowing any server

to claim to be any other server.

Despite all of these disadvantages, this is still a common model, and it works well in the majority of computer

communications if you're willing to allow the server to read all of your messages and you understand that the

potential exists for high resource attackers to intercept your communications (and in a few selected cases,

lower resourced attackers as well).

1Older versions were called Secure Sockets Layer (SSL). TLS and SSL are the technology behind "HTTPS" used in web pages (the

lock icon in your address bar)

9 | Secure Messaging for Normal People NCC Group



Figure 3: End-to-end encrypted traffic is only readable

by Alice and Bob's computers.

A better solution would be to find a way to

make the encryption endpoints be Alice's device

and Bob's device, so that even if there's a central

chat server, it can't actually read the data.

This is an ideal situation, but there are implemen-

tation details that make end-to-end encryption

more complicated than the diagram makes it

seem. We'll cover several topics that are impor-

tant in encrypted messaging, and the potential

ways they are addressed in both user-to-provider

and end-to-end encrypted messaging.

10 | Secure Messaging for Normal People NCC Group



5 Key validation

In order for end-to-end encryption to be possible, we need a way for Alice and Bob to exchange encryption

keys securely, or at least to be able to verify that the keys they see for the other party actually belong to the

other party. Unfortunately, it's not possible to just pass the keys over the Internet directly: think about the

initial key as just another kind of message and look back at the first diagram to understand why. There's an

important wrinkle here that we're mostly going to gloss over under our "cryptography is magic" clause above.

It actually doesn't matter if an attacker can read our keys, there's a special type of encryption called "public

key cryptography" that makes this happen. We do need to worry about an adversary changing keys that we

send. This means that if we go back to the original unencrypted messages case, we're not safe because any

of the eavesdroppers could replace our key with their key.

Consider another common architecture for message passing, this time using a form of end-to-end encryption,

so Alice's messages to Bob don't get decrypted on the server.

Figure 4: Alice asks Server for Bob's key, Server provides it

In the above diagram, the server has a database all of the identities. If Alice wants to talk to Bob, Alice asks

the server for Bob's key, the server sends back a key, Alice uses it to encrypt a message to Bob.

Figure 5: Server provides bad key (MITM)

Alice has just blindly trusted the server to tell

the truth and provide Bob's key, but at this point,

there's no way for her to verify that the server

provided Bob's key.

5.1 Trust on first use

There are solutions to this problem, but they can

become cumbersome quickly. First, simplest, and

least secure is Trust on First Use (TOFU). The first

time Alice asks for Bob's key and gets a response,

Alice saves the key (or some representation of the

key). The next time Alice tries to send a message

to Bob, Alice either uses the saved key or checks

to see if the key received from the server matches

the one received earlier.

One weakness to TOFU lies in the first message. If the server is lying for this first response, then there is no way

to securely communicate with Bob. The server could read or modify the traffic at any time. This makes TOFU

an acceptable choice only when dealing with opportunistic attackers who aren't already actively targeting you

or your communications partner.

11 | Secure Messaging for Normal People NCC Group



There is a further problem here. If Bob needs to change his key suddenly, there is no way for Alice to tell the

difference between Bob and an attacker claiming to be Bob. This is a huge and essentially unsolvable problem

for systems that have TOFU as their only key validation method.

5.2 Out-of-band validation

A better way to solve this problem is to find a way to validate the key so that Alice knows that the key received

is the one actually used by Bob. The easiest way to accomplish this is to validate the keys out of band. This

is usually done with either a hexadecimal string commonly called the "fingerprint", or a QR code which is a

graphical representation of the same data. The fingerprint is not a secret value you want to protect (unlike

your own, real print on your fingers)- instead, it is a public value you would want to print on your business

cards, advertise on your website, or tattoo in a handy location2

Figure 6: QR code and "fingerprint"

However, this key exchange is only as secure as the communi-

cations method used. If the fingerprint was exchanged over the

very chat you were attempting to authenticate, if you were being

attacked, the attacker would simply replace the fingerprint with

whatever data you expect to see. Fingerprints must be exchanged

over a separate channel that you know (or at least hope!) has not

been compromised. (Hence "out-of-band".) The best assurance

is provided by physically visiting your communications partner and

verifying keys/fingerprints - but other options potentially include

a phone call, SMS, a video chat - anything where you can be

reasonably sure the attacker is unable to modify the data of.

Consider also that some types of verification are harder to forge. A

live videochat of Bob reading off his fingerprint to Alice is difficult to

intercept and modify in real time with a faked video of Bob reading

off the wrong fingerprint. An SMS from Bob with his fingerprint

might be easier for some attackers to intercept and modify in transit,

but if the validation was ad hoc and not part of some automatic

validation scheme, it would probably require an adversary who was

already prepared and waiting to jump into the communications between two specific individuals. This

adversary would also need access to the phone network or otherwise be able to modify or forge SMSmessages

in transit.

5.3 Transitive trust

Another method to determine if the keys you're receiving are legitimate is to ask someone else. Consider a

case where Alice wants to talk to Bob, but she can't validate Bob's key. However, Alice trusts Carol, and Carol

trusts Dave. Dave has Bob's key and has validated it. Now Alice can have some assurance that the key she is

using for Bob is a legitimate key.

This strategy has a few names that imply a few variations.

5.3.1 Web of Trust

The most popular term since the 1990s has been "web of trust". The web of trust implies a public database

where everyone can see everyone else's "connections" - who trusts whom. These connections may not be

symmetric - just because Alice trusts Carol, doesn't mean carol trusts Alice.

2Okay, maybe not tattoo it, that makes changing your key even harder!

12 | Secure Messaging for Normal People NCC Group



Figure 7: The Web of Trust

There are many subtle problems with the web

of trust. The biggest one for the purposes of this

paper is that a new user is an island (as shown

above with Frank). Poor Frank trusts no one, and

no one trusts Frank. If Frank were real-life friends

with Dave, an attacker would easily be able to

impersonate Dave - because Frank has no way to

trust the Dave that is in the graph. Frank could

look at Dave and see he is connected to mutual

friends - but Frank can't validate those people

either! Someone could have replaced Frank's

entire social circle – and Frank would have no

idea. This sounds far-fetched, but it's generally

easy to create spam accounts, and this attack has

been demonstrated before.

Another variant of this attack is a mutual friend of

the group, Gary, who has never signed up for the

service because he's staunchly opposed to the

idea of being near anything that transmits like a

radio. (He also lives in a cabin in the forest, removed his car stereo, and uses his own waste as manure, calling

it "humanure", which is why his friends don't visit him much.) If one day "Gary" signed up for the service - the

social circle wouldn't find out it wasn't the real "Gary" until they talked to him in person!

So, even for the Web of Trust, the first verification done must be another type: either TOFU or Out-Of-Band.

And this is required whenever social circles do not touch. If you communicate with a lot of different groups of

people: this could be very often.

Other attacks focus on the transitive nature of the web of trust. Everyone in the web must have the same

standards for how they "trust" someone. If Carol did a poor job of verifying Dave's key, Alice's message to

Bob could be compromised. The proliferation of social networks, and the easiness in which we may accept

friends on them, is a great example of how "Trust" may become "An attractive person messaged me". An

adversary on the web might do this intentionally, causing anyone who chains trust in this way to receive keys

belonging to that adversary instead of the real ones.

Additionally, the public nature of the web of trust means that it is possible for anyone to see with whom

someone communicates. That is a large leak of the social graph and metadata.

5.3.2 Trusted Introductions

An alternative to the public web of trust are private, trusted introductions. These take the form of someone

you already trust (in the diagram above, Carol could introduce Dave to Alice.) This seems similar to the web of

trust - but it's different because Alice has no way to learn that Dave knows Carol (unless one of them tells her).

Once Alice learns this, she can ask Carol to perform an introduction. The introduction is a private message no

one else sees.

Once introduced, Alice and Dave can communicate independently of Carol and introduce each other to more

people.

13 | Secure Messaging for Normal People NCC Group



5.4 Validation is forever until it isn't

It's worthwhile to note that in a secure chat solution, key validation is only required once. The exception

to that is if your communications partners lose their keys, (For example, getting a new device or factory

resetting an existing one.) their fingerprint will change - and validating their new key is required just as before.

Once the new key is validated, the old key should not longer be accepted by the application - you wouldn't

want someone having their phone stolen, and the thief being able to impersonate them in an encrypted,

authenticated chat.

14 | Secure Messaging for Normal People NCC Group



6 Group messaging

The above scenarios have assumed communications that are intended only for two people. Some other issues

arise when attempting to secure multiparty chats. The rest of the examples in this section assume some sort

of end-to-end encryption between all of the participants in the conversation, where each user is obligated to

send the same message to all users in the chat.

6.1 Ice cream attack

Figure 8: Poor Dave, he loves ice cream so much, but

he types so slow!

When a group of people are in a room, it's

obvious to see who is talking, and you can avoid

interrupting people (or do it on purpose.) But

when several people are on a phone call, there is

that slight delay between when you start talking,

and when you hear someone else start talking.

This delay is magnified when users are typing

on keyboard, especially thumb-typing on small

keyboards. It may seem like a small problem, but

ordering messages is anything but.

The ice cream attack becomes even more power-

ful if the attacker is part of the chat, and purposely

delays some other users' messages to change the

context of what they say!

6.2 Membership changes

Another problem with group chats – especially

when you take into account the problem of

message ordering – is that it's difficult to remove

members. Suppose the four friends have had

enough of Bob's fanaticism and want to remove

him from their ice cream chat.

How do they remove him? There aren't many

good options:

1. Any member can arbitrarily remove any other member from a group chat. This works well for small

circles of friends, but completely breaks for random groups of people on the Internet

2. It requires a majority vote. This works horribly in a text messaging scenario where people take a long

time to reply or vote. Alice decides to call a vote to kick Bob... but any discussion about doing so

happens in front of Bob - because he's not kicked yet! And it requires a majority to vote

3. A majority vote with a time limit? It's not clear this is a particularly usable solution either.

4. There is the concept of a "moderator" who has the authority - First off, there's the social aspect of "Which

of your friends would you both trust and respect enough to moderate your circle of friends?" But there's

also the very real problem that the moderator has to be online and responsive or you have the same

delay problems.

15 | Secure Messaging for Normal People NCC Group



6.3 Group chat protocols

Overall the encryption protocols for group chat systems are not as well understood as those for only two

parties, so there could be other issues lurking beneath the surface here that we don't know about yet. This

means that if your security needs are particularly acute, you probably should avoid group chat.

16 | Secure Messaging for Normal People NCC Group



7 Open source

Many commentators on the topic of secure messaging clients will tell you that only open source programs are

safe. It is important to understand what exactly open source software contributes to the security posture of a

secure messaging program

7.1 Security audits

Errors in application design, coding, or cryptography can undermine the security of a securemessaging system.

In the past, a commonly held belief in some circles was that open source software would be more secure as

a result of its openness to be examined by anyone. The past couple years have shown that the availability of

source code to the public is not in itself enough to produce a secure result. The discovery of complex bugs

requires a concerted, methodical approach by talented individuals that simply cannot be applied en masse to

all open source software. But, open source software significantly lowers the barrier to both having an audit

conducted, and verifying that developers take security concerns seriously.

Generally speaking, you should use messaging systems that have been audited by experts and where the

problems uncovered during those audits were fixed in a timely manner. If a crypto vendor claims that an audit

was done, but they don't show you the results (hopefully both the findings and the fixes), you're pretty much

taking them at their word that the system is safe for use.

7.2 Does it do what it says?

A better argument for open source secure messaging systems is that an examination of the source is the best

way for the public to determine if a program is actually providing the protections it claims. With a closed

source system, the public can only take it on faith, based on how much they trust the creators of the software.

That being said, most members of the public are not able to do this analysis themselves. Instead, some

well-regarded members of the community might do some analysis of a particular program and then provide

some commentary about the security guarantees it provides.

7.3 Did we get the program we analyzed? (reproducible builds)

Unless you are going to manually inspect and build every program you use, you will have to at some point

take someone else's word that the programs that you use do what they say they do – and this applies to open

source software as much as closed source. If someone you trust analyzes the source of a program, how do

you know that you will receive the same thing that was analyzed? For closed source software, even if there

was an audit conducted by someone you trust, there is no guarantee that what you actually download is what

was audited.

For some threat models, one should assume that software delivery channels (Download sites (even over

HTTPS), App Stores, etc.) are potentially hostile. If your threat model includes these kinds of attackers, you

cannot trust any software provided over any of these channels, even if the application is open source and/or

audited by a trusted party.

On systems where it is easy to build your own software, you could hope that the people you trust who did the

audit provided some sort of signature over the code that was audited. Then, when you download the code

yourself, you could verify that the signature matches, and you could be reasonably certain that the software

you build is the same as the one that was analyzed.

But for people who have things to do, places to see, and sweet, sweet cinnamon buns to eat at every

opportunity - building every piece of software I want to run on my system is out of reach. So how can I, the

cinnamon bun-loving public, know that a program I download was produced from the source code that was

audited? Unfortunately, this is a very difficult problem currently. There are a few projects that have achieved

17 | Secure Messaging for Normal People NCC Group



the holy grail of "reproducible builds" - but this is only possible on certain platforms (like desktop Operating

Systems and Android).

A trusted auditor could review the code, provide commentary, and then build the code and provide the

fingerprints for that build. A typical user could then use a verification program to ensure that a downloaded

binary actually corresponds to the code that was audited.

It's not likely that this will ever be usable for regular users for platforms like iOS, where only programs from the

App Store are allowed and binaries are modified by Apple before being delivered to a user3

7.4 Operating systems and open source

To continue down the rabbit hole, an application can only be as secure as the operating system it runs on.

Some threat models would include an attacker that could control operating system vendors. Most desktop

and laptop users are running closed-source operating systems. Mainstream mobile operating systems contain

some open-source components, but enough closed-source functionality exists in enough critical areas to

render the distinction meaningless for the purposes of this discussion.

We're still awaiting the year of Linux on the desktop. Even if we had it, most users aren't able to build an OS

from scratch anyway, so a subverted distribution channel would still be an issue.

7.5 How many operating systems are on your device? And what do they run on?

And if we're going to look into the rabbit hole, we may as well look in all the parts of the burrow and see just

how much is down here. (I've always suspected rabbits connect their burrows into a thriving rabbit-tropolis

under my yard.)

Modern computing equipment actually includes many CPUs or microcontrollers, in some cases running mul-

tiple operating systems. Desktops and Laptops have dedicated microcontrollers in UEFI/BIOS, disk drives

and many peripherals. Many phones have a separate secured mode (TrustZone) running concurrently with the

main operating system. A System-on-a-Chip (SOC) used in a phone might have multiple discrete CPUs. A

phone might also have one or more baseband processors used to handle network communications. Often

the interconnections between these various operating systems and components are arcane, if not completely

opaque to the user, and none of them are likely to be open source in the near future.

Because of all of these interconnected pieces, all of which are closed-source, and at least some of which are

connected/updatable from a network interface (often without user knowledge/interaction), even a fully open

and audited "main" operating system doesn't provide a significant security hurdle in the face of some types

of dedicated attackers.

Even if we handwave away all of the above and assume that all of the operating systems and firmware on

a device are open and secure, various types of hardware design backdoors or flaws are available to highly

motivated attackers. Some progress is being made in providing fully open hardware designs, which is a great

step forward. However, revelations in the past couple years show that even if we assume hardware and software

that were designed and built securely, some attackers can add or modify hardware in a system to provide

access.

After taking all of the above into account, it should become clear why open source is not a security panacea.

3Some subset of this would be possible for jailbroken users.

18 | Secure Messaging for Normal People NCC Group



8 Metadata

Metadata is information about communications that isn't the actual content of the messages themselves. This

could include the times and dates, lengths, and parties involved in a communication. Often metadata can

reveal as much information, if not more, than the message content. As one pretty important man once said:

"We kill people based on metadata."4

8.1 Direct collection of metadata

In almost all cases, assume that the vendor of the chat application can collect metadata directly. End-to-end

encryption can protect message content but cannot prevent a provider from collecting metadata. A highly

motivated attacker might attempt to gain access to a messaging provider's networks to collect metadata

(either about specific individuals, or in bulk). A provider serious about protecting privacy will keep as few

communications logs as possible and might consider obfuscating the information. A provider with commercial

interests such as analytics or targeted advertising is likely to retain metadata information, which might make it

more accessible to other attackers.

Even if the server runs open-source software, there is still no real way to verify that the server is not collecting

metadata.

8.2 Inferring metadata as a global passive adversary

Attackers with access to a significant portion of the network infrastructure between two users and/or the

messaging server might be able to infer metadata by watching for patterns in timing or message size.

Figure 9: Even when encrypted, timing and size can

match senders and receivers

This becomes more difficult if the messaging

server and/or client attempt to obfuscate com-

munications by delaying messages or sending

dummymessages, but these techniquesmight be

defeatable by statistical techniques.

8.3 Identifiers as metadata

The chat server will be able to identify your public

IP address under most circumstances. This means

that even if your provider doesn't have your real

name, they might be able to link your messages

to a particular address in the real world. If an

attacker has access to IP logs from the chat server

and your Internet provider, the attacker might be

able to match these to lead to your identity.

Some chat systems require you to register and communicate using a valid phone number. These would require

you to take extra steps to mask your identity as compared to a system that allows arbitrary usernames. A

collection of phone numbers is likely to be more useful to attackers than a list of arbitrary usernames.

8.4 Address book harvesting

Many chat systems will attempt to upload your address book from your phone to the server. This allows the

collection of metadata that doesn't include call information, but instead provides the ability to create a graph

of "who knows who".

Some chat programs will attempt to obfuscate this in various ways before sending to the server (hashes and

4Retired General Michael Hayden - https://youtu.be/UdQiz0Vavmc?t=27s

19 | Secure Messaging for Normal People NCC Group

https://youtu.be/UdQiz0Vavmc?t=27s


bloom filters come to mind), but these techniques are not effective at scale. At the end of the day, you must

assume that if the chat service provides any sort of matchmaking by contact list (phone numbers, email address,

etc.), the chat server can read your social graph.

8.5 Is there any cure for metadata?

All of these explanations may make it seem hopeless, and that one cannot protect oneself from giving away

metadata to anyone. That's not the case – tools like Tor (and to a lesser extent VPNs) do effectively hide a lot

of metadata. Integrating something like this into an application can go a long way to disguise who's talking

to who. But like group messaging any claims should be viewed very suspiciously.

In particular, Tor does not claim to address a "Global Passive Adversary". This is generally understood to mean

an eavesdropper who can effectively watch the whole internet at once. Adversaries who can watch both ends

of a Tor connection might also be able to infer metadata without a "global" reach.

20 | Secure Messaging for Normal People NCC Group



9 Physical device access/seizure

For some threat models, it makes sense to consider a case where your adversary is able to access your device

physically. The security of your device (especially full disk/hardware backed encryption and a strong passcode)

plays a big role here, but is mostly out of scope for this discussion. For the rest of this section, we assume that

your adversary was able to bypass any existing OS or hardware encryption so we can focus on the features of

the applications. 5

9.1 Logs & transcripts

It should go without saying, but a system that saves logs or transcripts of old messages risks exposure of either

metadata or message content if an adversary is able to access that data. The chat transcripts are easy to see

by just scrolling up (or the equivalent) - the logs would be hidden from view.

To be secure, messaging systems should offer the ability to erase message content, metadata, and/or internal

contact lists. 6

Some systems will provide options to not log at all, or to automatically remove records after a certain period of

time (but see "Auto-deleting messages" below for some limitations of this strategy). This is helpful in limiting

the amount of data available if your device is seized before it can be wiped.

9.2 Forward secrecy

Imagine an adversary who doesn't have the ability to decrypt your traffic, but records it all anyway in the hope

that later decryption will be possible. Some time later, your device (or the other encryption endpoint) gets

taken by this attacker.

For some types of encryption, the attacker now has control of the keys used to encrypt all of the recorded

traffic, so the attacker can now read all of it. However, a combination of a few cryptographic techniques can

make it such that the recorded network data will still be unreadable even if the attacker steals your device.

This property is called Forward Secrecy (FS)7

5Much of the discussion below will also apply if an attacker uses some sort of exploit to gain logical access to your device as a

privileged user.
6This can be challenging on flash storage systems, as their controllers often write data in unpredictable or opaque ways - but the

application can at least attempt to delete the data.
7And may also go by the name `Perfect Forward Secrecy'.

21 | Secure Messaging for Normal People NCC Group



10 Not as Advertised

Not everything in the secure messaging space works like it says on the tin. Some of these are negligently

misleading at best, whereas others simply have some subtle details that aren't immediately obvious.

10.1 Auto-deleting messages

Many chat programs have a setting that deletes a message for both parties after some automatic or user-

selected countdown value. This can be useful to help keep message history to a minimum, but it relies on

the cooperation of your communication partners. If the person receiving the message chooses to save the

message beyond the purported lifetime of the message, there are a variety of techniques available, and there

is nothing that the sender can do to prevent this (or even to reliably detect it). For an obvious example,

just imagine that the receiver has a second camera and takes a photo of the screen whenever one of these

messages comes in.

10.2 One time pads

One time pad cryptography (also called the Vernam Cipher) is provably secure from cryptanalysis when used

correctly.

Unfortunately, it's nearly impossible to be used correctly in a meaningful way. These types of ciphers require

large amounts of truly random input and a secure way to synchronize this random data between the commu-

nication partners.

If you see a modern secure messaging application that claims security by virtue of its one time pad implemen-

tation, it's likely that the system is either not really secure (for example, it uses pseudorandom data generated

from a shared key, or it transmits the pad material over some other less-secure medium), or not practical for

normal use.

10.3 Special crypto hardware

A few devices are available that treat the phone (or other device) as an untrusted network device and provide

their own encryption via some attached hardware. Leaving aside any security vulnerabilities that might allow

a hostile device to attack the crypto hardware directly, a hostile phone might simply elect to turn on its own

microphone to listen to the conversation before it is encrypted.

10.4 Geofencing

Some messaging applications claim to only send messages to devices within a certain geographic area. In

almost all cases (see mesh networks below for a counterexample), this all happens on the server based on a

receiver's reported location. It is relatively easy to purposely misreport a location to allow one to read or send

data that one would not normally be allowed to.

10.5 Mesh networks

Mesh networks have a variety of technical advantages and constraints, but in terms of security they are no

different than any other messaging system. There is no special magic that makes them more secure other than

the fact that you must actually have a receiver able to receive/transmit to a member of the mesh.

These deserve special mention because they have been used during protests where traditional methods (SMS,

Voice, and mobile data) were unavailable (or perhaps intentionally deactivated by the authorities). There is

nothing intrinsic to mesh networks that would make them safe. The authorities (or other adversaries) could

connect to them and log message data (if unencrypted) or metadata (usernames or device identifiers).

22 | Secure Messaging for Normal People NCC Group



10.6 Military-grade

This essentially means that a particular set of encryption algorithms were used, but doesn't address any of the

topics in this paper. Claiming "military grade encryption" in marketing materials is something like claiming

your car is safe because it has a bulletproof windshield.

10.7 Bespoke cryptography

The details are beyond the scope of this paper, but it's generally safe to assume that something using custom

cryptographic algorithms or protocols is less secure than something using well-known ones. A special subset

of this is that cryptography algorithms that are kept secret are usually very poorly tested and not likely to be

secure.

10.8 Multiple synchronized devices

There are a variety of technical reasons why having multiple devices all synchronized to the same account can

be difficult if the messages use end-to-end cryptography. Either one key is shared amongst multiple devices

(which means that one stolen device can masquerade as all of the rest) or more complex cross-signing schemes

are needed. Cross-signed schemes end up with more complex problems, like "If there are two devices, and

one is stolen, which one can invalidate the other?". Alternatively, a server couldmanage themultiple identities,

but this endangers the end-to-end and key verification properties of a system.

23 | Secure Messaging for Normal People NCC Group



11 Conclusion

Hopefully we've illustrated what the different secure messaging clients can offer to help preserve privacy and

also shown their limitations. No software application alone will be likely to provide effective protection against

a government that is specifically targeting you, but the correct choice of application, used correctly, can have

a major impact in keeping your data safe from prying eyes in all other cases.

24 | Secure Messaging for Normal People NCC Group


	Introduction
	What is a message?
	Cryptography is magic
	Cryptobabble

	Your own threat model
	Adversary types
	Why are you keeping secrets?

	Messages without encryption
	Encryption endpoints
	Key validation
	Trust on first use
	Out-of-band validation
	Transitive trust
	Validation is forever until it isn't

	Group messaging
	Ice cream attack
	Membership changes
	Group chat protocols

	Open source
	Security audits
	Does it do what it says?
	Did we get the program we analyzed? (reproducible builds)
	Operating systems and open source
	How many operating systems are on your device? And what do they run on?

	Metadata
	Direct collection of metadata
	Inferring metadata as a global passive adversary
	Identifiers as metadata
	Address book harvesting
	Is there any cure for metadata?

	Physical device access/seizure
	Logs & transcripts
	Forward secrecy

	Not as Advertised
	Auto-deleting messages
	One time pads
	Special crypto hardware
	Geofencing
	Mesh networks
	Military-grade
	Bespoke cryptography
	Multiple synchronized devices

	Conclusion

