
XMTP MLS Implementation Review

Ephemera
Version 1.0 – December 9, 2024

©2024– NCC Group Prepared by NCC Group Security Services, Inc. for Ephemera. Portions of this
document and the templates used in its production are the property of NCC Group and cannot be
copied (in full or in part) without NCC Group’s permission. While precautions have been taken in the
preparation of this document, NCC Group the publisher, and the author(s) assume no responsibility for
errors, omissions, or for damages resulting from the use of the information contained herein. Use of NCC
Group’s services does not guarantee the security of a system, or that computer intrusions will not occur.

Prepared By
Kevin Henry
Marie-Sarah Lacharité
Eli Sohl

Prepared For
The XMTP Community

1 Executive Summary
Synopsis
In October 2024, Ephemera engaged NCC Group to perform a security assessment of
libxmtp , their Rust implementation of the Extensible Message Transport Protocol (XMTP),
built upon Messaging Layer Security (MLS) in a Web3 environment, where users leverage
their existing blockchain-based identities for authentication. The application is underpinned
by OpenMLS and provides a custom authentication service as described in XIP-46, which
establishes a framework for associating multiple wallet addresses with a single self-
managed identity. The review was performed by three consultants over the course of three
weeks, with a total effort of 25 person-days. A retest was performed during the week of
November 18, 2024, which found that 9 of 11 findings had been fixed. The remaining 2
findings are considered “Risk Accepted”, with updates to XIP-46 clarifying the design
choices and responsibilities of an integrating application.

Scope
The XMTP MLS review was performed on a snapshot of the xmtp/libxmtp GitHub repository
taken as of commit b2df872 on pull request #1105. The review focused on the subdirectories
xmtp_mls/src and xmtp_id, and the scope comprised these folders plus their local
dependencies, minus any features currently under development and hidden behind feature
flags. During the second week of the engagement, two additional commits (2acfde8 and
814c006) were added to the scope. These commits added support for remote / smart
contract signature verifiers.

Limitations
The review targeted the xmtp_id and xmtp_mls subdirectories, and no claims of complete
coverage outside of these subdirectories are made. Furthermore, XMTP heavily relies on
OpenMLS, which was not included in this review.

Key Findings
Several low severity and informational findings were uncovered, along with the following
medium-risk findings:

Finding "Replay Detection Bypass via ECDSA Signature Malleability"

Finding "Installation Keys Can Authorize Adding Associated Wallet Addresses"

Finding "Insecure Use of Temporary Directory"

Additionally, a walkthrough of the MLS-related requirements that apply to libxmtp is given
in appendix OpenMLS Application Requirements Review, and further notes and observations
are documented in the appendix Engagement Notes.

A retest was performed on the week of November 18. This retest determined that of the 11
findings reported, 9 findings have been fixed and 2 findings are considered “Risk Accepted”,
with additional rationale for the design choices added to XIP-46.

Strategic Recommendations
Consider automating dependency management to maintain awareness of stale or
vulnerable dependencies.

Ensure that in-code documentation and outside documentation are kept up-to-date with
implementation changes.

Consider developing a “safe usage guide” outlining users’ responsibilities and discussing
e.g. what validation steps libxmtp does and does not perform on input data.

Consider getting third-party reviews of adjacent code, such as OpenMLS and the XMTP
nodes.

•

•

•

•

•

•

•

2 / 42 – Executive Summary

https://github.com/openmls/openmls
https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md#addassociation
https://github.com/xmtp/libxmtp/tree/main
https://github.com/xmtp/libxmtp/tree/main
https://github.com/xmtp/libxmtp/pull/1105/commits/b2df872f542948fee65a561a67e70402291201f7
https://github.com/xmtp/libxmtp/pull/1105/commits/b2df872f542948fee65a561a67e70402291201f7
https://github.com/xmtp/libxmtp/pull/1105/commits/b2df872f542948fee65a561a67e70402291201f7
https://github.com/xmtp/libxmtp/commit/2acfde8ab2f614771b3af0313da4d3f993d6fbec
https://github.com/xmtp/libxmtp/commit/2acfde8ab2f614771b3af0313da4d3f993d6fbec
https://github.com/xmtp/libxmtp/commit/2acfde8ab2f614771b3af0313da4d3f993d6fbec
https://github.com/xmtp/libxmtp/commit/814c00676f7a4eead9bf31619b9d95d58a569323
https://github.com/xmtp/libxmtp/commit/814c00676f7a4eead9bf31619b9d95d58a569323
https://github.com/xmtp/libxmtp/commit/814c00676f7a4eead9bf31619b9d95d58a569323

2 Dashboard
Target Data Engagement Data
Name XMTP MLS Type Implementation review

Type Shared library Dates 2024-10-02 to 2024-10-17

Platforms Native Rust library Consultants 3

Environment Local Level of Effort 25 person-days

Finding Breakdown
Critical issues 0

High issues 0

Medium issues 3

Low issues 7

Informational issues 1

Total issues 11

Category Breakdown
Access Controls 1

Cryptography 4

Data Exposure 3

Denial of Service 1

Patching 1

Security Improvement Opportunity 1

Component Breakdown
libxmtp 2

xmtp_id 5

xmtp_mls 4

 Critical High Medium Low Informational

3 / 42 – Dashboard

3 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk

Replay Detection Bypass via ECDSA Signature
Malleability

Fixed F6B Medium

Installation Keys Can Authorize Adding Associated
Wallet Addresses

Fixed UQQ Medium

Insecure Use of Temporary Directory Fixed LPK Medium

Unsafe Concatenation of Data Leading to Inbox ID
Collision

Fixed HKH Low

Recovery Address Change Does Not Require
Signature from New Recovery Key

Risk Accepted R42 Low

Revoke Association Action Does Not Recursively
Revoke Associations

Risk Accepted HVM Low

Secrets Not Zeroized After Use Fixed A2V Low

Potential Unhandled Panic When Decrypting History
File

Fixed TUM Low

Mismatched Key Type Names May Introduce
Confusion

Fixed 3A6 Low

Cryptographic Keys Written to Debug Logs Fixed 63M Low

Dependencies with Known RustSec Advisories Fixed JK9 Info

4 / 42 – Table of Findings

4 Finding Details

Replay Detection Bypass via ECDSA Signature
Malleability
Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E018021-F6B

Component xmtp_id

Category Cryptography

Status Fixed

Impact
Replay detection relies on raw ECDSA signatures and can therefore be bypassed due to
malleability. An attacker can, for example, replay a variant of a valid AddIdentity message to
add back a revoked identity without triggering replay detection, or to invalidate assumptions
about the usage of legacy v2 keys.

Description
The reviewed XMTP implementation leverages XIP-46:

This XIP defines a new identity model for XMTP, where users are represented in the
protocol by an Inbox ID rather than a wallet address. Additionally, it defines
mechanisms for associating multiple addressable identities, including wallets, to
this new identity.

In short, XIP-46 defines a simple approach for creating an Inbox ID and associating one or
more addresses / keys with this inbox, for which proof of possession of the corresponding
private key is required via a signature created using said private key.

The approach defined in XIP-46 (and implemented in libxmtp) supports replay detection to,
e.g., prevent an AddIdentity operation from being replayed in the future, which is achieved
by tracking the provided signature that proves possession of the private key. Furthermore,
the xmtp_mls README states:

Legacy V2 keys may only be used to create one association (globally)

We enforce this in two ways. Legacy V2 keys may only be used on an Inbox ID with
nonce 0. Replay protection prevents the same Legacy V2 key from being used
multiple times on that inbox ID.

The implementation of this replay detection is provided via the IdentityAction trait:

Medium

39

40

41

42

43

44

45

46

47

48

49

50

pub trait IdentityAction: Send + 'static {

fn update_state(

&self,

existing_state: Option<AssociationState>,

client_timestamp_ns: u64,

) -> Result<AssociationState, AssociationError>;

fn signatures(&self) -> Vec<Vec<u8>>;

fn replay_check(&self, state: &AssociationState) -> Result<(), AssociationError> {

let signatures = self.signatures();

for signature in signatures {

if state.has_seen(&signature) {

return Err(AssociationError::Replay);

5 / 42 – Finding Details

https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/README.md#L102-L104

Figure 1: xmtp_id/src/associations/association_log.rs

where has_seen() is defined as:

Figure 2: xmtp_id/src/associations/state.rs

Here, as described in the standard, the received signatures for any update are checked
against the list of previously seen signatures, leading to an error when detected.

The concern with the implemented approach is that ECDSA signatures are malleable,
meaning that any individual can translate a valid ECDSA signature into a second valid
ECDSA signature on the same message with a different value, without knowledge of the
private key. In particular, an ECDSA signature has the form , but is mathematically

equivalent to during validation. For this reason, the usage of ECDSA signatures as a
unique identifier is generally not recommended.

The libxmtp library implements a VerifiedSignature type to store a signature that has been
validated, which leverages the EthersSignature type from the ethers crate as seen below:

Figure 3: xmtp_id/src/associations/verified_signature.rs

However, the ethers-core implementation expects that the signature is in “low-s” format,
but does not enforce this:

51

52

53

54

55

56

85

86

87

(r, s)
(r, −s)

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

}

}

Ok(())

}

}

pub fn has_seen(&self, signature: &Vec<u8>) -> bool {

self.seen_signatures.contains(signature)

}

/**

* Verifies an ECDSA signature against the provided signature text.

* Returns a VerifiedSignature if the signature is valid, otherwise returns an error.

*/

pub fn from_recoverable_ecdsa<Text: AsRef<str>>(

signature_text: Text,

signature_bytes: &[u8],

) -> Result<Self, SignatureError> {

let signature = EthersSignature::try_from(signature_bytes)?;

let address = h160addr_to_string(signature.recover(signature_text.as_ref())?);

Ok(Self::new(

MemberIdentifier::Address(address),

SignatureKind::Erc191,

signature_bytes.to_vec(),

))

}

/// Parses a raw signature which is expected to be 65 bytes long where

/// the first 32 bytes is the `r` value, the second 32 bytes the `s` value

/// and the final byte is the `v` value in 'Electrum' notation.

fn try_from(bytes: &'a [u8]) -> Result<Self, Self::Error> {

if bytes.len() != 65 {

return Err(SignatureError::InvalidLength(bytes.len()))

6 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L39-L56
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L39-L56
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/state.rs#L85-L87
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/state.rs#L85-L87
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/verified_signature.rs#L34-L50
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/verified_signature.rs#L34-L50

As seen in try_from() , the only constraint applied is on the length of the input, not its value.
Similarly, the recover() function makes the same assumption:

If ECDSA signatures are to be used as identifiers in this manner, it is critical that they be
normalized into a canonical form, such as the “low-s” version in order to ensure that a
unique representation is used.

Recommendation
Consider rejecting non-normalized signatures or converting all signatures to a canonical
form when performing replay detection.

Location
xmtp_id/src/associations/association_log.rs

xmtp_id/src/associations/verified_signature.rs

Retest Results
2024-11-19 – Fixed
PR 1282 (merged in commit a3be7dc) introduced the function to_lower_s() to convert an
ECDSA signature to its normalized “low-s” form and updated the VerifiedSignature::from_re
coverable_ecdsa() function to always normalize signatures. This change is consistent with
the recommendation to ensure that all signatures are in a canonical form, which addresses
the replay bypass concerns in this finding. As such, this finding is considered “Fixed”.

•

•

}

let v = bytes[64];

let r = U256::from_big_endian(&bytes[0..32]);

let s = U256::from_big_endian(&bytes[32..64]);

Ok(Signature { r, s, v: v.into() })

}

}

/// Recovers the Ethereum address which was used to sign the given message.

///

/// Recovery signature data uses 'Electrum' notation, this means the `v`

/// value is expected to be either `27` or `28`.

pub fn recover<M>(&self, message: M) -> Result<Address, SignatureError>

7 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/verified_signature.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/verified_signature.rs
https://github.com/xmtp/libxmtp/pull/1282
https://github.com/xmtp/libxmtp/commit/a3be7dc72b42f8b32019a2398935974273c95ec0
https://github.com/xmtp/libxmtp/commit/a3be7dc72b42f8b32019a2398935974273c95ec0
https://github.com/xmtp/libxmtp/commit/a3be7dc72b42f8b32019a2398935974273c95ec0

Installation Keys Can Authorize Adding
Associated Wallet Addresses
Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-E018021-UQQ

Component xmtp_id

Category Access Controls

Status Fixed

Impact
Users may protect their installation keys with less care due to an incorrect understanding of
the effects of their potential compromise. Installation keys may also be a more attractive
target to attackers, since users may underestimate the potential consequences of a
compromised installation key.

Description
The identity model described in XIP-46: Multi-Wallet Identity allows each XMTP inbox to
have multiple associated wallet addresses (secp256k1 keys) and installation keys
(Curve25519 keys). Installation keys and associated wallet addresses are treated differently.
In particular, the table of permissions in the Key hierarchy and permissions section of XIP-46
specifies that installation keys cannot add other installation keys. The same table also
specifies that installation keys cannot add associated addresses to an inbox. Later in the
document, another table, Allowed associations, indicates that an installation key can add
associated wallet addresses to an inbox.

Adding installation keys or associated addresses to a wallet is done via the AddAssociation
identity action in the XMTP implementation. This action requires two valid signatures: one
from the new associated address or installation key (new_member_signature) and one from an
existing member of the inbox (existing_member_signature). The new member’s identifier (new
_member_identifier , either an address or an installation public key) is also explicitly
submitted as part of the action.

Figure 4: xmtp_id/src/associations/association_log.rs

The update_state() function for AddAssociation validates several aspects of the submitted
action. It checks the following properties:

The submitted new_member_identifier matches the signer of new_member_signature .

The submitted new_member_identifier is different than the identifier of the
existing_member_signature creator.

The inbox ID was created with a nonce of 0 if either the new_member_signature or existin
g_member_signature is a legacy signature.

Medium

99

100

101

102

103

104

105

•

•

•

/// AddAssociation Action

#[derive(Debug, Clone)]

pub struct AddAssociation {

pub new_member_signature: VerifiedSignature,

pub new_member_identifier: MemberIdentifier,

pub existing_member_signature: VerifiedSignature,

}

8 / 42 – Finding Details

https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md
https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md#key-hierarchy-and-permissions
https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md#allowed-associations
https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md#allowed-associations
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L99
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L99

The type of new_member_signature (e.g., smart contract wallet/ERC6492, delegated/
ERC191, installation key/Ed25519) matches the type of new_member_identifier , and the
type of existing_member_signature matches the type of the existing member.

The existing_member_signature was indeed by an existing member of the inbox or its
recovery address, and if it was by the recovery address, it was not a delegated legacy
signature.

The type of existing member is allowed to add the type of new_member_identifier .

The last property is relevant to this finding: according to the Key hierarchy and permissions
table in XIP-46, an existing member that is linked to an installation key should not be able to
add associated wallet addresses. However, the implementation of this check, in allowed_ass
ociation() , does not prohibit this type of addition:

Figure 5: xmtp_id/src/associations/association_log.rs

As shown in the code snippet above, an installation key is allowed to add an associated
address, contrary to what is stated in the Key hierarchy and permissions table in XIP-46.

Recommendation
Determine the desired behavior and align the XIP-46 specification and implementation of
allowed_association() .

Ensure that the allowed associations described in XIP-46 are consistent, specifically in
the Key hierarchy and permissions table and the Allowed associations table.

Location
xmtp_id/src/associations/association_log.rs

Retest Results
2024-11-27 – Fixed
As part of PR 73 (not yet merged at time of retest), XIP-46 was updated to specify that an
installation key is authorized to add more associated addresses. In other words, the
specification has been revised to match the implemented approach, and the two will be
consistent once the PR is merged. As such, this finding is considered “Fixed”.

•

•

•

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

•

•

fn allowed_association(

existing_member_kind: MemberKind,

new_member_kind: MemberKind,

) -> Result<(), AssociationError> {

// The only disallowed association is an installation adding an installation

if existing_member_kind == MemberKind::Installation

&& new_member_kind == MemberKind::Installation

{

return Err(AssociationError::MemberNotAllowed(

existing_member_kind,

new_member_kind,

));

}

Ok(())

}

9 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L387
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L387
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L99
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L99
https://github.com/xmtp/XIPs/pull/73/

Insecure Use of Temporary Directory
Overall Risk Medium

Impact High

Exploitability Low

Finding ID NCC-E018021-LPK

Component xmtp_mls

Category Data Exposure

Status Fixed

Impact
A well-positioned attacker may be able to obtain a copy of a user’s message history,
overwrite files, or inject arbitrary groups or messages into the user’s database.

Description
In libxmtp/xmtp_mls/src/groups/message_history.rs, message history bundles are read and
written through subpaths of std::env::temp_dir() . However, the application and the running
user are not guaranteed exclusive use of the temp_dir() folder. From the Rust docs:1

The temporary directory may be shared among users, or between processes with
different privileges; thus, the creation of any files or directories in the temporary
directory must use a secure method to create a uniquely named file. Creating a file
or directory with a fixed or predictable name may result in “insecure temporary
file”2 security vulnerabilities. Consider using a crate that securely creates
temporary files or directories.

In fact, libxmtp does use predictable file names, as in the following excerpt:

Figure 6: xmtp_mls/src/groups/message_history.rs

Medium

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

async fn write_history_bundle(&self) -> Result<(PathBuf, HistoryKeyType),

MessageHistoryError> {

let groups = self.prepare_groups_to_sync().await?;

let messages = self.prepare_messages_to_sync().await?;

let temp_file = std::env::temp_dir().join("history.jsonl.tmp");

write_to_file(temp_file.as_path(), groups)?;

write_to_file(temp_file.as_path(), messages)?;

let history_file = std::env::temp_dir().join("history.jsonl.enc");

let enc_key = HistoryKeyType::new_chacha20_poly1305_key();

encrypt_history_file(

temp_file.as_path(),

history_file.as_path(),

enc_key.as_bytes(),

)?;

std::fs::remove_file(temp_file.as_path())?;

Ok((history_file, enc_key))

}

1. https://doc.rust-lang.org/stable/std/env/fn.temp_dir.html
2. https://owasp.org/www-community/vulnerabilities/Insecure_Temporary_File

10 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs#L482-L501
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs#L482-L501
https://doc.rust-lang.org/stable/std/env/fn.temp_dir.html
https://owasp.org/www-community/vulnerabilities/Insecure_Temporary_File
https://owasp.org/www-community/vulnerabilities/Insecure_Temporary_File

In this case, if a malicious application running were to create “history.jsonl.tmp” with open
permissions, libxmtp would happily write a full list of groups and messages into that file.
Note that the malicious application does not require any special permissions to do this.

Furthermore, if this file were created as a symlink, then libxmtp could be caused to write
this data anywhere on the filesystem that it has permissions to write to. The exact impact in
this case depends on the application’s runtime context and permissions, but it could easily
lead to denial-of-service or worse.

A malicious application could also overwrite or inject data into temporary files that libxmtp
reads back from disk. For instance, in process_history_reply() , group message history is
decrypted and written to the temporary file std::env::temp_dir().join("messages.jsonl") .
Then, it is read from this file and inserted into the database.

Figure 7: xmtp_mls/src/groups/message_history.rs

A malicious application could replace the “messages.jsonl” file with the content of its choice,
thus injecting arbitrary messages or group data into the user’s database.

This issue is not likely to be exploitable in most deployment scenarios for libxmtp ; however,
in scenarios where it is exploitable, the impact would be high.

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

pub async fn process_history_reply(&self) -> Result<(), MessageHistoryError> {

let reply = self.get_latest_history_reply().await?;

if let Some(reply) = reply {

let Some(encryption_key) = reply.encryption_key.clone() else {

return Err(MessageHistoryError::InvalidPayload);

};

let history_bundle = download_history_bundle(&reply.url).await?;

let messages_path = std::env::temp_dir().join("messages.jsonl");

decrypt_history_file(&history_bundle, &messages_path, encryption_key)?;

self.insert_history_bundle(&messages_path)?;

// clean up temporary files associated with the bundle

std::fs::remove_file(history_bundle.as_path())?;

std::fs::remove_file(messages_path.as_path())?;

self.sync_welcomes().await?;

let conn = self.store().conn()?;

let groups = conn.find_groups(None, None, None, None)?;

for crate::storage::group::StoredGroup { id, .. } in groups.into_iter() {

let group = self.group(id)?;

Box::pin(group.sync(self)).await?;

}

return Ok(());

}

Err(MessageHistoryError::NoReplyToProcess)

}

11 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs#L365-L397
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs#L365-L397

Recommendation
Use a secure scheme for generating and cleaning up temporary files. Generate
unpredictable filenames, and ensure that file permissions and ownership are
appropriately restrictive. Consider pulling in a well-reviewed dependency to handle this.

Avoid writing to disk unless necessary. Use authentication to ensure files on disk were
not modified.

Location
libxmtp/xmtp_mls/src/groups/message_history.rs, lines 374, 486, 490, 638.

Retest Results
2024-11-19 – Partially Fixed
This finding was tracked in Issue 1186 and closed in PR 1152, which deletes
message_history.rs, thereby negating this finding. However, PR 1174 subsequently re-added
the file, thereby reintroducing the issue. At the time of retest, the current main branch
commit (a0c14de) still includes message_history.rs and the affected code, although it is not
included as part of the module tree. While the affected code is not currently in use, it
remains present within the repository.

Based on the above, this finding is considered “Partially Fixed”.

2024-11-21 – Fixed
Commit 0bea988 removed message_history.rs, thereby completing the fix.

•

•

12 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/issues/1186
https://github.com/xmtp/libxmtp/pull/1152/
https://github.com/xmtp/libxmtp/pull/1174
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621

Unsafe Concatenation of Data Leading to Inbox
ID Collision
Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E018021-HKH

Component xmtp_id

Category Cryptography

Status Fixed

Impact
The method for creating an XIP-46 Inbox ID is not collision resistant, which may result in two
distinct addresses being associated with the same Inbox ID.

Description
The XIP-46 specification uses an Inbox ID as the primary identifier for a user within XMTP,
and provides a framework for associating multiple addresses with said Inbox ID.

In this model, users of the protocol will be identified by Inbox IDs. An Inbox ID can
be treated as an opaque string by applications but is constrained to the hash of the
first associated address and a nonce.

More specifically, the Inbox ID is computed via a simple hash of the concatenation of the
first address and a nonce:

The inbox_id is derived via SHA256(CONCAT($account_address, $nonce))

The nonce appears to be a mechanism by which a single address may be associated with
more than one XMTP inbox. The above is implemented in a straightforward manner:

Figure 8: xmtp_id/src/associations/hashes.rs

It was observed that no length information is incorporated into this hash, which means it is
trivial to produce multiple (address, nonce) pairs that produce the same Inbox ID. For
example,

("abc123", 0)

("abc12", 30)

("abc1", 230)

("abc", 1230)

all produce the same Inbox ID according to the specified and implemented approach.

Low

3

4

5

6

7

8

9

10

11

12

•

•

•

•

fn sha256_string(input: String) -> String {

let mut hasher = Sha256::new();

hasher.update(input.as_bytes());

let result = hasher.finalize();

format!("{:x}", result)

}

pub fn generate_inbox_id(account_address: &str, nonce: &u64) -> String {

sha256_string(format!("{}{}", account_address.to_lowercase(), nonce))

}

13 / 42 – Finding Details

https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/hashes.rs#L3-L12
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/hashes.rs#L3-L12

When concatenating variable length data for hashing, it is generally recommended to
incorporate the length of each field as part of the hash input to avoid the above scenario.
For example,

("6", "abc123", "1", "0")

("5", "abc12", "2", "30")

("4", "abc1", "3", "230")

("3", "abc", "4", "1230")

would each produce a different Inbox ID when concatenated and hashed. Similarly, encoding
data using a standardized type-length-value (TLV) format would implicitly provide this
approach. Alternatively, a different construction, such as that used in HMAC, would also
avoid the issue, where the Inbox ID is calculated using SHA256(SHA256(address) ||
SHA256(nonce)) .

In practice, it may be expected that all addresses will be of a predictable, fixed length in the
intended use cases, but the code itself does no additional checks on this front. Indeed,
several test fixtures use short, odd-length address, e.g.:

Figure 9: xmtp_id/src/associations/unsigned_actions.rs

As an additional consideration, hashing in contexts like the above usually incorporate a
domain separation string to ensure that the resulting Inbox ID is specific to the implemented
application. Prefixing the input with a string, such as “XIP46_INBOX_ID” would ensure that
the resulting ID is unlikely to be independently derived in other contexts.

Finally, it was observed that the function generate_inbox_id() excerpted above
canonicalizes the input address using to_lowercase() . This does not appear to be mandated
in XIP-46, which suggests that there might be an undocumented requirement or gap in the
specification.

Recommendation
Consider including length information into the Inbox ID to avoid collisions.

Alternatively, adopt an alternative collision-resistant hashing approach.

Consider adding a domain separation string to the Inbox ID generation.

Confirm that lowercase normalization is the intended approach and explicitly specify this
as part of XIP-46.

Location
xmtp_id/src/associations/hashes.rs

•

•

•

•

146

147

148

149

150

151

152

153

154

155

156

•

•

•

•

#[test]

fn create_signatures() {

let account_address = "0x123".to_string();

let client_timestamp_ns: u64 = 12;

let new_member_address = "0x456".to_string();

let new_recovery_address = "0x789".to_string();

let new_installation_id = vec![1, 2, 3];

let create_inbox = UnsignedCreateInbox {

nonce: 0,

account_address: account_address.clone(),

};

14 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/unsigned_actions.rs#L146-L156
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/unsigned_actions.rs#L146-L156
https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/hashes.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/hashes.rs

Retest Results
2024-11-19 – Fixed
As part of PR 1202 (merged in commit 71b47a2), the generation of the Inbox ID was updated
to enforce a length of 42 on the account address via the function is_valid_address() :

This is accompanied by a new error type and handling for the case when an invalid address
is encountered, with updated unit tests throughout as appropriate for both positive and
negative test cases.

The implemented approach prevents ID collisions by enforcing a fixed length on the
account_address , which is consistent with the recommendation to adopt an alternative
collision-resistant hashing approach. Should a wider range of use cases be needed in the
future, the recommendations to consider including length information and domain separation
remain in effect. Nevertheless, at present the issue is mitigated within the current
implementation and use cases, and as such this finding is considered “Fixed”.

/// Validates that the account address is exactly 42 characters, starts with "0x",

/// and contains only valid hex digits.

fn is_valid_address(account_address: &str) -> bool

15 / 42 – Finding Details

https://github.com/xmtp/libxmtp/pull/1202
https://github.com/xmtp/libxmtp/commit/71b47a20020ecece139cdc0d56ab356d3f6637f1
https://github.com/xmtp/libxmtp/commit/71b47a20020ecece139cdc0d56ab356d3f6637f1
https://github.com/xmtp/libxmtp/commit/71b47a20020ecece139cdc0d56ab356d3f6637f1

Recovery Address Change Does Not Require
Signature from New Recovery Key
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E018021-R42

Component xmtp_id

Category Security Improvement
Opportunity

Status Risk Accepted

Impact
Failure to validate proof of possession of the corresponding private key may allow an Inbox
to be mistakenly transitioned into an unrecoverable state.

Description
There are four core IdentityAction state changes defined as part of XIP-46:

CreateInbox

AddAssociation

RevokeAssociation

ChangeRecoveryAddress

The CreateInbox and AddAssociation actions require a valid signature on any address
associated with the inbox. Similarly, the RevokeAssociation action requires a valid signature
from the recovery address. However, it was observed that the ChangeRecoveryAddress action
does not require a signature from the new recovery address:

Figure 10: xmtp_id/src/associations/association_log.rs

There do not appear to be any enforced constraints on the new_recovery_address . In
particular, there is no signature that proves the user will be able to sign with this key in the
future. Such a signature is required for other actions, such as AddAssociation , where the
new member information includes a VerifiedSignature proving the user can sign with the
associated key:

Figure 11: xmtp_id/src/associations/association_log.rs

Low

•

•

•

•

255

256

257

258

259

260

99

100

101

102

103

104

105

/// ChangeRecoveryAddress Action

#[derive(Debug, Clone)]

pub struct ChangeRecoveryAddress {

pub recovery_address_signature: VerifiedSignature,

pub new_recovery_address: String,

}

/// AddAssociation Action

#[derive(Debug, Clone)]

pub struct AddAssociation {

pub new_member_signature: VerifiedSignature,

pub new_member_identifier: MemberIdentifier,

pub existing_member_signature: VerifiedSignature,

}

16 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L255-L260
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L255-L260
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L99-L105
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L99-L105

Note that the lack of signature using the new recovery address does not necessarily
contradict any requirements in XIP-46, with the closest guidance being:

There is a way to recover control over the inbox if any member other than the
recovery address is compromised.

The Ephemera team confirmed that the implemented design is intentional and based on two
considerations:

There is no mechanism to determine which inbox(es) a given recovery address is
associated with, which restricts the impact of a user accidentally setting the recovery
address to an unintended party’s address.

It is desired that a user be able to delegate recovery to a third party without an
interactive process to obtain a signature.

While the current approach may be intentional, it is nevertheless viewed as a potential “foot
gun” for users who may accidentally transition their Inbox to an unrecoverable state. This is
especially true when no additional validation is performed on the address. No such issue has
been identified, but without any constraints on the new_recovery_address , it may be possible
to magnify the impact of potential bugs elsewhere in the code, such as a serialization bug
leading to a recovery address field being set to the empty string, and eventually being
accepted as the intended new recovery address.

Recommendation
Consider requiring a signature using the new recovery address/key.

Otherwise, consider performing additional validation on the new recovery address to
prevent accidental misuse.

If the current behavior remains, ensure that applications give adequate guidance to users
to prevent misuse or mistakes from rendering the account unrecoverable.

Location
xmtp_id/src/associations/association_log.rs

Retest Results
2024-11-27 – Partially Fixed
As part of PR 73 (not yet merged at time of retest), XIP-46 was updated with clarification as
to the role of the recovery address:

The recovery address is the only address that is allowed to revoke installations or
wallets. Changing the recovery address does not require a signature from the new
recovery address, allowing users to delegate recovery to a third party if desired.
Recovery addresses are not used for reverse resolution (address -> inbox), so
changing the recovery address of an inbox to an address that you do not control
does not allow the user to impersonate any other address.

The above makes the intention of the design clear, and a risk-benefit analysis has led the
chosen approach. The benefit of non-interactive third-party delegation is viewed as
outweighing the risk of entering an unrecoverable state, particularly since such an outcome
does not allow impersonation of a user. For the purposes of retesting, the documentation
updates are seen as an appropriate, albeit partial fix, with a complete fix being dependent
on the integrating application. Because the current behavior is an intentional design choice,
this finding as a whole is classified as “Risk Accepted”.

1.

2.

•

•

•

17 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs
https://github.com/xmtp/XIPs/pull/73/

Revoke Association Action Does Not
Recursively Revoke Associations
Overall Risk Low

Impact Medium

Exploitability Medium

Finding ID NCC-E018021-HVM

Component xmtp_id

Category Cryptography

Status Risk Accepted

Impact
Revoking an associated address only removes direct children of the revoked address from
the stored state. Any further associations added by the children of the revoked address are
not necessarily removed as part of the revocation process and may still be able to sign on
behalf of the user/Inbox ID.

Description
The RevokeAssociation action is signed by the recovery address and used to remove an
association from the current association state. As part of this process, it is specified to:

Remove any members in the Association State’s member list that are both of type
installation AND have their added_by_member field set to the revoked_member

This is implemented as part of update_state() for RevokeAssociation :

Figure 12: xmtp_id/src/associations/association_log.rs

As specified, both the revoked association and its direct descendent installation keys in the
association tree are revoked. However, the revoked address may have signed other
AddAssociation actions for new wallet keys, which can in turn sign additional
AddAssociation updates. These new keys will have an added_by_member value that is
different from the aforementioned revoked address and will not be removed as part of the
RevokeAssociation action.

The identity model presented in XIP-46 depicts a tree-based key hierarchy. Based on the
description above, the RevokeAssociation action does not remove all associations in the
subtree rooted at the revoked address. In other words, a compromised wallet can be
revoked, along with the potentially compromised associations it certified, but any additional

Low

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

let installations_to_remove: Vec<Member> = existing_state

.members_by_parent(&self.revoked_member)

.into_iter()

// Only remove children if they are installations

.filter(|child| child.kind() == MemberKind::Installation)

.collect();

// Actually apply the revocation to the parent

let new_state = existing_state.remove(&self.revoked_member);

Ok(installations_to_remove

.iter()

.fold(new_state, |state, installation| {

state.remove(&installation.identifier)

}))

18 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L233-L247
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs#L233-L247
https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md#motivation

associations added by these malicious associations are not automatically revoked. This
differs from similar revocation models, such as traditional Certificate Authorities (CAs),
where revoking a CA certificate invalidates all certificates that include the revoked CA in
their validation path.

XIP-46 does specify the following:

When messaging a user by name, the implementing app will resolve from name to
Inbox ID, beginning from the bottom of the tree and ending at the top.

When a conversation participant is rendered in an app’s UX, resolution from Inbox ID
to name will begin from the top of the tree and end at the bottom.

When multiple names are present, the implementing app must define a policy for
how they will be rendered.

This suggests that apps will be required to build a path from a leaf to the root Inbox ID,
which may throw an error if an intermediate node has been revoked. However, reliance on
such behavior is not robust. In general, a user may expect that revoking an associated wallet
address will revoke all associations that depend on the revoked wallet, not just its
associated installation keys.

The Ephemera team indicated that the implemented revocation behavior is intentional,
which is motivated by the fact that hierarchical model presented in XIP-46 does not
necessarily match any relationship between wallets outside of XMTP, and revocation using
XMTP’s logical tree could potentially be unintuitive to a user. Furthermore, users are trusted
to maintain knowledge of which wallets are under their control, and the revocation process
can be repeated by the user for any unfamiliar or maliciously added associations. In other
words, it was expressed there exist use cases in which recursive revocation is appropriate
(as suggested in this finding), and there exist use cases where it is not (as highlighted by
the Ephemera team).

Because XIP-46 models associations in a tree, and, as quoted above, uses these
associations to construct identifiers, it may be beneficial to provide guidance on how
applications should handle revoked associations on the path from a leaf to the root, as they
will no longer be present in the association tree.

Recommendation
Ensure the documented and implemented behavior is correct and ensure that users are
given proper guidance on fully revoking an address/wallet.

Consider revising the revocation process to revoke all associations in the subtree rooted
at the revoked address.

Otherwise, consider requiring that apps provide an interface for recursively revoking
associations or pruning the association tree to ensure that all associations in the stored
state have a valid path to the Inbox ID.

Similarly consider adding additional guidance on how revoked associations should be
presented to the user when resolving names.

Location
xmtp_id/src/associations/association_log.rs

•

•

•

•

19 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_id/src/associations/association_log.rs

Retest Results
2024-11-27 – Fixed
As part of PR 73 (not yet merged at time of retest), XIP-46 was updated with clarification on
the revocation process:

Applications building a revocation flow are encouraged to show the list of
addresses and installations in a hierarchical form, and allow the user to choose to
recursively revoke members that were added by the installation targeted for
revocation. This protects against cases where a compromised installation or
account may have added additional compromised members. This recursive
revocation is not required by the protocol, with the exception of installations added
directly by a revoked wallet, allowing users choice in how broadly they would like to
revoke access.

The above is consistent with the stated recommendation of ensuring consistency between
the documented and implemented behavior, as well as with the recommendation of
providing additional guidance for integrating apps to guide a user during revocation. From
the perspective of libxmtp and XIP-46, this finding is considered “Fixed”, however, the
underlying security concerns remain. Therefore, from a design perspective, and to
emphasize the risk to potential developers, this finding is being marked as “Risk Accepted”
rather than “Fixed”.

20 / 42 – Finding Details

https://github.com/xmtp/XIPs/pull/73/

Secrets Not Zeroized After Use
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E018021-A2V

Component libxmtp

Category Data Exposure

Status Fixed

Impact
Failure to clear sensitive values from memory may allow these values to leak to other
processes running in the same memory space. In the case of cryptographic keys or similar
secrets, the confidentiality and authenticity of the underlying data may be completely
compromised.

Description
In general, it is advised to make a proactive attempt to prevent memory related leakage of
sensitive data by explicitly deleting it from memory prior to releasing said memory back to
the operating system. While it can be difficult to ensure that an optimizing compiler will
always ensure such deletions take place, many modern languages provide methods that
allow a developer to express their intent to securely clear data.

In Rust, the Zeroize crate provides traits to “zeroize” a type, many of which can be
automatically derived. Even if the attack surface is small, or memory related attacks are not
considered in scope, it is still recommended to leverage ZeroizeOnDrop for private keys and
similar data. Within the reviewed code, examples where zeroization is recommended
include:

Authenticator in xmtp_api_grpc/src/auth_token.rs,

HistoryKeyType in xmtp_mls/src/groups/message_history.rs,

EncryptionKey in xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs,

along with any other private key wrappers and legacy private key uses within the codebase.

Recommendation
Consider deriving the Zeroize and ZeroizeOnDrop traits as appropriate for any custom
types storing sensitive data, such as private keys.

Since users of libxmtp may include mobile apps, consider providing support for mobile
OS’s secure key storage (i.e. iOS Secure Enclave, Android KeyStore), which would remove
the need to store keys or other sensitive data in memory.

Location
xmtp_api_grpc/src/auth_token.rs

xmtp_mls/src/groups/message_history.rs

xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs

Retest Results
2024-11-19 – Fixed
As part of PR 1230 (merged in commit b68a702) added the following, as recommended:

ZeroizeOnDrop is derived for Authenticator .

Low

•

•

•

•

•

•

•

•

•

21 / 42 – Finding Details

https://docs.rs/zeroize/latest/zeroize/
https://docs.rs/zeroize/latest/zeroize/
https://docs.rs/zeroize/latest/zeroize/
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_api_grpc/src/auth_token.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_api_grpc/src/auth_token.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs
https://developer.apple.com/documentation/security/protecting-keys-with-the-secure-enclave
https://developer.android.com/privacy-and-security/keystore
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_api_grpc/src/auth_token.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_api_grpc/src/auth_token.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/xmtp_mls/src/storage/encrypted_store/sqlcipher_connection.rs
https://github.com/xmtp/libxmtp/pull/1230
https://github.com/xmtp/libxmtp/commit/b68a70211df3efefd15bb1efa277ee25503db9f9
https://github.com/xmtp/libxmtp/commit/b68a70211df3efefd15bb1efa277ee25503db9f9
https://github.com/xmtp/libxmtp/commit/b68a70211df3efefd15bb1efa277ee25503db9f9

ZeroizeOnDrop is derived for EncryptedConnection (i.e., the parent struct containing
EncryptionKey).

ZeroizeOnDrop is derived for HistoryKeyType .

Furthermore, zeroize.workspace = true was added to Cargo.toml to ensure that any
dependency supporting zeroization is correctly enabled.

Based on the above, this finding is considered “Fixed”.

•

•

22 / 42 – Finding Details

Potential Unhandled Panic When Decrypting
History File
Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E018021-TUM

Component xmtp_mls

Category Denial of Service

Status Fixed

Impact
Unhandled panics can be leveraged by an attacker to cause the application to crash,
thereby achieving a denial-of-service attack. This is particularly true when parsing data from
an untrusted source where the attacker can influence inputs directly.

Description
This specific instance of an unhandled panic is highlighted because it may be triggered by
untrusted input from the filesystem. A complete list of potential panics within the reviewed
code was not completed.

The function decrypt_history_file() , as its name implies, is used to decrypt a message
history file encrypted using AES-GCM, with the usual ciphertext consisting of the
concatenation of a nonce, ciphertext, and authentication tag. The code parses the nonce as
follows:

Figure 13: xmtp_mls/src/groups/message_history.rs

The above code does not ensure that the read file is at least NONCE_SIZE bytes long and may
therefore panic when calling split_at(NONCE_SIZE) . Given that this file is read from the file
system, an attacker may therefore be able to crash the application via filesystem
manipulation.

In general, panics should be avoided in situations that do not represent a truly
unrecoverable state. When leveraged, panics should include useful information to the caller
or user to enable debugging or troubleshooting of the underlying problem. In the above
scenario, a check to ensure that the input is at least 12 (nonce) +16 (tag) = 28 bytes could
be performed prior to parsing the nonce, with a suitable Err returned instead of a panic.

The above advice is consistent with the Secure Rust Guidelines:3

Explicit error handling (Result) should always be preferred instead of calling panic.
The cause of the error should be available, and generic errors should be avoided.

Low

575

576

577

578

579

580

581

// Read the messages file content

let mut input_file = File::open(input_path)?;

let mut buffer = Vec::new();

input_file.read_to_end(&mut buffer)?;

// Split the nonce and ciphertext

let (nonce, ciphertext) = buffer.split_at(NONCE_SIZE);

3. https://anssi-fr.github.io/rust-guide/04_language.html#panics

23 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L575-L581
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L575-L581
https://anssi-fr.github.io/rust-guide/04_language.html#panics
https://anssi-fr.github.io/rust-guide/04_language.html#panics

Recommendation
Consider either adding a length check and returning a suitable Err or adding an informative
message to the panic to aid in debugging.

Location
xmtp_mls/src/groups/message_history.rs

Retest Results
2024-11-19 – Partially Fixed
This finding was tracked in Issue 1189 and closed in PR 1152, which deletes
message_history.rs, thereby negating this finding. However, PR 1174 subsequently re-added
the file, thereby reintroducing the issue. At the time of retest, the current main branch
commit (a0c14de) still includes message_history.rs and the affected code, although it is not
included as part of the module tree. While the affected code is not currently in use, it
remains present within the repository.

Based on the above, this finding is considered “Partially Fixed”.

2024-11-21 – Fixed
Commit 0bea988 removed message_history.rs, thereby completing the fix.

24 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/issues/1189
https://github.com/xmtp/libxmtp/pull/1152/
https://github.com/xmtp/libxmtp/pull/1174
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621

Mismatched Key Type Names May Introduce
Confusion
Overall Risk Low

Impact Low

Exploitability None

Finding ID NCC-E018021-3A6

Component xmtp_mls

Category Cryptography

Status Fixed

Impact
Variable names that directly contradict their use in the code may confuse developers
leading to implementation errors or could affect the perceived security posture of the
application. Such variables may also be evidence of incorrect assumptions, incomplete code
refactoring, or actual bugs within the code.

Description
A message history file is encrypted using AES-GCM, as implemented in
encrypt_history_file() :

Figure 14: xmtp_mls/src/groups/message_history.rs

However, when this function is called elsewhere in the code, a ChaCha20Poly1305 key is
used:

Figure 15: xmtp_mls/src/groups/message_history.rs

Low

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

491

492

493

494

495

496

fn encrypt_history_file(

input_path: &Path,

output_path: &Path,

encryption_key: &[u8; ENC_KEY_SIZE],

) -> Result<(), MessageHistoryError> {

// Read in the messages file content

let mut input_file = File::open(input_path)?;

let mut buffer = Vec::new();

input_file.read_to_end(&mut buffer)?;

let nonce = generate_nonce();

// Create a cipher instance

let cipher = Aes256Gcm::new(GenericArray::from_slice(encryption_key));

let nonce_array = GenericArray::from_slice(&nonce);

// Encrypt the file content

let ciphertext = cipher.encrypt(nonce_array, buffer.as_ref())?;

let enc_key = HistoryKeyType::new_chacha20_poly1305_key();

encrypt_history_file(

temp_file.as_path(),

history_file.as_path(),

enc_key.as_bytes(),

)?;

25 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L541-L566
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L541-L566
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L491-L496
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L491-L496

Indeed, the only supported key type for HistoryKeyType is ChaCha20-Poly1305:

Figure 16: xmtp_mls/src/groups/message_history.rs

The approach as implemented works correctly, as the underlying key is just a vector of 32
random bytes. However, the naming conventions are unclear and suggest a partial refactor
or change in design has not been fully completed. For clarity, it is recommended to rename
the unused ChaCha20-Poly1305 types to match the usage of AES-GCM. Alternatively, if
support for both is required, the implementation should be updated with support for both
algorithms based on the HistoryKeyType enum.

Similarly, it was observed that encrypt_history_file() expects the key as encryption_key:
&[u8; ENC_KEY_SIZE] , whereas decrypt_history_file() expects encryption_key:
MessageHistoryKeyType . In general, one would expect the types between these two functions
to match. This is particularly important if multiple algorithms are supported, as algorithm
confusion attacks may apply if different constraints are applied at encryption vs decryption.
If support for both encryption algorithms is required, it should not be possible to mistakenly
attempt decryption with the incorrect key type.

Recommendation
Review the highlighted code snippets and either:

Rename the HistoryKeyType to correctly reflect its usage with AES-GCM, or

Swap to ChaCha20-Poly1305 to correctly reflect the specified key type.

Also consider revising the parameters encrypt_history_file() to provide stronger type
safety such that it matches decrypt_history_file() .

Location
xmtp_mls/src/groups/message_history.rs

Retest Results
2024-11-19 – Partially Fixed
This finding was tracked in Issue 1190 and closed in PR 1152, which deletes
message_history.rs, thereby negating this finding. However, PR 1174 subsequently re-added
the file, thereby reintroducing the issue. At the time of retest, the current main branch
commit (a0c14de) still includes message_history.rs and the affected code, although it is not
included as part of the module tree. While the affected code is not currently in use, it
remains present within the repository.

Based on the above, this finding is considered “Partially Fixed”.

2024-11-21 – Fixed
Commit 0bea988 removed message_history.rs, thereby completing the fix.

712

713

714

715

•

•

#[derive(Copy, Clone, Debug, PartialEq)]

pub(crate) enum HistoryKeyType {

Chacha20Poly1305([u8; ENC_KEY_SIZE]),

}

26 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L712-L715
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs#L712-L715
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/groups/message_history.rs
https://github.com/xmtp/libxmtp/issues/1190
https://github.com/xmtp/libxmtp/pull/1152/
https://github.com/xmtp/libxmtp/pull/1174
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/tree/a0c14de2ae58f563c08273bf2f7753964d1afc48
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621
https://github.com/xmtp/libxmtp/commit/0bea988c8e1be8c41f74ed5738f60c210ffdf621

Cryptographic Keys Written to Debug Logs
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E018021-63M

Component xmtp_mls

Category Data Exposure

Status Fixed

Impact
Sensitive information, such as cryptographic keys, should never be written to log files to
avoid potential disclosure.

Description
Log files are generally considered to be less protected than most security-critical assets in
an application. Therefore, unless a sufficient level of protection on log files is actively
maintained, it is best practice to avoid logging any sensitive information to log files. Even if
constrained to specific instances, such as debug configurations, there remains a risk of a
user or maintainer accidentally using a build with a debug flag active.

Within the SQL KeyStore, the write_encryption_epoch_key_pairs() function is used to write
the HPKE keys for the epoch to the store:

Figure 17: xmtp_mls/src/storage/sql_key_store.rs

As highlighted, the value epoch contains the EpochKey and the array key_pairs contains
HPKE key pairs. Both of these cryptographic secrets are serialized and used in the
computation key and value , both of which are logged using tracing::debug!() . This
behavior is inconsistent with other functions in the file (and the rest of the codebase), which
suggests that the highlighted log messages may be unintentional, or a remnant from the
development process instead of necessary debug information.

To avoid potential leakage of the epoch key or HPKE keys via debug logs, it is recommended
to remove or sanitize the above log statements such that they are safe to be made public.

Low

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

fn write_encryption_epoch_key_pairs<

GroupId: traits::GroupId<CURRENT_VERSION>,

EpochKey: traits::EpochKey<CURRENT_VERSION>,

HpkeKeyPair: traits::HpkeKeyPair<CURRENT_VERSION>,

>(

&self,

group_id: &GroupId,

epoch: &EpochKey,

leaf_index: u32,

key_pairs: &[HpkeKeyPair],

) -> Result<(), Self::Error> {

let key = epoch_key_pairs_id(group_id, epoch, leaf_index)?;

let value = bincode::serialize(key_pairs)?;

tracing::debug!("Writing encryption epoch key pairs");

tracing::debug!(" key: {}", hex::encode(&key));

tracing::debug!(" value: {}", hex::encode(&value));

self.write::<CURRENT_VERSION>(EPOCH_KEY_PAIRS_LABEL, &key, &value)

}

27 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/storage/sql_key_store.rs#L765-L783
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/storage/sql_key_store.rs#L765-L783

Recommendation
Remove the key and value log outputs in write_encryption_epoch_key_pairs() .

Location
xmtp_mls/src/storage/sql_key_store.rs

Retest Results
2024-11-19 – Fixed
PR 1231 (merged in commit 56fef15) removed the highlighted debug entries, thereby
addressing this finding. As such, this finding is considered “Fixed”.

28 / 42 – Finding Details

https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/storage/sql_key_store.rs
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_mls/src/storage/sql_key_store.rs
https://github.com/xmtp/libxmtp/pull/1231
https://github.com/xmtp/libxmtp/commit/56fef156dfc76b98c6ece8adc0b3b7fac635f5b2
https://github.com/xmtp/libxmtp/commit/56fef156dfc76b98c6ece8adc0b3b7fac635f5b2
https://github.com/xmtp/libxmtp/commit/56fef156dfc76b98c6ece8adc0b3b7fac635f5b2

Dependencies with Known RustSec Advisories
Overall Risk Informational

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E018021-JK9

Component libxmtp

Category Patching

Status Fixed

Impact
Vulnerabilities in third-party dependencies may be inherited by the application. Even if
known vulnerabilities do not apply, the presence of vulnerable dependencies may still affect
the perceived security posture of the application and its maintainers.

Description
The Rust ecosystem provides several tools for managing dependencies, such as
cargo audit for identifying known security issues, cargo outdated for identifying stale
dependencies, and cargo deny for blocking or allowing various vulnerable or outdated
dependencies.

The cargo audit tool identifies two vulnerable dependencies:

diesel 2.2.2 - “Binary Protocol Misinterpretation caused by Truncating or Overflowing
Casts”

tonic 0.12.2 - “Remotely exploitable Denial of Service in Tonic”

along with 3 dependencies with warnings:

ansi_term 0.12.1 - Unmaintained

dirs 5.0.1 - Unmaintained

futures-util 0.3.30 - Yanked.

In general, it is recommended to actively address or update any applicable RustSec
advisories that affect the application. The cargo deny tool can be used to automatically fail
builds if a vulnerable crate is detected, and also supports a list of exceptions so that the
inclusion of such a package can be explicitly reviewed and annotated. Additionally, GitHub’s
Dependabot Service can be configured to scan for and open issues or PRs when updated
dependencies are found.

It is emphasized that this review is a point-in-time evaluation of an evolving project, and the
presence of outdated dependencies is expected. The affecting advisories for vulnerable
crates are recent, and do not appear indicative of any deeper issue within the project.

Recommendation
Consider one or more of the following:

Adoption of cargo deny to automatically detect new RustSec advisories.

Adoption of Dependabot to automatically update dependencies.

Ensure that dependencies are reviewed, updated and tested as part of any documented
release ceremonies.

Location
Cargo.toml

Info

•

•

•

•

•

•

•

•

29 / 42 – Finding Details

https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-guide
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/Cargo.toml
https://github.com/xmtp/libxmtp/blob/b2df872f542948fee65a561a67e70402291201f7/Cargo.toml

Retest Results
2024-11-19 – Fixed
As of commit 402c91f , Dependabot has been configured for the libxmtp repository.

As of commit f64a31c , a cargo deny configuration has been added to the project.

At the time of retest, cargo audit reports no vulnerabilities and two warnings that dirs and
instant are unmaintained. As all recommendations were followed, this finding is considered
“Fixed”.

30 / 42 – Finding Details

https://github.com/xmtp/libxmtp/commit/402c91fa95364847faf8fb51c9c461a4305f155d
https://github.com/xmtp/libxmtp/commit/402c91fa95364847faf8fb51c9c461a4305f155d
https://github.com/xmtp/libxmtp/commit/402c91fa95364847faf8fb51c9c461a4305f155d
https://github.com/xmtp/libxmtp/commit/f64a31c206c06fb603ef04f2cce0b9f028ce174a
https://github.com/xmtp/libxmtp/commit/f64a31c206c06fb603ef04f2cce0b9f028ce174a
https://github.com/xmtp/libxmtp/commit/f64a31c206c06fb603ef04f2cce0b9f028ce174a

5 Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for
application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

31 / 42 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or
software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

32 / 42 – Finding Field Definitions

6 OpenMLS Application Requirements
Review

OpenMLS provides guidance on which requirements from RFC 9420 are the responsibility of
an application leveraging OpenMLS. These requirements are detailed in https://github.com/
openmls/openmls/blob/main/book/src/app_validation.md and briefly surveyed here against
their implementation in libxmtp .

Of the requirements highlighted by OpenMLS, it was generally found that libxmtp satisfies
these requirements, with the following exceptions:

The following findings affect validation requirements on acceptable identifiers:
Finding "Unsafe Concatenation of Data Leading to Inbox ID Collision"

Finding "Replay Detection Bypass via ECDSA Signature Malleability"

Finding "Installation Keys Can Authorize Adding Associated Wallet Addresses"

XMTP does not enforce a maximum acceptable total lifetime for leaf nodes.

Furthermore, it was also found that libxmtp does not support the “mandatory to implement”
ciphersuite specified in RFC 9420. While this appears to be an intentional choice, it
nevertheless prevents formal compliance with the RFC.

Retest Update
During retesting, the 3 findings listed above were considered “Fixed”. The missing
mandatory to implement ciphersuite and unenforced maximum lifetimes also remain as
intentional design choices at the time of retest and are therefore considered “Risk
Accepted”.

Acceptable Presented Identifiers
Per Section 5.3.1:

The application using MLS is responsible for specifying which identifiers it finds
acceptable for each member in a group. In other words, following the model that
[RFC6125] describes for TLS, the application maintains a list of “reference
identifiers” for the members of a group, and the credentials provide “presented
identifiers”. A member of a group is authenticated by first validating that the
member’s credential legitimately represents some presented identifiers, and then
ensuring that the reference identifiers for the member are authenticated by those
presented identifiers

This is the fundamental purpose of XIP-46 and its implementation in xmtp_id , which
provides a single Inbox ID (e.g., the “reference identifier”) and a mechanism for binding
various address or installation keys (e.g., the “presented identifiers”) to a given Inbox ID.
Concerns around the uniqueness of Inbox IDs are documented in finding "Unsafe
Concatenation of Data Leading to Inbox ID Collision". Provided this finding is addressed, or
that Inbox IDs are always computed from fixed length identifiers, this requirement appears
to be satisfied.

Validity of Updated Presented Identifiers
Per Section 5.3.1:

In cases where a member’s credential is being replaced, such as the Update and
Commit cases above, the AS MUST also verify that the set of presented identifiers
in the new credential is valid as a successor to the set of presented identifiers in
the old credential, according to the application’s policy.

•
◦

◦

◦

•

33 / 42 – OpenMLS Application Requirements
Review

https://datatracker.ietf.org/doc/html/rfc9420
https://github.com/openmls/openmls/blob/main/book/src/app_validation.md
https://github.com/openmls/openmls/blob/main/book/src/app_validation.md
https://datatracker.ietf.org/doc/html/rfc9420#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc9420#section-5.3.1

The AddAssocation action is used to update the set of presented identifiers in xmtp_id . The
validations performed as part of executing this action are defined in XIP-46; they ensure that
the signatures are appropriate, that the update has not been processed previously, that
legacy keys are handled appropriately, and that the leveraged signing key has the authority
to perform the action. The review revealed two findings which may affect the correctness of
this process:

Finding "Replay Detection Bypass via ECDSA Signature Malleability" may allow an
AddAssociation message to be replayed in certain circumstances.

Finding "Installation Keys Can Authorize Adding Associated Wallet Addresses" identified
discrepancies between the reviewed xmtp_id and XIP-46 regarding which keys may
authorize which actions.

Conditional upon these two findings being addressed, this requirement appears to be
satisfied.

Application ID is Not Authenticated by AS
Per Section 5.3.3:

However, applications MUST NOT rely on the data in an application_id extension as
if it were authenticated by the Authentication Service, and SHOULD gracefully
handle cases where the identifier presented is not unique.

The application_id extension referenced here is set as part of the function
new_key_package() , where it takes the value inbox_id , which is computed as a SHA-256
hash of the concatenation of the account address and a nonce. This is enforced when
creating a new Identity instance:

Figure 18: xmtp_mls/src/identity.rs

Finding "Unsafe Concatenation of Data Leading to Inbox ID Collision" highlighted some
concerns with the creation of an Inbox ID, namely that collisions in the output are possible if
inputs are not fixed length, and that no domain separation is applied. Therefore, it appears
as though the implementation is intended to provide some measure of guarantee that the
Inbox ID / Application ID is both unique and authenticated, but it may not always do so
unless this finding is addressed. Provided this finding is fixed, or that all inputs used in the
Inbox ID calculation are of fixed length, then this requirement appears to be satisfied.

Specifying the Maximum Total Acceptable Lifetime
Per Section 7.2:

•

•

226

227

228

229

230

231

232

233

234

235

236

impl Identity {

/// Create a new [Identity] instance.

///

/// If the address is already associated with an inbox_id, the existing inbox_id will

be used.

/// Users will be required to sign with their wallet, and the legacy is ignored even

if it's provided.

///

/// If the address is NOT associated with an inbox_id, a new inbox_id will be

generated.

/// If a legacy key is provided, it will be used to sign the identity update and no

wallet signature is needed.

///

/// If no legacy key is provided, a wallet signature is always required.

pub(crate) async fn new<ApiClient: XmtpApi>(

34 / 42 – OpenMLS Application Requirements
Review

https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md#addassociation
https://datatracker.ietf.org/doc/html/rfc9420#section-5.3.3
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/identity.rs#L226-L236
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/identity.rs#L226-L236
https://datatracker.ietf.org/doc/html/rfc9420#section-7.2

Applications MUST define a maximum total lifetime that is acceptable for a
LeafNode, and reject any LeafNode where the total lifetime is longer than this
duration. In order to avoid disagreements about whether a LeafNode has a valid
lifetime, the clients in a group SHOULD maintain time synchronization (e.g., using
the Network Time Protocol [RFC5905]).

It appears as though XMTP explicitly does not enforce lifetimes on a LeafNode , as a
deliberate design choice:

Figure 19: mls_validation_service/src/handlers.rs

The above comment was added and related checks were removed as part of PR #962. As
such, the implied lifetime is infinite, which is likely to be seen as contradicting the above
requirement. However, if all clients agree on this lifetime, then the stated goal of avoiding
disagreements is also mitigated. Regardless, by a strict interpretation of the specification
this requirement does not appear to be satisfied.

Structure of AAD is Application-Defined
Per Section 6.3.1:

It is up to the application to decide what authenticated_data to provide and how
much padding to add to a given message (if any). The overall size of the AAD and
ciphertext MUST fit within the limits established for the group’s AEAD algorithm in
[CFRG-AEAD-LIMITS].

No instances of Additional Authenticated Data (AAD) were observed in the reviewed code
for XMTP v3. The only observed usage of AAD is in the function encrypt() , for XMTP v2:

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

61

62

63

64

65

66

67

68

async fn validate_inbox_id_key_package(

key_package: Vec<u8>,

) -> Result<ValidateInboxIdKeyPackageResponse, ValidateInboxIdKeyPackageError> {

let rust_crypto = RustCrypto::default();

let kp = VerifiedKeyPackageV2::from_bytes(&rust_crypto, key_package.as_slice())?;

Ok(ValidateInboxIdKeyPackageResponse {

is_ok: true,

error_message: "".into(),

credential: Some(kp.credential),

installation_public_key: kp.installation_public_key,

// We are deprecating the expiration field and key package lifetimes, so stop

checking for its existence

expiration: 0,

})

}

pub fn encrypt(

plaintext_bytes: &[u8],

secret_bytes: &[u8],

additional_data: Option<&[u8]>,

) -> Result<Ciphertext, String> {

// Form a Payload struct from plaintext_bytes and additional_data if it's present

let mut payload = Payload::from(plaintext_bytes);

if let Some(aad_data) = additional_data {

35 / 42 – OpenMLS Application Requirements
Review

https://github.com/xmtp/libxmtp/blob/09366ec26ec41cfe2d049fa2c1ca1fd7e63cc4e8/mls_validation_service/src/handlers.rs#L146-L160
https://github.com/xmtp/libxmtp/blob/09366ec26ec41cfe2d049fa2c1ca1fd7e63cc4e8/mls_validation_service/src/handlers.rs#L146-L160
https://github.com/xmtp/libxmtp/blob/09366ec26ec41cfe2d049fa2c1ca1fd7e63cc4e8/mls_validation_service/src/handlers.rs#L146-L160
https://github.com/xmtp/libxmtp/pull/962
https://datatracker.ietf.org/doc/html/rfc9420#section-6.3.1

Figure 20: xmtp_v2/src/encryption.rs

The above leverages the RustCrypto Aes256Gcm implementation, which enforces a maximum
length on the associated data of 1 << 36 , which is within the defined limits for AES-GCM.
Therefore, this requirement appears to be satisfied. Note that this usage of AAD occurs
within the XMTP v2 code, which was not in scope for this review.

Proposal Validation
Per the OpenMLS App Validation Guide:

When processing a commit, the application has to ensure that the application
specific semantic checks for the validity of the committed proposals are performed.

This should be done on the StagedCommit.

The libxmtp README outlines the validation steps required within XMTP. These steps are
excerpted and paraphrased below:

Ensure the commit is allowed according to the permissions policies on the group.

Validate the credentials and key packages of any new members to the group.
New clients are expected to upload a Key Package to the network signed by their
installation public key.

Additionally validate that the installation key is associated with the inbox_id
referenced in the Key Package’s credential. This validation is performed by
downloading the latest identity updates for the inbox_id and ensuring that the
installation key is present in the list of associated keys.

Clients are expected to regularly rotate their key package to limit the impact if the
HPKE keypair referenced in the key package is compromised. This rotation is
expected to happen any time the client receives a new welcome message.

Ensure that the actual change in MLS group members matches the expected change in
membership found by diffing the previous GroupMembership struct and the new
GroupMembership.

The ValidatedCommit struct encapsulates a commit that has passed validation, which also
specifies a more concrete set of validation criteria than the above:

69

70

71

72

1.

2.
•

•

•

3.

192

193

194

195

196

197

198

199

200

201

payload.aad = aad_data;

}

encrypt_raw(payload, secret_bytes)

}

/**

* A [`ValidatedCommit`] is a summary of changes coming from a MLS commit, after all of

our validation rules have been applied

*

* Commit Validation Rules:

* 1. If the `sequence_id` for an inbox has changed, it can only increase

* 2. The client must create an expected diff of installations added and removed based on

the difference between the current

* [`GroupMembership`] and the [`GroupMembership`] found in the [`StagedCommit`]

* 3. Installations may only be added or removed in the commit if they were added/removed

in the expected diff

* 4. For updates (either updating a path or via an Update Proposal) clients must verify

that the `installation_id` is
* present in the [`AssociationState`] for the `inbox_id` presented in the credential

at the `to_sequence_id` found in the

36 / 42 – OpenMLS Application Requirements
Review

https://github.com/xmtp/libxmtp/blob/58646ea9c3d1c715f19d36ac91a6d79ab8002139/xmtp_v2/src/encryption.rs
https://github.com/xmtp/libxmtp/blob/58646ea9c3d1c715f19d36ac91a6d79ab8002139/xmtp_v2/src/encryption.rs
https://github.com/openmls/openmls/blob/main/book/src/app_validation.md
https://github.com/xmtp/libxmtp/blob/main/xmtp_mls/README.md#validation
https://github.com/xmtp/libxmtp/blob/main/xmtp_mls/README.md#validation

Figure 21: xmtp_mls/src/groups/validated_commit.rs

In addition to enforcing the 7 stated validation rules, the
ValidatedCommit::from_staged_commit() function also enforces that the permissions are
consistent with the permission policies using the framework in xmtp_mls/src/groups/
group_permissions.rs. This framework allows for an action to be limited by any user, a group
admin, or a group super admin, and also allows policies to be composed using “any” or “and”
clauses.

Similarly, credentials associated with the installation proposing the commit and all other
associations updated with the commit are verified.

Regarding key rotation, it was confirmed that keys are rotated when new Welcome
messages are received as part of sync_welcomes() , satisfying the documented requirement.

Based on the above, the validation criteria expected and enforced by libxmtp appears to be
clearly documented and correctly enforced, thereby satisfying this requirement. It may be
beneficial to ensure the README and code annotations are both complete and consistent
such that they specify an identical set of constraints.

External Commits
Per Section 12.2:

At most one Remove proposal, with which the joiner removes an old version of
themselves. If a Remove proposal is present, then the LeafNode in the path field of
the external Commit MUST meet the same criteria as would the LeafNode in an
Update for the removed leaf (see Section 12.1.2). In particular, the credential in the
LeafNode MUST present a set of identifiers that is acceptable to the application for
the removed participant.

Currently, libxmtp does not support external commits and will return an error if an actor
referenced in a commit is not a member of the group. Therefore, this requirement is
currently not in scope.

The existing function get_proposal_changes() tracks which nodes are updated, added, or
removed in a given proposal, as well as returning a list of credentials which require validation
for the proposal to succeed. In the current implementation, the only credentials that are
directly verified are those of type Proposal::Update . There does not appear to be any
credential validation performed when the type is Proposal::Remove . This is consistent with
comments in the function ValidatedCommit::from_staged_commit() which explicitly validates
the credentials of the actor who created the commit and anyone referenced in an update
query. Additional cases would need to be added here when support for external commits is
added.

Additional Comments
It was also observed that XMTP does not support the Mandatory to Implement (MTI)
ciphersuite specified in Section 17.1:

202

203

204

205

206

207

208

* new [`GroupMembership`].

* 5. All proposals in a commit must come from the same installation

* 6. No PSK proposals will be allowed

* 7. New installations may be missing from the commit but still be present in the

expected diff.

*/

#[derive(Debug, Clone)]

pub struct ValidatedCommit {

37 / 42 – OpenMLS Application Requirements
Review

https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/groups/validated_commit.rs#L192-L208
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/groups/validated_commit.rs#L192-L208
https://github.com/xmtp/libxmtp/blob/701df7f974400980e326176cee8fb739e03e014a/xmtp_mls/src/groups/group_permissions.rs
https://github.com/xmtp/libxmtp/blob/701df7f974400980e326176cee8fb739e03e014a/xmtp_mls/src/groups/group_permissions.rs
https://github.com/xmtp/libxmtp/blob/701df7f974400980e326176cee8fb739e03e014a/xmtp_mls/src/groups/group_permissions.rs
https://github.com/xmtp/libxmtp/blob/701df7f974400980e326176cee8fb739e03e014a/xmtp_mls/src/groups/group_permissions.rs
https://github.com/xmtp/libxmtp/blob/9a3ea4b8dbfbfd60aef337a2f0f84c785720526b/xmtp_mls/src/client.rs#L745-L748
https://github.com/xmtp/libxmtp/blob/9a3ea4b8dbfbfd60aef337a2f0f84c785720526b/xmtp_mls/src/client.rs#L745-L748
https://github.com/xmtp/libxmtp/blob/9a3ea4b8dbfbfd60aef337a2f0f84c785720526b/xmtp_mls/src/client.rs#L745-L748
https://datatracker.ietf.org/doc/html/rfc9420#section-12.2
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/groups/validated_commit.rs
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/groups/validated_commit.rs
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/groups/validated_commit.rs
https://datatracker.ietf.org/doc/html/rfc9420#name-mls-cipher-suites

The mandatory-to-implement cipher suite for MLS 1.0 is MLS_128_DHKEMX25519_A
ES128GCM_SHA256_Ed25519, which uses Curve25519 for key exchange, AES-128-
GCM for HPKE, HKDF over SHA2-256, and Ed25519 for signatures. MLS clients
MUST implement this cipher suite.

While this option is supported in OpenMLS, it does not appear to be exposed by xmtp_mls .
As such, the library, as written, cannot claim strict compliance with RFC 9420.

38 / 42 – OpenMLS Application Requirements
Review

7 Engagement Notes
This section captures various notes collected by NCC Group Cryptography Services’
consultants over the course of the review. These notes are not considered to rise to the
level of findings per se, but are nevertheless judged to be of potential interest. They are
roughly in decreasing order of importance.

Panics in Functions Returning Result s
Rust has multiple idioms for handling failure states. In cases of immediate and catastrophic
failure, code may throw a panic, instantly aborting execution. More commonly, code which
has the potential to fail may return a Result, indicating either success or failure. Results
allow the calling code to make its own decisions about how failures will be handled, and to
ensure that cleanup tasks are performed before exiting. As such, it is considered an anti-
pattern to throw a panic within a function if that function returns a Result. This means that
functions returning Results should not call .unwrap() or .expect() ; nevertheless, this
pattern was noted to occur several times throughout libxmtp :

xmtp_mls/src/api/identity.rs:146

xmtp_mls/src/api/mls.rs:99,143

xmtp_mls/src/bin/update-schema.rs:43,76,77-83,91

xmtp_mls/src/groups/group_permissions.rs:83

xmtp_mls/src/groups/sync.rs:338

xmtp_mls/src/identity.rs:413

xmtp_mls/src/retry.rs:305

Some of these cases are innocuous and unexploitable; nevertheless, it is noted that any
case where any of these panics can be triggered from remote input would constitute a
powerful remote denial-of-service attack. This alone should strongly motivate replacing
these panics with failing Results.

In fact, some recommend going further and eliminating panics entirely; for instance, ANSSI’s
secure Rust coding guidelines include the following recommendation:4

Explicit error handling (Result) should always be preferred instead of calling panic.
The cause of the error should be available, and generic errors should be avoided.

Crates providing libraries should never use functions or instructions that can fail
and cause the code to panic.

Permission Management in Dockerfiles
Three Dockerfiles are present within the libxmtp repository:

libxmtp/Dockerfile

libxmtp/dev/validation_service/local.Dockerfile

libxmtp/dev/validation_service/Dockerfile

It is considered a best practice, following the principle of least privilege, to run Docker
processes as non-root users. Similarly, the user should not have sudo permissions. An
attacker able to escape the application would then operate in a low-privilege context rather
than as root. This would present obstacles to attacks that require user-to-kernel
interactions, which require a privileged account.

•

•

•

•

•

•

•

•

•

•

4. https://anssi-fr.github.io/rust-guide/04_language.html#panics

39 / 42 – Engagement Notes

https://anssi-fr.github.io/rust-guide/04_language.html#panics

However, none of the listed Dockerfiles include a non-root USER directive. In the first listed
Dockerfile it is further observed that sudo is invoked by the user. Depending on what these
Dockerfiles are used for, rewriting them to follow best practices may be advisable.

Notes on XIP-46 Specification and Other Documentation
This subsection captures some comments about minor inconsistencies in documentation,
such as in XIP-46: Multi-Wallet Identity.

Recovery address as a member role. XIP-46 describes the three roles that members of
an XMTP inbox may have: associated address, installation key, or recovery address.
Certain statements are made about all member roles that do not actually apply to
recovery addresses. These statements should be amended to include the exception of
recovery addresses, or possibly the terminology in the XIP should be changed to specify
that “member” excludes the recovery address. (In the XMTP implementation, MemberKind
is defined as one of Installation or Address in xmtp_id/src/associations/member.rs.)

The text says

The member list of an inbox is expected to have the following properties:

Every added member was bidirectionally approved by an existing member
and the newly added member.

…

Property 1 is not true for recovery addresses, as described in finding "Recovery
Address Change Does Not Require Signature from New Recovery Key".

The excerpted proto file says

Technically, the recovery address could also be a (non-recovery) member of the inbox
(either installation key or associated address).

Effect of truncated inbox log. XIP-46 says

The member list of an inbox is expected to have the following properties:

Every added member was bidirectionally approved by an existing member
and the newly added member.

…

Any client can verify that (1) is true, and all clients should see the same
member list.

Additionally, the XMTP documentation at https://docs.xmtp.org/protocol/v3/identity says

XMTP maintains an inbox log. The inbox log has a list of all identity actions
affecting the inbox. The inbox log can track 256 identity actions. Since identity
actions can be combined, this can be more than 256 associations, removals,
change of recovery wallets, etc.

By surpassing this limit, there may legitimately be group members who were not added
by any members present in the identity log.

•

◦

1.

2.

◦

•

1.

2.

3.

// A key-pair that has been associated with one role MUST not be permitted to be

// associated with a different role.

40 / 42 – Engagement Notes

https://github.com/xmtp/XIPs/blob/main/XIPs/xip-46-multi-wallet-identity.md
https://docs.xmtp.org/protocol/v3/identity

Missing Optional Ethereum Address Checksum Validation
The function is_valid_ethereum_address() performs simple validation on an input to ensure
it looks like a valid Ethereum address:

Figure 22: xmtp_cryptography/src/signature.rs

In other words, the function ensures that the address consists of exactly 40 case insensitive
hex digits.

As described in ERC-55, Ethereum supports checksum addresses, where the case of the
letters in the hex notation of the address is used to encode a checksum. Such addresses are
easily recognized via their use of mixed case and support an additional layer of validation.
The function above could be updated to support checksum validation, which could
potentially detect more invalid addresses than are currently detected. Such an improvement
does not appear to prevent any particular attack, but could lead to earlier error detection,
which is generally preferable when possible.

The above function is used as part of sanitize_evm_addresses() , which validates a list of
addresses, usually during deserialization. This function converts the resulting validated
addresses to lowercase as its final step, which suggests that the application is expecting to
receive addresses that are not strictly lowercase.

Redundant Code
Computation of Inbox ID. The following code in Identity::new() unnecessarily
recomputes the Inbox ID after confirming it matches the expected value:

Figure 23: xmtp_mls/src/identity.rs

The overhead involved in this is trivial, but removing the redundant generation on line 351
would not alter the behavior of the function. Note that the same code pattern – without
the redundant generation of the Inbox ID – appears on line 294 of the same function.

Selection of OpenMLS cryptography provider. In decrypt_welcome() , there is a call to the
OpenMLS function decrypt_with_label() , which takes an OpenMlsCrypto argument
indicating which cryptographic provider to use. Despite decrypt_welcome() having
function argument provider (of type XmtpOpenMlsProvider), which could supply an
OpenMlsCrypto with provider.crypto() , this is re-derived as crypto =

126

127

128

129

130

131

132

133

134

135

136

•

346

347

348

349

350

351

•

/// Check if an string is a valid ethereum address (valid hex and length 20).

pub fn is_valid_ethereum_address<S: AsRef<str>>(address: S) -> bool {

let address = address.as_ref();

let address = address.strip_prefix("0x").unwrap_or(address);

if address.len() != 40 {

return false;

}

address.chars().all(|c| c.is_ascii_hexdigit())

}

if inbox_id != generate_inbox_id(&address, &nonce) {

return Err(IdentityError::NewIdentity(

"Inbox ID doesn't match nonce & address".to_string(),

));

}

let inbox_id = generate_inbox_id(&address, &nonce);

41 / 42 – Engagement Notes

https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_cryptography/src/signature.rs#L126-L136
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_cryptography/src/signature.rs#L126-L136
https://eips.ethereum.org/EIPS/eip-55
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_cryptography/src/signature.rs#L144
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_cryptography/src/signature.rs#L144
https://github.com/xmtp/libxmtp/blob/92e7b713f0652ecbf50948367d4fc43c0e9382c6/xmtp_cryptography/src/signature.rs#L144
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/identity.rs#L346-L351
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/identity.rs#L346-L351
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/identity.rs#L294

RustCrypto::default(); . It is recommended to use the function argument in case it
changes in the future.

Figure 24: xmtp_mls/src/hpke.rs

Incorrect Algorithm Identifiers (OpenMLS)
The following documentation issue was identified within the OpenMLS README:

The highlighted algorithms are not listed in RFC 9420. The highlighted algorithms should
likely be updated to DHKEMX25519 . The reviewed libxmtp uses the correct ciphersuite
identifier of MLS_128_DHKEMX25519_CHACHA20POLY1305_SHA256_Ed25519 .

/// Decrypt a welcome message using the private key associated with the provided public key

pub fn decrypt_welcome(

provider: &XmtpOpenMlsProvider,

hpke_public_key: &[u8],

ciphertext: &[u8],

) -> Result<Vec<u8>, HpkeError> {

// SNIP

return Ok(decrypt_with_label(

kp.init_private_key(),

WELCOME_HPKE_LABEL,

&[],

&ciphertext,

CIPHERSUITE,

&RustCrypto::default(),

)?);

Supported ciphersuites

- MLS_128_HPKEX25519_AES128GCM_SHA256_Ed25519 (MTI)

- MLS_128_DHKEMP256_AES128GCM_SHA256_P256

- MLS_128_HPKEX25519_CHACHA20POLY1305_SHA256_Ed25519

42 / 42 – Engagement Notes

https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/hpke.rs#L60-L86
https://github.com/xmtp/libxmtp/blob/73b675bd749dbd9f4c55bccfbabfa0040385ae0e/xmtp_mls/src/hpke.rs#L60-L86
https://github.com/openmls/openmls/blob/45bdb582ed2be7e10642dec2a9347177fa0b116a/README.md
https://github.com/openmls/openmls/blob/45bdb582ed2be7e10642dec2a9347177fa0b116a/README.md
https://datatracker.ietf.org/doc/html/rfc9420#name-mls-cipher-suites

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Replay Detection Bypass via ECDSA Signature Malleability
	Installation Keys Can Authorize Adding Associated Wallet Addresses
	Insecure Use of Temporary Directory
	Unsafe Concatenation of Data Leading to Inbox ID Collision
	Recovery Address Change Does Not Require Signature from New Recovery Key
	Revoke Association Action Does Not Recursively Revoke Associations
	Secrets Not Zeroized After Use
	Potential Unhandled Panic When Decrypting History File
	Mismatched Key Type Names May Introduce Confusion
	Cryptographic Keys Written to Debug Logs
	Dependencies with Known RustSec Advisories

	Finding Field Definitions
	Risk Scale
	Category

	OpenMLS Application Requirements Review
	Additional Comments

	Engagement Notes
	Panics in Functions Returning Results
	Permission Management in Dockerfiles
	Notes on XIP-46 Specification and Other Documentation
	Missing Optional Ethereum Address Checksum Validation
	Redundant Code
	Incorrect Algorithm Identifiers (OpenMLS)

