

Auditable Key Directory (AKD)

Implementation Review

Meta Platforms
Version 1.0 – November 14, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Meta Platforms, Inc. Portions of this document and

the templates used in its production are the property of NCC Group and cannot be copied (in full or in

part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the

information contained herein. Use of NCC Group’s services does not guarantee the security of a system,

or that computer intrusions will not occur.

Prepared By

Elena Bakos Lang

Gérald Doussot

Kevin Henry

Thomas Pornin

1 Executive Summary

Synopsis

In August 2023, Meta engaged NCC Group’s Cryptography Services practice to perform an

implementation review of their Auditable Key Directory (AKD) library, which provides an

append-only directory of public keys mapped to user accounts and a framework for efficient

cryptographic validation of this directory by an auditor. The library is being leveraged to

provide an AKD for WhatsApp and is meant to serve as a reference implementation for

auditors of the WhatsApp AKD, as well as to allow other similar services to implement key

transparency. The review was performed remotely by 3 consultants over a two-week period

with a total of 20 person-days spent.

In October 2023, the project team completed a retest on a series of fixes proposed by Meta

and found that they effectively addressed all findings documented in this report. These

changes have been merged as of tagged release v0.11.0 (commit 85b3b07).

Scope

NCC Group’s evaluation targeted the open source AKD library at github.com/facebook/akd/,

release v0.9.0 (commit be1055e), with primary targets of akd/ and akd_core/.

The review was supplemented by draft 15 of the IETF document Verifiable Random

Functions (VRFs), now published as RFC 9381, as well SEEMless and Parakeet.

Limitations

While the review covered the complete akd repository, it was primarily focused on

cryptographic primitives, such as the use of verifiable random functions (VRFs), and the

associated membership proofs for proving the existence or non-existence of an entry in the

key directory at a given epoch. Less attention was given to the non-cryptographic

performance optimizations within the library, such as the storage caching and parallelization

strategy. Furthermore, no integration of this library with an existing application, such as

WhatsApp, was reviewed as part of this report.

Key Findings

In total, 1 medium severity, 8 low severity, and 6 informational findings were filed, including:

Finding "Multiple Key Updates During Epoch Results in Invalid State" detailed a

preventable case where a user’s key updates were not correctly placed in the tree.

Finding "VRF Hash To Curve Accepts Non-Canonical Encodings" showed how the VRF

might have returned an incorrect output, impacting interoperability.

Finding "Dangerous Public API Functions" detailed API functions which may mislead a

user of the library about their behavior.

After retesting, NCC Group found that all reported findings had been addressed by Meta in a

manner consistent with the recommendations put forth during the initial review.

Strategic Recommendations

At the time of review, all external dependencies were found to be up-to-date. Continuing

to maintain such an up-to-date status at each release is recommended.

While some negative tests are in place, more robust testing of the public API functions,

focusing on negative tests or invalid input (e.g., fuzzing), is recommended, as it may

reveal additional unanticipated behavior, or prevent the introduction of new bugs.

The correct behavior of akd relies on proper integration with an external application that

authenticates users and publishes updates to the directory. This integration must be

done properly to ensure the akd is correctly maintained and provides the appropriate

assurance to users. Further review of such an integration is recommended.

•

•

•

•

•

•

2 / 40 – Executive Summary

https://github.com/facebook/akd/tree/v0.11.0
https://github.com/facebook/akd/tree/v0.11.0
https://github.com/facebook/akd/tree/v0.11.0
https://github.com/facebook/akd/commit/85beb0792a130eebd2161d8a4fce081495a15013
https://github.com/facebook/akd/commit/85beb0792a130eebd2161d8a4fce081495a15013
https://github.com/facebook/akd/commit/85beb0792a130eebd2161d8a4fce081495a15013
https://github.com/facebook/akd/
https://github.com/facebook/akd/tree/v0.9.0
https://github.com/facebook/akd/tree/v0.9.0
https://github.com/facebook/akd/tree/v0.9.0
https://github.com/facebook/akd/tree/be1055ee8a2b5291d84206592d8f46b7f042bbe1
https://github.com/facebook/akd/tree/be1055ee8a2b5291d84206592d8f46b7f042bbe1
https://github.com/facebook/akd/tree/be1055ee8a2b5291d84206592d8f46b7f042bbe1
https://github.com/facebook/akd/tree/v0.9.0/akd
https://github.com/facebook/akd/tree/v0.9.0/akd
https://github.com/facebook/akd/tree/v0.9.0/akd_core
https://github.com/facebook/akd/tree/v0.9.0/akd_core
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15
https://www.rfc-editor.org/rfc/rfc9381
https://eprint.iacr.org/2018/607
https://eprint.iacr.org/2023/081

2 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Multiple Key Updates During Epoch Results in Invalid

State

Fixed Q3U Medium

VRF Hash to Curve Function May Incorrectly Return

the Identity Point

Fixed EAD Low

VRF Expanded Private Key Not Fully Zeroized on Drop Fixed NWP Low

VRF Verifier Will Not Reject Public Keys with Low

Order

Fixed DHG Low

VRF Hash To Curve Accepts Non-Canonical

Encodings

Fixed KAG Low

Dangerous Public API Functions Fixed FRK Low

Malformed Input May Crash Client Applications Fixed Y7E Low

Malformed VRF Proof May Crash Client Applications Fixed JJ4 Low

Malformed History Proof May Crash Client

Applications

Fixed 9NP Low

VRF Draft Specification Now Published as RFC 9381 Fixed 7Q6 Info

Incorrect Function Documentation for get_commitment_

nonce() and compute_fresh_azks_value()

Fixed RKB Info

The hash_to_curve() Function Should be Renamed en

code_to_curve()

Fixed CX4 Info

Improved Error Messages When Auditing History

Proofs

Fixed 9JD Info

Minor Optimization When Computing Longest Prefix Fixed CUF Info

Potentially Confusing Behavior for NodeLabels Fixed MPR Info

3 / 40 – Table of Findings

3 Finding Details

Multiple Key Updates During Epoch Results in

Invalid State

Overall Risk Medium

Impact High

Exploitability Undetermined

Finding ID NCC-E008327-Q3U

Component akd

Category Cryptography

Status Fixed

Impact

Including two items for the same label when updating the tree state via the publish()

function would have resulted in an invalid tree state with no valid key stored for the affected

user and may have caused correctness or usability issues.

Description

The function publish() is used to update the existing tree with a list of new or updated keys

for users of the AKD system. In particular, the publish() function takes as input a list of

updates, in the form of (akd_label, akd_value) pairs. For each akd_label , the

corresponding NodeLabel is generated by hashing the akd_label , the freshness, and the

version number of the key, which denotes the internal label used for the node within the

AKD tree. Finally, the NodeLabel s are recursively inserted into the existing AKD tree.

During this process, if this is the first time a particular akd_label was seen, the NodeLabel is

generated using freshness VersionFreshness::Fresh and version 1 , and otherwise the

NodeLabel will be generated using VersionFreshness::Stale and the version incremented by

1 from the version currently stored in the tree:

Medium

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

None => vec![(

akd_label.clone(),

VersionFreshness::Fresh,

1u64,

akd_value.clone(),

)],

Some((latest_version, existing_akd_value)) => {

if existing_akd_value == akd_value {

// Skip this because the user is trying to re-publish the same value

return vec![];

}

vec![

(

akd_label.clone(),

VersionFreshness::Stale,

*latest_version,

akd_value.clone(),

),

(

akd_label.clone(),

VersionFreshness::Fresh,

*latest_version + 1,

4 / 40 – Finding Details

Figure 1: publish() in akd/src/directory.rs

However, if multiple updates for the same akd_label with differing values are passed to

publish() , the version numbers included here will match, as the latest_version will not be

updated between iterations. Hence, two items with identical NodeLabel s will be passed to

recursive_batch_insert_nodes() to be inserted into the tree.

As part of this insertion process, each call to recursive_batch_insert_nodes() computes the

longest common prefix of the current remaining nodes, and generates a new interior node if

multiple elements still need to be sorted. In the above case,

recursive_batch_insert_nodes() will eventually be called with a list containing only the two

duplicated nodes, compute a longest common prefix corresponding exactly to the label of

the duplicated nodes, insert an interior node with this label, and filter out both duplicates as

the new interior node label is not a proper prefix of either of them:

Figure 2: recursive_batch_insert_nodes() in akd/src/append_only_zks.rs

This will result in an invalid tree state where an interior node has no leaves, and no valid key

for the affected user is stored in the tree.

Note that the Parakeet paper documents that only one update per key should be included

per epoch:

The server stores a directory Dir of label-value pairs. Each value corresponds to a

public key. The clients can request updates to their own public keys – equivalent to

requesting a change to the state of Dir. For efficiency, many such requests are

batched together, with updates going into effect at discrete time steps (epochs).

So, Dir is stateful, has of an ordered sequence of states Dir_t, one state per epoch

t.

However, this requirement is not currently enforced or documented within the publish()

function.

Recommendation

Ensure that invalid inputs to the publish() function are detected, and do not result in invalid

states for the AKD tree. In particular, ensure that duplicates do not result in dangling interior

nodes within the tree, by filtering out duplicates or returning an informative error.

Additionally, ensure that the requirements for a single update per epoch are well-

documented for both the publish() function, and the system at large, and ensure that any

higher-level APIs do not facilitate submitting multiple updates per epoch.

143

144

145

146

396

397

398

399

400

401

402

403

404

405

akd_value.clone(),

),

]

}

(None, _) => {

// Case 3: The node label is None and the insertion still has

// multiple elements, meaning that a new interior node should be

// created with a label equal to the longest common prefix of

// the node set.

let lcp_label = azks_element_set.get_longest_common_prefix::<TC>();

current_node = new_interior_node::<TC>(lcp_label, epoch);

is_new = true;

num_inserted = 1;

}

5 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd/src/directory.rs#L121-#L146
https://github.com/facebook/akd/blob/v0.9.0/akd/src/directory.rs#L121-#L146
https://github.com/facebook/akd/blob/v0.9.0/akd/src/append_only_zks.rs#L396-#L405
https://github.com/facebook/akd/blob/v0.9.0/akd/src/append_only_zks.rs#L396-#L405
https://eprint.iacr.org/2023/081

Reproduction Steps

The test test_simple_lookup() can be modified to submit two values for the same label as

follows:

While this will successfully complete the publish() and lookup() operations, the test will

fail on the lookup_verify() call on line 207.

Location

akd/akd/src/directory.rs

akd/akd/src/append_only_zks.rs

Retest Results

2023-09-20 – Fixed

As part of PR 400 (commit cd4fd18) the publish() function now includes a check that all

labels are distinct, and throws an error otherwise. As such, this finding is considered fixed.

•

•

// Add two labels and corresponding values to the akd

akd.publish(vec![

(AkdLabel::from("hello"), AkdValue::from("world")),

(AkdLabel::from("hello"), AkdValue::from("world2")),

])

6 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd/src/tests.rs#L187-#L215
https://github.com/facebook/akd/blob/v0.9.0/akd/src/tests.rs#L187-#L215
https://github.com/facebook/akd/blob/v0.9.0/akd/src/tests.rs#L187-#L215
https://github.com/facebook/akd/blob/v0.9.0/akd/src/directory.rs
https://github.com/facebook/akd/blob/v0.9.0/akd/src/directory.rs
https://github.com/facebook/akd/blob/v0.9.0/akd/src/append_only_zks.rs
https://github.com/facebook/akd/blob/v0.9.0/akd/src/append_only_zks.rs
https://github.com/facebook/akd/pull/400
https://github.com/facebook/akd/pull/400/commits/cd4fd180cd2774dba64dc2ec5ec46890f985a163
https://github.com/facebook/akd/pull/400/commits/cd4fd180cd2774dba64dc2ec5ec46890f985a163
https://github.com/facebook/akd/pull/400/commits/cd4fd180cd2774dba64dc2ec5ec46890f985a163

VRF Hash to Curve Function May Incorrectly

Return the Identity Point

Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E008327-EAD

Component akd_core

Category Cryptography

Status Fixed

Impact

The implemented approach was missing an identity check mandated in the specification,

which may have introduced interoperability issues, invalidated security proofs, or weakened

security guarantees of the VRF. In the worst case, the VRF private key could have been

leaked.

Description

As part of akd_core, an implementation of a verifiable random function (VRF) is provided.

The implemented approach is ECVRF-EDWARDS25519-SHA512-TAI from draft 15 of the IETF

document draft-irtf-cfrg-vrf-15. During both the proof generation and verification of this

VRF, a hashed value must be mapped to the underlying elliptic curve using the defined

method ECVRF_encode_to_curve . This process is non-trivial, as not all outputs will map

directly to a valid point, and the process must be repeated in a deterministic manner until a

valid mapping is achieved. To this end, the specification defines ECVRF_encode_to_curve_try_

and_increment , which proceeds to loop based on the following:

While H is “INVALID” or H is the identity element of the elliptic curve group

The corresponding implementation follows:

Figure 3: hash_to_curve() in akd_core/src/ecvrf/ecvrf_impl.rs

Low

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

pub(super) fn hash_to_curve(&self, alpha: &[u8]) -> EdwardsPoint {

let mut result = [0u8; 32];

let mut counter = 0;

loop {

let hash = Sha512::new()

.chain([SUITE, ONE])

.chain(self.0.as_bytes())

.chain(alpha)

.chain([counter, ZERO])

.finalize();

result.copy_from_slice(&hash[..32]);

let wrapped_point = CompressedEdwardsY::from_slice(&result)

.expect("Result hash should have a length of 32, but it does not")

.decompress();

counter += 1;

if let Some(wp) = wrapped_point {

return wp.mul_by_cofactor();

}

}

}

7 / 40 – Finding Details

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1.1
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L224-L243
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L224-L243

Per the highlighted lines, the hash_to_curve() function will return on any valid point,

including the identity, which contradicts the behavior in the specification. The output of this

function is used to compute gamma , which is included in the VRF proof and used to derive

the actual VRF output.

Figure 4: evaluate() in akd_core/src/ecvrf/ecvrf_impl.rs

As highlighted above, if h_point is the identity, then gamma will be equal to the private key

and leaked via its inclusion in the output Proof .

This finding is rated low, even though it is a direct deviation from the specification and may

leak the private key, because it will only occur with negligible probability, when the first 32

bytes of the SHA-512 hash result in a low order element.

Recommendation

Use curve25519_dalek::IsIdentity or a similar check to ensure hash_to_curve does not

return the identity element. Note that the check should be performed after the

mul_by_cofactor() call. See also finding "VRF Hash To Curve Accepts Non-Canonical

Encodings", which is about non-canonical encodings and whose resolution also involves

altering this code.

Note that this code was adapted from Diem’s NextGen Crypto library, which appears to have

the same issue; see nextgen_crypto/src/vrf/ecvrf.rs.

Location

akd_core/src/ecvrf/ecvrf_impl.rs

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

impl VRFExpandedPrivateKey {

/// Produces a proof for an input (using the expanded private key)

pub fn prove(&self, pk: &VRFPublicKey, alpha: &[u8]) -> Proof {

let h_point = pk.hash_to_curve(alpha);

let h_point_bytes = h_point.compress().to_bytes();

let k_scalar = ed25519_Scalar::from_bytes_mod_order_wide(&nonce_generation_bytes(

self.nonce,

&h_point_bytes,

));

let gamma = h_point * self.key;

let c_scalar = hash_points(

pk.0,

&h_point_bytes,

&[

gamma,

curve25519_dalek::constants::ED25519_BASEPOINT_TABLE * &k_scalar,

h_point * k_scalar,

],

);

Proof {

gamma,

c: c_scalar,

s: k_scalar + c_scalar * self.key,

}

}

8 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L105-L130
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L105-L130
https://doc.dalek.rs/curve25519_dalek/traits/trait.IsIdentity.html#tymethod.is_identity
https://doc.dalek.rs/curve25519_dalek/traits/trait.IsIdentity.html#tymethod.is_identity
https://doc.dalek.rs/curve25519_dalek/traits/trait.IsIdentity.html#tymethod.is_identity
https://github.com/diem/diem/tree/502936fbd59e35276e2cf455532b143796d68a16/crypto/nextgen_crypto
https://github.com/diem/diem/blob/502936fbd59e35276e2cf455532b143796d68a16/crypto/nextgen_crypto/src/vrf/ecvrf.rs#L185-L201
https://github.com/diem/diem/blob/502936fbd59e35276e2cf455532b143796d68a16/crypto/nextgen_crypto/src/vrf/ecvrf.rs#L185-L201
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs

Retest Results

2023-09-20 – Fixed

As part of PR 401 (commit 78a5fd5), the function hash_to_curve() has been renamed

encode_to_curve() and now includes an explicit check for the identity element before

returning the resulting point. As a result, this finding is considered fixed.

9 / 40 – Finding Details

https://github.com/facebook/akd/pull/401/
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766

VRF Expanded Private Key Not Fully Zeroized

on Drop

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E008327-NWP

Component akd_core

Category Data Exposure

Status Fixed

Impact

Failure to clear sensitive values from memory may have allowed these values to leak to

other processes running in the same memory space. In the case of cryptographic keys or

similar secrets, the security of the underlying protocol may have been completely broken. In

the current VRF implementation, an adversary may have gained an advantage in predicting

the nonce used in a VRF proof, which in turn could have enabled an attack on the VRF

private key.

Description

The elliptic curve verifiable random function (ecvrf) component leverages the

curve25519_dalek crate for elliptic curve operations. By default, this crate has the zeroize

feature flag enabled, which ensures that all scalars and EC points are zeroized on Drop . The

ecvrf component also leverages ed25519_dalek for several types.

The ecvrf implementation defines the VRFExpandedPrivateKey struct, which clones a similar

ExpandedSecretKey struct from ed25519_dalek:

Figure 5: VRFExpandedPrivateKey in akd_core/src/ecvrf/ecvrf_impl.rs

One may infer that this struct was re-implemented to avoid dependence on the hazmat

feature flag in ed25519_dalek. However, unlike the ed25519_dalek::ExpandedSecretKey struct,

no zeroization of the nonce field is performed. Because this is a plain u8 array, it will not be

zeroized, whereas the key will be. Compare with the corresponding type in ed25519_dalek:

Low

83

84

85

86

87

88

89

90

91

37

38

39

40

41

42

43

44

45

/// A longer private key which is slightly optimized for proof generation.

///

/// This is similar in structure to ed25519_dalek::ExpandedSecretKey. It can be produced

from

/// a VRFPrivateKey.

#[derive(Clone)]

pub struct VRFExpandedPrivateKey {

pub(super) key: ed25519_Scalar,

pub(super) nonce: [u8; 32],

}

pub struct ExpandedSecretKey {

/// The secret scalar used for signing

pub scalar: Scalar,

/// The domain separator used when hashing the message to generate the pseudorandom `r`

value

pub hash_prefix: [u8; 32],

}

#[cfg(feature = "zeroize")]

impl Drop for ExpandedSecretKey {

10 / 40 – Finding Details

https://docs.rs/curve25519-dalek/4.0.0/curve25519_dalek/index.html
https://docs.rs/curve25519-dalek/4.0.0/curve25519_dalek/index.html
https://docs.rs/ed25519-dalek/2.0.0/ed25519_dalek/index.html
https://docs.rs/ed25519-dalek/2.0.0/ed25519_dalek/index.html
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L83-L91
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L83-L91

Figure 6: ExpandedSecretKey in ed25519_dalek/hazmat.rs

Given that zeroization is already implemented for the key portion of the

VRFExpandedPrivateKey , it would be prudent to zeroize the entire key for completeness.

As noted in Section 7.4 of the specification:

The security of the ECVRF defined in this document relies on the fact that the

nonce k used in the ECVRF_prove algorithm is chosen uniformly and

pseudorandomly modulo q, and is unknown to the adversary. Otherwise, an

adversary may be able to recover the VRF secret scalar x (and thus break

pseudorandomness of the VRF) after observing several valid VRF proofs

The nonce k referenced here is not the same nonce included in the expanded private key,

but it is deterministically derived from expanded private key bytes and the VRF input.

Therefore, knowledge of the expanded private key bytes may grant an advantage in

guessing the ECVRF nonce.

Recommendation

Consider porting the cited zeroization code from ed25519_dalek, or leveraging the ed25519_d

alek::ExpandedSecretKey struct directly such that it is correctly zeroized.

Location

akd_core/src/ecvrf/ecvrf_impl.rs

Retest Results

2023-09-20 – Fixed

As part of PR 403 (commit b0d467a), the zeroize crate was added and the drop() function

was implemented to explicitly zeroize both the key and the nonce, thereby fixing this

finding.

46

47

48

49

50

51

52

53

fn drop(&mut self) {

self.scalar.zeroize();

self.hash_prefix.zeroize()

}

}

#[cfg(feature = "zeroize")]

impl ZeroizeOnDrop for ExpandedSecretKey {}

11 / 40 – Finding Details

https://docs.rs/ed25519-dalek/2.0.0/src/ed25519_dalek/hazmat.rs.html#37-53
https://docs.rs/ed25519-dalek/2.0.0/src/ed25519_dalek/hazmat.rs.html#37-53
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#name-proper-pseudorandom-nonce-f
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/pull/403/
https://github.com/facebook/akd/pull/403/commits/b0d467abe7cb7322af00c2c49429451a819250e0
https://github.com/facebook/akd/pull/403/commits/b0d467abe7cb7322af00c2c49429451a819250e0
https://github.com/facebook/akd/pull/403/commits/b0d467abe7cb7322af00c2c49429451a819250e0

VRF Verifier Will Not Reject Public Keys with

Low Order

Overall Risk Low

Impact Undetermined

Exploitability Low

Finding ID NCC-E008327-DHG

Component akd_core

Category Cryptography

Status Fixed

Impact

Failure to clearly document assumptions made by the library may have led to a “weak” VRF

public key being accepted without detection, violating formally defined security

requirements and potentially compromising security proofs and security guarantees of the

VRF.

Description

As part of akd_core, an implementation of a verifiable random function (VRF) is provided.

The implemented approach is ECVRF-EDWARDS25519-SHA512-TAI from draft 15 of the IETF

document draft-irtf-cfrg-vrf-15.

To verify a VRF proof, the specification defines ECVRF_verify , which may include the

validate_key flag:

validate_key - a boolean. An implementation MAY support only the option of

validate_key = TRUE, or only the option of validate_key = FALSE, in which case this

input is not needed. If an implementation supports only one option, it MUST specify

which option is [sic] supports.

This corresponding implementation does not accept a validate_key parameter:

Figure 7: verify() in akd_core/src/ecvrf/ecvrf_impl.rs

No code was identified in akd_core or akd that explicitly checks that the public key is not

the identity element (or that public_key * cofactor is not the identity element).

Furthermore, no comments or documentation specify this fact, contradicting the “MUST”

requirement quoted earlier.

The specification defines ECVRF_validate_key as a helper function for validating a public key,

which includes both generic approaches and an optimized approach for ed25519, which may

be realized using curve25519_dalek::IsIdentity , for example.

Without the valid public key check, the VRF is not guaranteed to provide unpredictability

under malicious key generation, as described in Section 7.1.3 of the specification, e.g.:

Unpredictability under malicious key generation holds for the ECVRF if validate_key

parameter given to the ECVRF_verify is TRUE

Low

185

186

187

188

impl VRFPublicKey {

/// Given a [`Proof`] and an input, returns whether or not the proof is valid for the

input

/// and public key

pub fn verify(&self, proof: &Proof, alpha: &[u8]) -> Result<(), VrfError> {

12 / 40 – Finding Details

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#name-ecvrf-verifying
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#name-ecvrf-verifying
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#name-ecvrf-verifying
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L185-L188
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L185-L188
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#name-ecvrf-validate-key
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#name-ecvrf-validate-key
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#name-ecvrf-validate-key
https://doc.dalek.rs/curve25519_dalek/traits/trait.IsIdentity.html#tymethod.is_identity
https://doc.dalek.rs/curve25519_dalek/traits/trait.IsIdentity.html#tymethod.is_identity
https://doc.dalek.rs/curve25519_dalek/traits/trait.IsIdentity.html#tymethod.is_identity
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-7.1.3

No rationale is given in the specification for leaving public key validation as an optional step,

though for performance reasons it may make sense to only perform validation once globally,

rather than once per VRF verification. For WhatsApp’s use case specifically, it may be

assumed that the VRF keypair will be generated under a high level of scrutiny, using a

process that ensures a weak public key is not chosen. However, given that akd is being

published as an open-source library, this property cannot be guaranteed, and the library

itself does not make these requirements clear. It is recommended to ensure that public key

validation occurs within the library such that a VRF proof using an invalid public key will not

verify, or that the verify function will not be called with an invalid key.

Note that this finding is concerned with a deviation from the documented requirements and

does not currently outline a specific attack against the akd implementation.

Recommendation

Consider one or more of the following:

Supporting the validate_key flag and using it appropriately.

Clearly documenting the implementation’s behavior with respect to public key validation.

Annotating the verify() function with its validation behavior or assumptions is

recommended.

Performing public key validation at a higher level in the library, such as when the key is

initially received or loaded, and such that verify() will never be called on a weak public

key.

Location

akd_core/src/ecvrf/ecvrf_impl.rs

Retest Results

2023-09-20 – Fixed

As part of PR 410 (commit aa0a856), the function documentation for verify() was updated

to state its behavior with respect to public key validation (i.e., that it is performed implicitly

by the underlying ed25519_dalek library). This satisfies the “MUST” requirement, thereby

fixing this finding.

•

•

•

13 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/pull/410/

VRF Hash To Curve Accepts Non-Canonical

Encodings

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E008327-KAG

Component akd_core

Category Cryptography

Status Fixed

Impact

With a low probability, the VRF might have returned an incorrect output, which would not

have been interoperable with other client implementations.

Description

The VRF produces the pseudorandom edwards25519 curve point H by repeatedly hashing

the input along with a counter value, until a sequence of bytes that matches the encoding of

a curve point is obtained. This is expressed by RFC 9381, Section 5.4.1.1, which uses the

interpret_hash_value_as_a_point() function, defined for the used ciphersuite (ECVRF-

EDWARDS25519-SHA512-TAI) in Section 5.5 as follows:

The interpretation of a 32-byte string into a curve point, as per RFC 8032, consists of

interpreting the first 255 bits with little-endian convention into an integer lower than the

base field modulus (2
255

 - 19) and then checking whether that value is an appropriate y

coordinate for a curve point; the corresponding x coordinate is computed, and optionally

negated if its least significant bit does not match the last bit of the source 32-byte string. In

particular, if the integer happens to fall in the 2
255

 - 19 to 2
255

 - 1 range, then the decoding

process is supposed to fail:

and similarly, if the recomputed x value happens to be zero but the last source bit is one,

then the least significant bit of x is zero and negating x does not turn it into a one; RFC 8032

prescribes that such an input should also be rejected:

Low

* The string_to_point function converts an octet string to a point

on E according to the encoding specified in Section 5.1.3 of

[RFC8032]. This function MUST output "INVALID" if the octet

string does not decode to a point on the curve E.

* The hash function Hash is SHA-512 as specified in [RFC6234], with

hLen = 64.

* The ECVRF_encode_to_curve function is as specified in

Section 5.4.1.1, with interpret_hash_value_as_a_point(s) =

string_to_point(s[0]...s[31]).

1. First, interpret the string as an integer in little-endian

representation. Bit 255 of this number is the least significant

bit of the x-coordinate and denote this value x_0. The

y-coordinate is recovered simply by clearing this bit. If the

resulting value is >= p, decoding fails.

4. Finally, use the x_0 bit to select the right square root. If

x = 0, and x_0 = 1, decoding fails. Otherwise, if x_0 != x mod

2, set x <-- p - x. Return the decoded point (x,y).

14 / 40 – Finding Details

https://www.rfc-editor.org/rfc/rfc9381#section-5.4.1.1
https://www.rfc-editor.org/rfc/rfc9381#section-5.5
https://www.rfc-editor.org/rfc/rfc8032#section-5.1.3

The implementation of this process in akd_core uses the curve25519-dalek library:

Figure 8: hash_to_curve() in akd_core/src/ecvrf/ecvrf_impl.rs

However, the CompressedEdwardsY::decompress() function from the curve25519-dalek library

slightly deviates from the strict RFC 8032 interpretation in that it accepts some non-

canonical inputs:

If the decoded integer is not lower than 2
255

 - 19, then it is implicitly reduced modulo

2
255

 - 19, instead of being rejected.

If the recomputed x is zero and the last source bit is one, then the input is still accepted.

This behaviour is present for historical reasons and maintained by curve25519-dalek for

backward compatibility1. In most uses of the primitive as part of, for instance, signature

verification, this acceptance of non-canonical encodings is harmless; however, in some

specific applications, especially consensus-related, it can have some impact2. In the case of

akd_core, it may conceptually lead to the VRF implementation producing an output that is

distinct from that mandated by RFC 9381, in which case a different implementation,

implemented from the RFC, would fail to interoperate (e.g. a third-party validating client for

the key transparency feature would reject some membership proofs). In practice, the issue is

unlikely to ever happen, because the candidate encoding for H is obtained as a hash output

(with SHA-512, truncated to 32 bytes) and there are only 26 sequences of 32 bytes that are

accepted by decompress() and yet invalid as per RFC 8032. The probability of obtaining an

input value that yields a non-canonical point encoding through SHA-512 is about 2
-251.3

,

which is negligible; finding such a value on purpose would require a preimage attack on

truncated SHA-512 (with 26 targets), which is considered infeasible.

Recommendation

For strict compliance to RFC 8032, non-canonical inputs may be rejected. Some non-

canonical inputs lead to a point of low order, which should also be rejected (see finding "VRF

Hash to Curve Function May Incorrectly Return the Identity Point"); the list of non-canonical

inputs that are accepted by curve25519-dalek and yield a high-order point corresponds to y

coordinates equal to 2
255

 - i, for integers i equal to 1, 3, 4, 5, 9, 10, 13, 14, 15 or 16 (for each

such y, there are two matching encodings, for both values of the sign-of-x bit). An

implementation fully conforming to steps 5.c and 5.d of the ECVRF_encode_to_curve

specification defined in Section 5.4.1.1 of RFC 9381 could thus follow the following process:

If the input bytes are such that bytes 1 to 30 have value 255, byte 31 has value 255 or

127, and byte 0 has value 256 - i for value i in the (1, 3, 4, 5, 9, 10, 13, 14, 15, 16) list, then

the encoding is invalid.

Use CompressedEdwardsY::decompress() to tentatively decode the input into a point.

Multiply the obtained point by the cofactor (mul_by_cofactor() function call).

If the result is the identity point on the curve, reject the encoding.

Location

akd_core/src/ecvrf/ecvrf_impl.rs, lines 235-237

235

236

237

•

•

1.

2.

3.

4.

let wrapped_point = CompressedEdwardsY::from_slice(&result)

.expect("Result hash should have a length of 32, but it does not")

.decompress();

1. https://hdevalence.ca/blog/2020-10-04-its-25519am

2. https://eprint.iacr.org/2020/1244

15 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L235-L237
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L235-L237
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L235-L237
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L235-L237
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L235-L237
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L235-L237
https://hdevalence.ca/blog/2020-10-04-its-25519am
https://eprint.iacr.org/2020/1244

Retest Results

2023-09-20 – Fixed

As part of PR 401 (commit 78a5fd5), the following check was added to the interpret_hash_v

alue_as_a_point() function:

Additionally, a check that multiplying the decoded point by the cofactor does not result in

the identity point was added to the encode_to_curve() function. Thus, this finding is

considered fixed.

let is_invalid = hash[1..=30].iter().all(|b| *b == 255)

&& (hash[31] == 255 || hash[31] == 127)

&& [1u8, 3, 4, 5, 9, 10, 13, 14, 15, 16].contains(&((256u16 - hash[0] as u16) as u8));

if is_invalid {

return None;

}

16 / 40 – Finding Details

https://github.com/facebook/akd/pull/401
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766

Dangerous Public API Functions

Overall Risk Low

Impact High

Exploitability Undetermined

Finding ID NCC-E008327-FRK

Component akd, akd_core

Category Cryptography

Status Fixed

Impact

Some functions were made public for test purposes but could not be safely used by

applications.

Description

Client applications using the akd_core library for verifying proofs should normally use the

functions lookup_verify() (for lookup proofs) or key_history_verify() (for key history

proofs). However, the akd_core/src/verify/base.rs file also defines two public functions

called verify_membership() and verify_nonmembership() :

Figure 9: verify_membership() and verify_nonmembership() in akd_core/src/verify/base.rs

Contrary to lookup_verify() and key_history_verify() , these functions do not include the

validation of the VRF output; but that validation is necessary to achieve the expected

security features of the membership and non-membership proofs. The names and

documentations of these two functions do not point out the lack of the VRF output

validation. The VRF validation cannot, in any case, be performed as an extra step by the

calling application, because the verify_label() function (defined in the same file) is private,

and callable only through one of verify_existence() , verify_existence_with_val() or

verify_nonexistence() , which only have crate visibility (pub(crate)). Thus, the

verify_membership() and verify_nonmembership() functions are a dangerous API, that must

not be used by applications, but is not documented as such.

Recommendation

The verify_membership() and verify_nonmembership() functions seem to be public so that

they may be invoked from test code located in the akd crate (in the append_only_zks.rs file).

The verify_membership() and verify_nonmembership() functions thus cannot be made

private or crate-private without breaking this test code. Instead, they should be prominently

documented as being meant for tests only, e.g. by making the functions private and adding

public wrappers called verify_membership_fortestsonly() and verify_nonmembership_fortest

sonly() .

Low

/// Verify the membership proof

pub fn verify_membership<TC: Configuration>(

root_hash: Digest,

proof: &MembershipProof,

) -> Result<(), VerificationError> {

// <SNIP>

/// Verifies the non-membership proof with respect to the root hash

pub fn verify_nonmembership<TC: Configuration>(

root_hash: Digest,

proof: &NonMembershipProof,

) -> Result<(), VerificationError> {

17 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/lookup.rs#L18
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/lookup.rs#L18
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/lookup.rs#L18
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L47
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L47
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L47
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L27
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L27
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L27
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L66
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L66
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L66
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs
https://github.com/facebook/akd/blob/v0.9.0/akd/src/append_only_zks.rs#L1176
https://github.com/facebook/akd/blob/v0.9.0/akd/src/append_only_zks.rs#L1176

There is an existing open issue (#265, from November 2022) about limiting visibility on many

objects in the API.

Location

akd_core/src/verify/base.rs, lines 27 and 66

Retest Results

2023-09-20 – Fixed

As part of PR 409 (commit c10a7fa), the visibility of the verify_membership() and

verify_nonmembership() functions was limited to the crate by using the pub(crate)

designation, and new functions verify_membership_for_tests_only() and verify_nonmembersh

ip_for_tests_only() that are clearly documented as being test-only functionality were

added. As such, this finding is considered fixed.

18 / 40 – Finding Details

https://github.com/facebook/akd/issues/265
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs
https://github.com/facebook/akd/pull/409
https://github.com/facebook/akd/pull/409
https://github.com/facebook/akd/pull/409
https://github.com/facebook/akd/pull/409

Malformed Input May Crash Client Applications

Overall Risk Low

Impact Low

Exploitability High

Finding ID NCC-E008327-Y7E

Component akd_core

Category Denial of Service

Status Fixed

Impact

Maliciously crafted lookup or key history proofs may have induced the client application to

panic upon decoding.

Description

Lookup and key history proofs are encoded using protobuf, with types specified in akd_core/

src/proto/specs/types.proto. In particular, lookup and key history proofs include members of

type MembershipProof and NonMembershipProof , both of which including NodeLabel elements.

The NodeLabel type is specified as follows:

Figure 10: akd_core/src/proto/specs/types.proto

The protobuf-generated code defines a container Rust type

(akd_core::proto::specs::type::NodeLabel), and the crate defines another NodeLabel type

(in akd_core::types::node_label::NodeLabel , ultimately reexported at the top-level of the

crate as akd_core::NodeLabel) which is the one used for all computations. The latter type

contains a 32-byte value, and a 32-bit length:

Figure 11: NodeLabel in akd_core/src/types/node_label/mod.rs

The decoding process entails invoking the protobuf decoder, then converting the protobuf-

generated NodeLabel to the other NodeLabel type, through the try_from() function:

Low

17

18

19

20

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

128

129

130

131

message NodeLabel {

optional bytes label_val = 1;

optional uint32 label_len = 2;

}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]

pub struct NodeLabel {

#[cfg_attr(

feature = "serde_serialization",

serde(serialize_with = "bytes_serialize_hex")

)]

#[cfg_attr(

feature = "serde_serialization",

serde(deserialize_with = "bytes_deserialize_hex")

)]

/// Stores a binary string as a 32-byte array of `u8`s

pub label_val: [u8; 32],

/// len keeps track of how long the binary string is in bits

pub label_len: u32,

}

fn try_from(input: &specs::types::NodeLabel) -> Result<Self, Self::Error> {

require!(input, has_label_len);

require!(input, has_label_val);

let label_val = decode_minimized_label(input.label_val());

19 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L17-L20
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L17-L20
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L27-L40
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L27-L40
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L27-L40
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L128-L137
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L128-L137
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L128-L137

Figure 12: try_from() in akd_core/src/proto/mod.rs

The decode_minimized_label() function pads the input bytes to 32 bytes (with extra bytes of

value zero), in case the encoded value is shorter:

Figure 13: decode_minimized_label() in akd_core/src/proto/mod.rs

If the input bytes (from the label_val field of the protobuf object) happens to contain a

sequence of bytes strictly longer than 32 bytes, then the slice extraction out[..v.len()]

will trigger a panic, since out[] has length 32. The consequences of a panic are usually

immediate termination of the calling thread, then of the whole application process. The

consequences seem limited to that kind of denial-of-service.

We may also note that label_len is not validated. The NodeLabel type is used to represent

two conceptually different kinds of objects: node labels, and node label prefixes. For a full

label, the length is 256; for a prefix, the length specifies how many bits are relevant. The

decoding process does not check that label_len is in the 0 to 256 range; it does not check

either whether bits beyond label_len are zero or not, even though the cmp() function on

NodeLabel instances and the equality test on such instances (implicitly generated with the

Eq derivation attribute) take all 256 bits into account. Out-of-range label_len values may

induce further panics (especially in NodeLabel::get_bit_at()). Extra non-zero bits beyond

the advertised label_len in a prefix may also induce unexpected comparison results,

though this does not seem to be exploitable in the proof verification code. Notably, the label

verification (VRF output validation) explicitly checks that the recomputed value, with a 256-

bit length, exactly matches the input value, length included:

Figure 14: verify_label() in akd_core/src/verify/base.rs

Recommendation

NodeLabel::try_from() should perform explicit validation of the input value, and report an

Error instead of panicking if the value is incorrect:

Check that the source input_val length is no more than 32 bytes.

Check that the source label_len is in the 0 to 256 range.

Verify that all source bits beyond label_len are zero.

132

133

134

135

136

137

109

110

111

112

113

138

139

140

141

142

143

•

•

•

Ok(Self {

label_len: input.label_len(),

label_val,

})

}

fn decode_minimized_label(v: &[u8]) -> [u8; 32] {

let mut out = [0u8; 32];

out[..v.len()].copy_from_slice(v);

out

}

if NodeLabel::new(output.to_truncated_bytes(), 256) != node_label {

return Err(VerificationError::Vrf(VrfError::Verification(

"Expected first 32 bytes of the proof output did NOT match the supplied label"

.to_string(),

)));

}

20 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L128-L137
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L128-L137
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L109-L113
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L109-L113
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L109-L113
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L109-L113
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L109-L113
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L55
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L55
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L55
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L55
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L55
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L55
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L134
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L134
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L134
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L138-L143
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L138-L143
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/base.rs#L138-L143

Location

akd_core/src/proto/mod.rs, lines 128-137

Retest Results

2023-09-20 – Fixed

As part of PR 407 (commit bab0b5e), the function NodeLabel::try_from() has been updated

to check that input_val contains no more than 32 bytes, and that label_len is bounded by

256, and to return an error otherwise.

Regarding the source bits beyond label_len , the WhatsApp team clarified that in some

cases such as for the empty_label , the extra bits may not all be 0. To account for this case,

the code was updated to ensure that the source bits beyond label_len are handled in a

consistent manner, and that comparison functions such as get_prefix_ordering() only

consider the first label_len bits when comparing prefixes. Additional context on the

handling of these bits within the codebase is provided in finding "Potentially Confusing

Behavior for NodeLabels".

As such, this finding is considered fixed.

21 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L128
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L128
https://github.com/facebook/akd/pull/407
https://github.com/facebook/akd/pull/407/commits/bab0b5e542fba169c9a4fa727dde1f466641a254
https://github.com/facebook/akd/pull/407/commits/bab0b5e542fba169c9a4fa727dde1f466641a254
https://github.com/facebook/akd/pull/407/commits/bab0b5e542fba169c9a4fa727dde1f466641a254

Malformed VRF Proof May Crash Client

Applications

Overall Risk Low

Impact Low

Exploitability High

Finding ID NCC-E008327-JJ4

Component akd_core

Category Data Validation

Status Fixed

Impact

Malformed VRF proofs can lead the client (verifier) application to panic, causing a denial of

service condition.

Description

The akd_core crate handles a number of VRF proofs such as existence, marker, and

freshness proofs. These proofs are serialized as protobuf binary types, as illustrated below

in file akd_core/src/proto/specs/types.proto for lookup proofs:

Figure 15: akd_core/src/proto/specs/types.proto

These proofs are deserialized using the try_from() method of the Proof structure, in file

ecvrf_impl.rs of akd_core:

Low

59

60

61

62

63

64

65

66

67

68

69

70

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

message LookupProof {

optional uint64 epoch = 1;

optional bytes value = 2;

optional uint64 version = 3;

optional bytes existence_vrf_proof = 4;

optional MembershipProof existence_proof = 5;

optional bytes marker_vrf_proof = 6;

optional MembershipProof marker_proof = 7;

optional bytes freshness_vrf_proof = 8;

optional NonMembershipProof freshness_proof = 9;

optional bytes commitment_nonce = 10;

}

impl TryFrom<&[u8]> for Proof {

type Error = VrfError;

fn try_from(bytes: &[u8]) -> Result<Proof, VrfError> {

let mut c_buf = [0u8; 32];

c_buf[..16].copy_from_slice(&bytes[32..48]);

let mut s_buf = [0u8; 32];

s_buf.copy_from_slice(&bytes[48..]);

let pk_point = match CompressedEdwardsY::from_slice(&bytes[..32])

.expect("Byte string should be of length 32, but it is not")

.decompress()

{

Some(pt) => pt,

None => {

return Err(VrfError::PublicKey(

"Failed to decompress public key into Edwards Point".to_string(),

))

22 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L59C1-L70C2
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L59C1-L70C2

Figure 16: akd_core/src/ecvrf/ecvrf_impl.rs

Method try_from() calls highlighted method copy_from_slice() in the code snippet above.

In the first call, the slice extraction will panic if the input bytes value is shorter than 48

bytes; in the second call, the copy_from_slice() function will panic if the source and

destination slices have different lengths, i.e. if bytes[48..] does not have length exactly 32

bytes. The implementation does not try to validate the size of the proof before deserializing

it. A malformed proof such as an empty existence_vrf_proof field in a LookupProof structure

would cause such panic.

Recommendation

The implementation should validate that the proof size size is correct (80 bytes) before

accessing it. If the size is incorrect, it should return an error.

Location

akd_core/src/ecvrf/ecvrf_impl.rs

Retest Results

2023-10-12 – Fixed

As part of PR 416 (commit 54c002b), the function Proof::try_from() has been updated to

check that bytes contains exactly 80 bytes (PROOF_LENGTH), and to return an error

otherwise.

77

78

79

80

81

82

83

84

85

86

}

};

Ok(Proof {

gamma: pk_point,

c: ed25519_Scalar::from_bytes_mod_order(c_buf),

s: ed25519_Scalar::from_bytes_mod_order(s_buf),

})

}

}

23 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L302C1-L329C1
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L302C1-L329C1
https://www.internalfb.com/code/fbsource/[064a77c1d8f1]/third-party/rust/vendor/akd_core-0.9.0/src/ecvrf/ecvrf_impl.rs
https://www.internalfb.com/code/fbsource/[064a77c1d8f1]/third-party/rust/vendor/akd_core-0.9.0/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/pull/416
https://github.com/facebook/akd/pull/416/commits/54c002b99817b076be22f670d083d2b2638cc1b1
https://github.com/facebook/akd/pull/416/commits/54c002b99817b076be22f670d083d2b2638cc1b1
https://github.com/facebook/akd/pull/416/commits/54c002b99817b076be22f670d083d2b2638cc1b1

Malformed History Proof May Crash Client

Applications

Overall Risk Low

Impact Low

Exploitability High

Finding ID NCC-E008327-9NP

Component akd_core

Category Denial of Service

Status Fixed

Impact

Malformed proofs can lead the client (verifier) application to panic, causing a denial of

service condition.

Description

Key history proofs are encoded using protobuf, with types specified in akd_core/src/proto/

specs/types.proto. These proofs are parsed into the HistoryProof struct:

Figure 17: HistoryProof struct in akd_core/src/types/mod.rs

These proofs are deserialized in using the try_from() function, after which the verification

proceeds in the key_history_verify() function. As part of this process, the next marker

node is computed, and the non-existence proofs of future entries up to the next marker, and

for all future markers are verified:

Low

471

472

473

474

475

476

477

478

479

480

481

482

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

pub struct HistoryProof {

/// The update proofs in the key history

pub update_proofs: Vec<UpdateProof>,

/// VRF Proofs for the labels of the values until the next marker version

pub until_marker_vrf_proofs: Vec<Vec<u8>>,

/// Proof that the values until the next marker version did not exist at this time

pub non_existence_until_marker_proofs: Vec<NonMembershipProof>,

/// VRF proofs for the labels of future marker entries

pub future_marker_vrf_proofs: Vec<Vec<u8>>,

/// Proof that future markers did not exist

pub non_existence_of_future_marker_proofs: Vec<NonMembershipProof>,

}

// Get the least and greatest marker entries for the current version

let next_marker = crate::utils::get_marker_version_log2(last_version) + 1;

let final_marker = crate::utils::get_marker_version_log2(current_epoch);

// ***** Future checks below ***************************

// Verify the non-existence of future entries, up to the next marker

for (i, version) in (last_version + 1..(1 << next_marker)).enumerate() {

verify_nonexistence::<TC>(

vrf_public_key,

root_hash,

&akd_label,

VersionFreshness::Fresh,

version,

&proof.until_marker_vrf_proofs[i],

&proof.non_existence_until_marker_proofs[i],

).map_err(|_|

24 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L93
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L93
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L93
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/specs/types.proto#L93
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/mod.rs#L471
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/mod.rs#L471
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L457
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L457
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/proto/mod.rs#L457

Figure 18: key_history_verify() in akd_core/src/verify/history.rs

However, note that if insufficiently many proofs are provided in the until_marker_vrf_proofs

or non_existence_until_marker_proofs fields, an out of bounds access will occur on line 124

or 125, which will cause a panic. Additionally, if more non-existence proofs than required are

provided, this will not be detected and will be accepted as valid. Similar issues are present

for the verification of the VRFs and non-membership proofs for future markers on lines 140

and 141.

Recommendation

Check that (1 << next_marker) - last_version - 1 is equal to proof.non_existence_until_ma

rker_proofs.len() and proof.until_marker_vrf_proofs.len() before validating each proof in

the non_existence_until_marker_proofs field. Similarly, check that final_marker + 1 -

next_marker is equal to proof.non_existence_of_future_marker_proofs.len() and proof.futur

e_marker_vrf_proofs.len() before validating each proof in the

non_existence_of_future_marker_proofs field.

If any of these checks do not pass, an error should be returned instead.

Location

akd_core/src/verify/history.rs

Retest Results

2023-10-12 – Fixed

As part of PR 417 (commit 04116e7), the function key_history_verify() has been updated to

check that the until_marker_vrf_proofs , non_existence_until_marker_proofs ,

future_marker_vrf_proofs and non_existence_of_future_marker_proofs fields have the

expected number of elements. As such, this finding is considered fixed.

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

VerificationError::HistoryProof(format!("Non-existence of next few proof of

user {:?}'s version {:?} at epoch {:?} does not verify",

&akd_label, version, current_epoch)))?;

}

// Verify the VRFs and non-membership proofs for future markers

for (i, pow) in (next_marker..final_marker + 1).enumerate() {

let version = 1 << pow;

verify_nonexistence::<TC>(

vrf_public_key,

root_hash,

&akd_label,

VersionFreshness::Fresh,

version,

&proof.future_marker_vrf_proofs[i],

&proof.non_existence_of_future_marker_proofs[i],

).map_err(|_|

VerificationError::HistoryProof(format!("Non-existence of future marker proof

of user {akd_label:?}'s version {version:?} at epoch {current_epoch:?} does

not verify")))?;

}

25 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L111
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L111
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L111
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L111
https://github.com/facebook/akd/pull/417
https://github.com/facebook/akd/pull/417/commits/04116e7e7a65d0914ac48da29c18919a6a90431c
https://github.com/facebook/akd/pull/417/commits/04116e7e7a65d0914ac48da29c18919a6a90431c
https://github.com/facebook/akd/pull/417/commits/04116e7e7a65d0914ac48da29c18919a6a90431c

VRF Draft Specification Now Published as RFC

9381

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008327-7Q6

Component akd_core

Category Patching

Status Fixed

Impact

Citing a draft specification instead of the release specification may have suggested that the

implementation was not complete or compliant with the released specification.

Description

As part of akd_core, an implementation of a verifiable random function (VRF) is provided.

The implemented approach is ECVRF-EDWARDS25519-SHA512-TAI from draft 15 of the IETF

document draft-irtf-cfrg-vrf-15.

On August 23, 2023, while this review was taking place, the draft was formally published as

RFC 9381. Changes from draft 15 to RFC 9381 appear to be focused on editorial issues, and

no changes in the published RFC were identified that conflict with reviewed ecvrf

implementation. Therefore, it is likely that the sub-module could be revised to cite the

published RFC in place of the currently cited draft:

Figure 19: akd_core/src/ecvrf/mod.rs

Furthermore, the implemented ciphersuite is called ECVRF-EDWARDS25519-SHA512-TAI in the

specification. This has no practical consequence since for hash computation purposes

ciphersuites are identified by symbolic numeric identifiers rather than character strings.

This finding is purely informational, as the changes made in the final RFC do not affect the

implementation of ecvrf.

Recommendation

Review the recently published RFC 9381 and update references within the code to point to

the finalized document. A diff between the two versions can be viewed at https://author-

tools.ietf.org/iddiff?url1=draft-irtf-cfrg-vrf-15&url2=rfc9381&difftype=--hwdiff.

Location

akd_core/src/ecvrf/mod.rs

Retest Results

2023-09-20 – Fixed

As part of PR 401 (commit 78a5fd5), the algorithm name and document reference were

updated to cite ECVRF-EDWARDS25519-SHA512-TAI from RFC9381 instead of the draft document,

thereby fixing this finding.

Info

19

20

//! This module implements an instantiation of a verifiable random function known as

//! [ECVRF-ED25519-SHA512-TAI](https://tools.ietf.org/html/draft-irtf-cfrg-vrf-15).

26 / 40 – Finding Details

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15
https://datatracker.ietf.org/doc/rfc9381/
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/mod.rs#L19-L20
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/mod.rs#L19-L20
https://author-tools.ietf.org/iddiff?url1=draft-irtf-cfrg-vrf-15&url2=rfc9381&difftype=--hwdiff
https://author-tools.ietf.org/iddiff?url1=draft-irtf-cfrg-vrf-15&url2=rfc9381&difftype=--hwdiff
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/mod.rs#L19-L20
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/mod.rs#L19-L20
https://github.com/facebook/akd/pull/401/
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766#diff-2c0eb5d8e9a0d4b67d8f63afc4611392307bb493d2dfb9f6ac136e99a1f10c4b
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766#diff-2c0eb5d8e9a0d4b67d8f63afc4611392307bb493d2dfb9f6ac136e99a1f10c4b
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766#diff-2c0eb5d8e9a0d4b67d8f63afc4611392307bb493d2dfb9f6ac136e99a1f10c4b

Incorrect Function Documentation for get_comm

itment_nonce() and

compute_fresh_azks_value()

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008327-RKB

Component akd_core

Category Other

Status Fixed

Impact

Incorrect function documentation may have misled a user of the library, potentially leading

to implementation errors in the future.

Description

WhatsAppV1Configuration

The documentation for get_commitment_nonce() does not accurately reflect what is

computed in the function:

Figure 20: get_commitment_nonce in akd_core/src/configuration/whatsapp_v1.rs

The hash includes the version and value parameters, suggesting that the function

documentation on line 73 should be:

ExperimentalConfiguration

The documentation for function compute_fresh_azks_value() specifies that the nonce is

computed as the hash of 4 values:

Info

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

82

83

84

/// Used by the server to produce a commitment nonce for an AkdLabel, version, and

AkdValue.

/// Computes nonce = H(commitment key || label)

fn get_commitment_nonce(

commitment_key: &[u8],

label: &NodeLabel,

version: u64,

value: &AkdValue,

) -> Digest {

Self::hash(

&[

commitment_key,

&label.to_bytes(),

&version.to_be_bytes(),

&i2osp_array(value),

]

.concat(),

)

}

/// Computes nonce = H(commitment key || label || version || value)

/// Used by the server to produce a commitment for an AkdLabel, version, and AkdValue

///

/// nonce = H(commitment_key, label, version, i2osp_array(value))

27 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs#L72-L89
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs#L72-L89

Figure 21: compute_fresh_azks_value() in akd_core/src/configuration/experimental.rs

However, the get_commitment_nonce() function for an experimental configuration only

computes H(commitment key || label) :

Figure 22: compute_fresh_azks_value() in akd_core/src/configuration/experimental.rs

The documentation should accurately reflect the behavior of the implementation.

Recommendation

Revise the documentation to accurately reflect the implemented behavior.

Location

akd_core/src/configuration/whatsapp_v1.rs

Retest Results

2023-09-20 – Fixed

As part of PR 404 (commit bf7eefd), the identified incorrect comments were revised to

match the implemented behavior, thereby fixing this finding.

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

82

83

84

85

86

87

88

89

90

91

/// commmitment = H(i2osp_array(value), i2osp_array(nonce))

///

/// The nonce value is used to create a hiding and binding commitment using a

/// cryptographic hash function. Note that it is derived from the label, version, and

/// value (even though the binding to value is somewhat optional).

///

/// Note that this commitment needs to be a hash function (random oracle) output

fn compute_fresh_azks_value(

commitment_key: &[u8],

label: &NodeLabel,

version: u64,

value: &AkdValue,

) -> AzksValue {

let nonce = Self::get_commitment_nonce(commitment_key, label, version, value);

AzksValue(Self::hash(

&[i2osp_array(value), i2osp_array(&nonce)].concat(),

))

}

/// Used by the server to produce a commitment nonce for an AkdLabel, version, and

AkdValue.

/// Computes nonce = H(commitment key || label)

fn get_commitment_nonce(

commitment_key: &[u8],

label: &NodeLabel,

_version: u64,

_value: &AkdValue,

) -> Digest {

Self::hash(&[commitment_key, &label.to_bytes()].concat())

}

28 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs#L82-L92
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs#L82-L92
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs#L71-L80
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs#L71-L80
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs
https://github.com/facebook/akd/pull/404/
https://github.com/facebook/akd/pull/404/commits/bf7eefd2fa8cc3433b42ee22ae67d8be4817beb8
https://github.com/facebook/akd/pull/404/commits/bf7eefd2fa8cc3433b42ee22ae67d8be4817beb8
https://github.com/facebook/akd/pull/404/commits/bf7eefd2fa8cc3433b42ee22ae67d8be4817beb8

The hash_to_curve() Function Should be

Renamed encode_to_curve()

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008327-CX4

Component akd_core

Category Other

Status Fixed

Impact

Inaccurate function names may have misled developers about the behavior of a function.

Description

The hash_to_curve() function implements the ECVRF_encode_to_curve_try_and_increment()

function defined in draft-irtf-cfrg-vrf-15. However, this function does not define a uniform

mapping to curve points, and in the past was renamed from hash_to_curve to

encode_to_curve in the specification to align itself with the nomenclature used in RFC 9380.

Recommendation

Consider renaming this function to align with the current specification, or adding a comment

clarifying that this should not be used as a generic-purpose hash function.

Location

akd_core/src/ecvrf/ecvrf_impl.rs

Retest Results

2023-09-20 – Fixed

As part of PR 401 (commit 78a5fd5), the hash_to_curve() function was renamed to

encode_to_curve() , thereby fixing this finding.

Info

29 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L224
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L224
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs#L224
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15#section-5.4.1.1
https://www.ietf.org/rfc/rfc9380.html
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/pull/401
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766
https://github.com/facebook/akd/pull/401/commits/78a5fd55e1368067099eecd46057eb8ce1c40766

Improved Error Messages When Auditing

History Proofs

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008327-9JD

Component akd_core

Category Other

Status Fixed

Impact

Poorly defined error messages may have hindered future debugging efforts or affected the

reputation of the project.

Description

The function key_history_verify() contains error messages that are not aligned with the

tone and style of other messages in the library:

Figure 23: key_history_verify() in akd_core/src/verify/history.rs

Recommendation

For consistency, it is recommended to use more neutral, informative statements to the caller,

which would better align with the rest of the library; e.g.:

"No update proofs included in the proof of user {akd_label:?} at epoch

{current_epoch:?}!" (line 63).

"Non-existence of next few proof of user {:?}'s version {:?} at epoch {:?} does not

verify" (line 127).

Location

akd_core/src/verify/history.rs

Retest Results

2023-09-20 – Fixed

As part of PR 404 (commit bf7eefd), the identified error messages were revised to match

the tone and style of the rest of the library, thereby fixing this issue.

Info

•

•

return Err(VerificationError::HistoryProof(format!("Why did you give me

consecutive update proofs without version numbers decrementing by 1? Version

{} = {}; version {} = {}",

count, proof.update_proofs[count].version,

count-1, proof.update_proofs[count-1].version

)));

...

return Err(VerificationError::HistoryProof(format!(

"Why are your versions decreasing in updates and epochs not?!,

epoch = {}, previous epoch = {}",

update_proof.epoch, previous_update_epoch

)));

30 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L67-L99
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L67-L99
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L63
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs#L127-L128
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/verify/history.rs
https://github.com/facebook/akd/pull/404/commits/bf7eefd2fa8cc3433b42ee22ae67d8be4817beb8
https://github.com/facebook/akd/pull/404/commits/bf7eefd2fa8cc3433b42ee22ae67d8be4817beb8
https://github.com/facebook/akd/pull/404/commits/bf7eefd2fa8cc3433b42ee22ae67d8be4817beb8

Minor Optimization When Computing Longest

Prefix

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008327-CUF

Component akd_core

Category Other

Status Fixed

Impact

The implemented approach may have been marginally slower due to a missing early abort

condition.

Description

The function get_longest_common_prefix() could be optimized to return early when both

labels are empty, as this condition does not rely on any preceding intermediate value within

the function:

Figure 24: get_longest_common_prefix() in akd_core/src/types/node_label/mod.rs

The highlighted lines could be moved to the top of the function.

Recommendation

Refactor the function to return early when both labels are empty.

Location

akd_core/src/types/node_label/mod.rs

Info

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

/// Takes as input a pointer to the caller and another [NodeLabel],

/// returns a NodeLabel that is the longest common prefix of the two.

pub fn get_longest_common_prefix<TC: Configuration>(&self, other: NodeLabel) -> Self {

let shorter_len = if self.label_len < other.label_len {

self.label_len

} else {

other.label_len

};

let mut prefix_len = 0;

while prefix_len < shorter_len

&& self.get_bit_at(prefix_len) == other.get_bit_at(prefix_len)

{

prefix_len += 1;

}

let empty_label = TC::empty_label();

if *self == empty_label || other == empty_label {

return empty_label;

}

self.get_prefix(prefix_len)

}

31 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L97-L118
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L97-L118
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs

Retest Results

2023-09-20 – Fixed

As part of PR 408 (commit 9280352), the identified empty label check was moved to the

start of the function, thereby fixing this finding.

32 / 40 – Finding Details

https://github.com/facebook/akd/pull/408/
https://github.com/facebook/akd/pull/408/commits/92803526164ea5ac4944df2957917be049913a3b
https://github.com/facebook/akd/pull/408/commits/92803526164ea5ac4944df2957917be049913a3b
https://github.com/facebook/akd/pull/408/commits/92803526164ea5ac4944df2957917be049913a3b

Potentially Confusing Behavior for NodeLabels

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008327-MPR

Component akd_core

Category Other

Status Fixed

Impact

Inconsistent handling of bits beyond the set number of bits in NodeLabel structures may

have caused future issues or confusion.

Description

The NodeLabel structure contains a 32-byte array, and a length value that indicates the

length of the binary string stored within the array, in bits:

Figure 25: compute_fresh_azks_value() in akd_core/src/types/node_label.rs

Bits beyond the set label_len bits are generally ignored for the purposes of organizing the

Merkle tree that contains the NodeLabel s. However, the additional bits in the array may be

included when hashing the NodeLabel s, and so they are sometimes specified, such as in the

case of the empty_label , which has label_len = 0 and label_val = [1u8;32] (in the

whatsapp_v1 configuration).

In the codebase, a number of functions defined to interact with NodeLabel structures

provide logic that operates on the bits beyond label_len bits in potentially unexpected

ways:

The function get_bit_at() is documented to /// Returns the bit at a specified index,

and a 0 on an out-of-range index . This may cause confusion if it is called on values

beyond label_len that are set, such as the set bits in an empty_label node. Note that

get_bit_at() does not currently get called on out-of-bound bits within the codebase.

The function get_prefix(len) returns a prefix of length len of the current NodeLabel and

sets all other bits of the label_val array to 0 . This is called in the get_prefix_ordering()

function:

Figure 26: akd_core/src/types/node_label/mod.rs

Info

36

37

38

39

•

•

198

199

200

201

202

203

204

205

206

207

208

/// Stores a binary string as a 32-byte array of `u8`s

pub label_val: [u8; 32],

/// len keeps track of how long the binary string is in bits

pub label_len: u32,

/// Gets the prefix ordering of other with respect to self, if self is a prefix of

other.

/// If self is not a prefix of other, then this returns [PrefixOrdering::Invalid].

pub fn get_prefix_ordering(&self, other: Self) -> PrefixOrdering {

if self.get_len() >= other.get_len() {

return PrefixOrdering::Invalid;

}

if other.get_prefix(self.get_len()) != *self {

return PrefixOrdering::Invalid;

}

PrefixOrdering::from(other.get_bit_at(self.get_len()))

}

33 / 40 – Finding Details

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L27-L40
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L27-L40
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L198-L208
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/types/node_label/mod.rs#L198-L208

Note that if self is a 0-length array with some “out-of-bound” bits set to 1, such as the

empty_label , this will return PrefixOrdering::Invalid despite the fact a 0-length label is

a prefix of every label, which may be confusing behavior. This scenario does not currently

seem to occur within the codebase, as the get_prefix_ordering function only gets called

on computed prefixes, and the empty_label node is a special leaf node that can only

occur as a child of the root node.

However, the behavior of these functions on edge values is not very well documented and

may cause confusion if they are used in different settings in the future.

Recommendation

Ensure that the handling of the out-of-bound bits is consistent throughout the codebase,

and does not cause confusion. In particular,

Update get_bit_at() to return either the correct value for out-of-bound bits, or an error

if this behavior is not supported

Update get_prefix_ordering() to ignore out-of-bound bits when determining the prefix

ordering

Retest Results

2023-09-20 – Fixed

As part of PR 407 (commit bab0b5e), the get_bit_at() function was updated to return an

error for any index beyond the label_len . Additionally, the get_prefix_ordering() function

has been updated to ignore out-of-bound bits when comparing the prefixes:

As such, this finding is considered fixed.

•

•

if other.get_prefix(self.get_len()) != self.get_prefix(self.get_len()) {

// Note: we check self.get_prefix(self.get_len()) here instead of just *self

// because equality checks for a [NodeLabel] do not ignore the bits of label_val set

// beyond label_len.

return PrefixOrdering::Invalid;

}

34 / 40 – Finding Details

https://github.com/facebook/akd/pull/407
https://github.com/facebook/akd/pull/407/commits/bab0b5e542fba169c9a4fa727dde1f466641a254
https://github.com/facebook/akd/pull/407/commits/bab0b5e542fba169c9a4fa727dde1f466641a254
https://github.com/facebook/akd/pull/407/commits/bab0b5e542fba169c9a4fa727dde1f466641a254

4 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these recommendations

are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a

small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability, as

well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

35 / 40 – Finding Field Definitions

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

36 / 40 – Finding Field Definitions

5 Engagement Notes

This section consists of notes and observations from the review that do not represent

security issues, but that may be of interest to the team at Meta.

Suboptimal VRF Computations

The handling of VRF public keys (in the proof verifier, i.e. client-side) performs some

computations redundantly. Namely, in akd_core/src/ecvrf/ecvrf_impl.rs, when a public key is

decoded from bytes, CompressedEdwardsY::decompress() is called (line 169); the process

involves an inverse square root computation, and is relatively expensive (though less

expensive than a curve point multiplication by a scalar). After some validation, ed25519_Publi

cKey::from_bytes() is invoked on the input; this curve25519-dalek call will internally use Com

pressedEdwardsY::decompress() again, on the same input as previously. Then, whenever the

public key is used in a VRF output validation, the public key bytes are decompressed a third

time (akd_core/src/ecvrf/ecvrf_impl.rs, line 196). In total, if n VRF output validations are

performed against the same VRF public key, then the public key bytes are decompressed

n+2 times, instead of just once.

Ideally, the VRFPublicKey type would include a cached copy of the decoded curve point, so

that multiple decompressions are not needed. The ed25519_PublicKey type is an alias on

curve25519-dalek’s ed25519_dalek::VerifyingKey , which already contains such a cached

copy, but that point is not made accessible to callers (it is only pub(crate)) and akd_core

uses ed25519_PublicKey only as a generic container for 32 bytes.

Client Response

During the retest, Meta provided the following response to the above note:

Unfortunately, I don’t think we have a good way of addressing this without

expanding the internals of ed25519_dalek::VerifyingKey into ecvrf_impl.rs. Ideally,

the ed25519_dalek library would expose a function to obtain underlying

EdwardsPoint from VerifyingKey, but it does not at the moment. Probably what we

will opt to do is wait until this is introduced, and for the moment just take the

performance hit of doing decompression per call to verify().

37 / 40 – Engagement Notes

https://github.com/facebook/akd/blob/be1055ee8a2b5291d84206592d8f46b7f042bbe1/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/facebook/akd/blob/be1055ee8a2b5291d84206592d8f46b7f042bbe1/akd_core/src/ecvrf/ecvrf_impl.rs
https://github.com/dalek-cryptography/curve25519-dalek/blob/c8d1d400f1f6fec7bf1c2bd5a0be8349ac5d8ee6/ed25519-dalek/src/verifying.rs#L164
https://github.com/facebook/akd/blob/be1055ee8a2b5291d84206592d8f46b7f042bbe1/akd_core/src/ecvrf/ecvrf_impl.rs#L196
https://github.com/facebook/akd/blob/be1055ee8a2b5291d84206592d8f46b7f042bbe1/akd_core/src/ecvrf/ecvrf_impl.rs#L196
https://github.com/dalek-cryptography/curve25519-dalek/blob/c8d1d400f1f6fec7bf1c2bd5a0be8349ac5d8ee6/ed25519-dalek/src/verifying.rs#L58
https://github.com/dalek-cryptography/curve25519-dalek/blob/c8d1d400f1f6fec7bf1c2bd5a0be8349ac5d8ee6/ed25519-dalek/src/verifying.rs#L58
https://github.com/dalek-cryptography/curve25519-dalek/blob/c8d1d400f1f6fec7bf1c2bd5a0be8349ac5d8ee6/ed25519-dalek/src/verifying.rs#L58

6 Hashing Strategy for AKD and Merkle-

Patricia Trees

As part of this review, the Merkle-Patricia tree constructions utilized in akd were compared

against their corresponding academic references to ensure that any differences or

modifications did not introduce new vulnerabilities. This section summarizes these

differences but does not identify any attack or vulnerability in the implemented approaches.

Overview

Per the akd library README.md:

This implementation is based off of the protocols described in SEEMless, with ideas

incorporated from Parakeet.

SEEMless builds a verifiable key directory (VKD) from append-only zero-knowledge sets

(aZKS), which are in turn constructed from append-only strong accumulators (aSA). The

security of the underlying aSA primitive is based on previous work in Authentic Time-Stamps

for Archival Storage3 by Oprea and Bowers.

At their core, these approaches rely on a combination of Merkle (hash) trees and Patricia

(prefix) trees. It is well known that a naive construction of a Merkle tree may be susceptible

to a second-preimage attack if the hash function used on leaves is not distinct from the

hash function used on internal nodes. The Merkle-Patricia construction leveraged by the

above protocols is shown to be secure if the chosen hash function provides “everywhere

second-preimage resistance”, which is a theoretically weaker property than full collision

resistance. The aSA construction cited above chooses to specify the stronger and more

widely cited property of full collision resistance as the necessary property of the hash

function.

The hashing strategy utilized is as follows, where DS is a domain separator string:

Leaf nodes: H(DS | label | value)

Parakeet extends this as: H(H(label | value) | epoch)

Internal nodes: H(DS | label | left.hash | right.hash | left.label | right.label)

Parakeet specifies: H(left.hash | right.hash | left.label | right.label)

The akd library provides two implementations of the above via its two supported

configurations: WhatsAppV1Configuration and ExperimentalConfiguration .

WhatsApp Configuration

The library defines WhatsAppV1Configuration to implement the chosen hashing strategy. For

leaf nodes, the hash function H is implemented as vanilla BLAKE3:

Figure 27: hash() in akd_core/src/configuration/whatsapp_v1.rs

For a leaf node, the resulting hash is computed as H(H(label | value) | epoch) via the

functions generate_commitment_from_nonce_client() , hash_leaf_with_value() , and hash_leaf

_with_commitment() . Notably, this does not contain a domain separation string.

•

◦

•

◦

38

39

40

fn hash(item: &[u8]) -> crate::hash::Digest {

::blake3::hash(item).into()

}

3. Alina Oprea and Kevin D Bowers. 2009. Authentic time-stamps for archival storage. In European

Symposium on Research in Computer Security. Springer, 136–151; available via ePrint.

38 / 40 – Hashing Strategy for AKD and

Merkle-Patricia Trees

https://github.com/facebook/akd/blob/v0.9.0/README.md
https://github.com/facebook/akd/blob/v0.9.0/README.md
https://eprint.iacr.org/2018/607
https://eprint.iacr.org/2023/081
https://eprint.iacr.org/2009/306
https://eprint.iacr.org/2009/306
https://eprint.iacr.org/2009/306
https://eprint.iacr.org/2009/306
https://en.wikipedia.org/wiki/Merkle_tree#Second_preimage_attack
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs#L38-L40
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs#L38-L40
https://eprint.iacr.org/2009/306
https://eprint.iacr.org/2009/306

For internal nodes, the resulting hash is computed as H(H(left.hash | left.label) |

H(right.hash | right.label)) via the following:

Figure 28: compute_parent_hash_from_children() in akd_core/src/configuration/whatsapp_v1.rs

Notably, this differs from the generic aSA definition in its lack of domain separation and lack

of inclusion of the internal node’s label, as well as using an HMAC-like construction instead

of concatenation.

Experimental Configuration

The ExperimentalConfiguration provides an alternate hashing strategy. Notably, the

leveraged hash function H is implemented using BLAKE3 with a domain separator:

Figure 29: hash() in akd_core/src/configuration/experimental.rs

Although the Experimental configuration leverages the same hashing approach as the

WhatsApp configuration, the inclusion of the domain separator in every call to the hash

function results in a leaf hash computed as H(DS | H(DS | label | value) | epoch) .

For internal nodes, the resulting hash is computed as H(DS | left.hash | left.value |

right.hash | right.value) via the following:

Figure 30: compute_parent_hash_from_children() in akd_core/src/configuration/experimental.rs

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

39

40

41

42

43

44

45

130

131

132

133

134

135

136

137

138

139

140

/// Computes the parent hash from the children hashes and labels

fn compute_parent_hash_from_children(

left_val: &AzksValue,

left_label: &[u8],

right_val: &AzksValue,

right_label: &[u8],

) -> AzksValue {

AzksValue(Self::hash(

&[

Self::hash(&[left_val.0.to_vec(), left_label.to_vec()].concat()),

Self::hash(&[right_val.0.to_vec(), right_label.to_vec()].concat()),

]

.concat(),

))

}

fn hash(item: &[u8]) -> crate::hash::Digest {

// Hash(domain label || item)

let mut hasher = blake3::Hasher::new();

hasher.update(L::domain_label());

hasher.update(item);

hasher.finalize().into()

}

/// Computes the parent hash from the children hashes and labels

fn compute_parent_hash_from_children(

left_val: &AzksValue,

left_label: &[u8],

right_val: &AzksValue,

right_label: &[u8],

) -> AzksValue {

AzksValue(Self::hash(

&[&left_val.0, left_label, &right_val.0, right_label].concat(),

))

}

39 / 40 – Hashing Strategy for AKD and

Merkle-Patricia Trees

https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs#L139-L153
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/whatsapp_v1.rs#L139-L153
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs#L39-L45
https://github.com/facebook/akd/blob/v0.9.0/akd_core/src/configuration/experimental.rs#L39-L45
https://github.com/facebook/akd/blob/ae9ae6089c05f5dc170309194f7892e808f3f281/akd_core/src/configuration/experimental.rs#L130-L140
https://github.com/facebook/akd/blob/ae9ae6089c05f5dc170309194f7892e808f3f281/akd_core/src/configuration/experimental.rs#L130-L140

This differs from the generic aSA definition by not including the label of the internal node, as

well as swapping the order of some hash inputs.

Summary

To summarize the hashing approaches used in the reference paper versus the reviewed

implementation are as follows:

The following remarks can be made from the above:

The chosen hash function of BLAKE3 will provide the necessary collision resistance for

the soundness of the underlying aSA for each of the above hashing strategies.

The hashing strategy for leaf nodes vs interior nodes will prevent second-preimage

attacks against the underlying Merkle tree for both configuration types.

The lack of domain separation in the WhatsApp configuration does not appear to

introduce a meaningful attack. There is no other envisioned context in which the resulting

hash could be useful to an attacker, and any leaf hash will not be valid at a different

location of the tree.

Omitting the interior label from the hash does not appear to introduce any meaningful

attack. Any attempt to modify this label would alter the hash computed by the parent or

would alter the derived labels of the nodes below it, which would alter the root hash of

the tree.

The hashing strategy for interior nodes in WhatsApp is distinct compared to the others

but incorporates the same information from each child and should provide no advantage

to an attacker.

Therefore, while there is divergence in hashing strategy between the two published

references and between the two implemented approaches, none of the differences appear

to provide an attacker with any additional advantage in forging proofs or compromising the

soundness of the approach.

•

•

•

•

•

Leaf Nodes:

aSA: H(DS | label | value)

Parakeet: H(H(DS | label | value) | epoch)

WhatsApp: H(H(label | value) | epoch)

Experimental: H(DS | H(DS | label | value) | epoch)

Interior Nodes:

aSA: H(DS | label | left.hash | right.hash | left.label | right.label)

Parakeet: H(left.hash | right.hash | left.label | right.label)

WhatsApp: H(H(left.hash | left.label) | H(right.hash | right.label))

Experimental: H(DS | left.hash | left.label | right.hash | right.label)

40 / 40 – Hashing Strategy for AKD and

Merkle-Patricia Trees

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Table of Findings
	Finding Details
	Multiple Key Updates During Epoch Results in Invalid State
	VRF Hash to Curve Function May Incorrectly Return the Identity Point
	VRF Expanded Private Key Not Fully Zeroized on Drop
	VRF Verifier Will Not Reject Public Keys with Low Order
	VRF Hash To Curve Accepts Non-Canonical Encodings
	Dangerous Public API Functions
	Malformed Input May Crash Client Applications
	Malformed VRF Proof May Crash Client Applications
	Malformed History Proof May Crash Client Applications
	VRF Draft Specification Now Published as RFC 9381
	Incorrect Function Documentation for get_commitment_nonce() and compute_fresh_azks_value()
	The hash_to_curve() Function Should be Renamed encode_to_curve()
	Improved Error Messages When Auditing History Proofs
	Minor Optimization When Computing Longest Prefix
	Potentially Confusing Behavior for NodeLabels

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes
	Hashing Strategy for AKD and Merkle-Patricia Trees

