

© Copyright 2014 NCC Group

An NCC Group Publication

“SS-Hell: the Devil is in the details”

Or

“How organisations can properly configure SSL

services to ensure the integrity and

confidentiality of data in transit”

Prepared by:

Will Alexander

Jerome Smith

NCC Group | Page 2 © Copyright 2014 NCC Group

Contents
1 Introduction .. 3
2 Protocols .. 3
3 Cipher Suites ... 4
4 Certificates ... 5

4.1 Self-Signed or Untrusted Certificates ... 5
4.2 Mismatched Hostnames ... 6
4.3 Wildcard Certificates ... 6
4.4 Extended Validation Certificates .. 7
4.5 Certificate Validity Period ... 7
4.6 Revoked Certificates .. 7
4.7 Certificates Signed Using Weak Algorithms or Containing a Short Key .. 8

5 Vulnerabilities... 9
5.1 CVE-2009-3555 (SSL Session Renegotiation Vulnerability) .. 9
5.2 CVE-2011-3389 (BEAST)... 9
5.3 CVE-2012-4929 (CRIME) ... 9
5.4 CVE-2014-0160 (Heartbleed) ... 10
5.5 CVE-2014-0224 (ChangeCipherSpec) ... 10
5.6 CVE-2014-3566 (POODLE) ... 10

6 HTTP Considerations .. 11
6.1 Reversion to HTTP Post-Authentication ... 11
6.2 Mixed Content .. 11
6.3 HTTP Strict Transport Security Headers .. 12
6.4 Secure Cookies .. 12
6.5 Cacheable HTTPS Content .. 13

7 Conclusion ... 13

Document History

Issue No. Issue Date Change Description
1.0 06-11-2014 Initial release
1.1 27-11-2014 Additional advice added

NCC Group | Page 3 © Copyright 2014 NCC Group

1 Introduction

Penetration test reports commonly contain mention of vulnerabilities in SSL/TLS (hereafter referred
to as just SSL). In many cases, this is due to system administrators not understanding the details of
these services’ configuration, and assuming that simply using SSL provides security. The issues
identified during penetration tests are usually low in severity, as an average attacker would find them
difficult to exploit, but they should be taken seriously to ensure that data in transit is properly
secured.

It is worth noting that as well as providing confidentiality and integrity, SSL (when implemented well)
also provides organisations with a means to demonstrate to users that they can be trusted to handle
their information. This should not be overlooked as organisations increasingly use security to
differentiate themselves from their competition.

In this whitepaper we discuss how organisations can avoid SSL issues commonly found during
penetration tests, ensure that data in transit is properly secured and ultimately instil in users a sense
of confidence that their information is adequately protected.

2 Protocols

SSL and TLS are cryptographic protocols designed to provide communication security on the
Internet. Without these protocols, e-commerce and other activities on the Internet requiring
confidentiality and integrity would not be possible. There are a number of different versions of SSL
and TLS, with newer versions fixing security vulnerabilities in those that came before. It is worth
noting the technicality that in 1999 SSL was superseded by TLS, which is an active protocol under
constant review; in contrast, SSL will never be updated.

 SSL version 2 must not be used by SSL services because it suffers from several serious

cryptographic flaws and, as such, has been deprecated for a number of years.

SSL version 2 is known to suffer from a number of problems
1
 including:

 No protection from man-in-the-middle attacks during the handshake.

 Weak message authentication relying on the MD5 hash function.

 The same cryptographic keys used for message authentication and encryption.

 Vulnerability to truncation attacks by forged TCP FIN packets.

 SSL version 3 must not be used by SSL services. Although SSLv3 has many significant

security advantages over SSLv2, such as using key-based message authentication that also

protects the handshake, TLS nonetheless uses more robust algorithms. This gap between

SSLv3 and TLS was highlighted by an attack nicknamed “POODLE”, which was publicly

disclosed in October 2014 and is covered separately in the “Vulnerabilities” section. It is also

noteworthy that SSL version 3 is not FIPS 140-2 compliant
2
.

 TLS 1.0 should not be used by SSL services. TLS 1.0 was defined as an upgrade to SSL

3.0, and can be considered to be SSL version 3.1. That being said, the RFC
3
 states that “the

differences between this protocol and SSL 3.0 are not dramatic, but they are significant

enough to preclude interoperability between TLS 1.0 and SSL 3.0”. For this reason TLS 1.0

includes a mechanism that allows a TLS implementation to downgrade the connection to

SSL version 3, and as a result security is weakened.

1
 https://tools.ietf.org/html/rfc6176

2
 http://csrc.nist.gov/publications/nistpubs/800-135-rev1/sp800-135-rev1.pdf

3
 https://www.ietf.org/rfc/rfc2246.txt

http://csrc.nist.gov/publications/nistpubs/800-135-rev1/sp800-135-rev1.pdf
https://www.ietf.org/rfc/rfc2246.txt

NCC Group | Page 4 © Copyright 2014 NCC Group

TLS 1.0 is also vulnerable to the BEAST attack
4
, which is covered separately in the

“Vulnerabilities” section. Although browser vendors produced workarounds, later versions of
TLS were not inherently vulnerable to this cipher block chaining attack since the implicit
initialisation vector (IV) used in earlier versions was replaced with an explicit IV

5
.

Therefore, TLS versions 1.1 and 1.2 should be used where possible. There are currently no
known serious security issues affecting these versions but only v1.2 supports some of the more
modern cipher suites that add improvements such as the use of SHA-256 for message integrity. As
older browsers may not fully support these protocols, they should therefore be preferred to allow
modern browsers to use them, with TLSv1 cipher suites acting as a fallback. The only significant
reason to continue to support SSLv3 is to cover Internet Explorer version 6, which does not support
TLSv1 by default – and the POODLE attack has put that reasoning under close scrutiny. Thankfully,
this browser is no longer widely used

6
.

3 Cipher Suites

Cipher suites specify various algorithms and properties by which data being sent is authenticated
and encrypted. It is vitally important that only strong cipher suites are used, to provide resilience
against attack. There are a number of cipher suites that are deemed insecure, and their use is
discouraged:

 Null ciphers must never be used by SSL services. They offer no encryption whatsoever.

They are disabled by default in most SSL implementations, and many clients are unlikely to

support them.

 Cipher suites offering no authentication must never be used by SSL services. These

ciphers offer no authentication, instead using anonymous Diffie-Hellman key exchanges, and

as such are vulnerable to man-in-the-middle attacks. Keys exchanged between client and

server are not authenticated, and can be altered by an attacker able to intercept and tamper

with traffic between the two parties.

 EXPORT ciphers must not be used by SSL services as they are, by design, weak. The key

lengths used by these ciphers (usually 40 or 56 bits) are such that they can be cracked

within a reasonable amount of time using sophisticated, but commercially available,

hardware. These ciphers were originally intended to comply with US export laws, but

nowadays these restrictions do not apply.

 Similarly, DES ciphers must not be used by SSL services since they are based on the

deprecated Data Encryption Standard (DES) and use keys with effective lengths of only 56

bits. (In reality, the key length used by DES is 64 bits, but only 56 are used for encryption.)

 Triple DES ciphers should not be used as, while they nominally use a 168-bit key, they

have been shown to provide at best an effective key strength of 112 bits
7
, which is less than

the recommended 128 bits. Cipher suites that use 3DES are identifiable by the “3DES” or

“CBC3” label. (Triple DES is also relatively slow, so there may be performance benefits from

dropping support for it.)

 RC4 ciphers should not be used by SSL services since they are based on a deprecated,

and theoretically weak, algorithm. Attacks against communications encrypted using these

ciphers are currently infeasible, but (as cryptographers love to quote) “attacks always get

4
 https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839

5
 http://tools.ietf.org/html/rfc4346#appendix-F.3

6
 IE6 disappeared from the top ten W3Counter list (http://www.w3counter.com/globalstats.php) in January 2012;

more information can be found at https://www.modern.ie/en-us/ie6countdown)
7
 http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
http://tools.ietf.org/html/rfc4346#appendix-F.3
http://www.w3counter.com/globalstats.php
https://www.modern.ie/en-us/ie6countdown
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

NCC Group | Page 5 © Copyright 2014 NCC Group

better; they never get worse”
8
. These attacks are thus only going to become more practical

in the future, and some browser vendors, including Microsoft
9
, have begun to take steps to

discourage the use of RC4.

Forward Secrecy is provided by a number of cipher suites and their use is encouraged. They can
be identified by the keyword “ephemeral”, which in the cipher suite nomenclature is seen as an
additional “E” to the abbreviation of the key exchange mechanism. For example, DHE in contrast
with DH (Diffie-Hellman) or ECDHE in contrast with ECDH (Elliptic Curve Diffie-Hellman). These
cipher suites should be preferred wherever possible because they:

 Generate random public keys per session for the purposes of key agreement; and

 Do not use any sort of deterministic algorithm when doing so.

Therefore, even if an attacker is able to obtain the private key, they would be unable to decrypt
messages from earlier sessions. It should be noted that cipher suites that afford perfect secrecy add
a computational overhead to the set-up of the connection, but those that employ elliptic curve
cryptography are currently the most efficient

10
.

Servers offering SSL services are able to support a number of cipher suites to maintain compatibility
with different clients. They can be arranged in order of preference to encourage the use of more
robust cipher suites by clients that support them. Mozilla

11
 offers a resource on cipher suites, which

includes information on ordering.

4 Certificates

SSL certificates for web servers provide a mechanism to bind together a domain name, a public key
and an organisation that exists in the physical world. The certificates are cryptographically signed by
trusted third parties, known as Certificate Authorities (CAs), which verify the organisation owns the
associated domain name. Client software explicitly trusts the CAs and, therefore, implicitly trusts the
identity of any server using a certificate signed by a trusted CA

12
. Of course, whether or not the CA’s

verification checks are robust or the authenticated endpoint is trustworthy in other respects is
another matter altogether. It’s important to note that some certificates are just “Domain Validated”
(DV), where the CA only verifies that the owner controls an email address within the domain
specified in the certificate. Issuing DV certificates does not entail any checks on the organisation, in
contrast to “Organisation Validated” (OV) certificates. While often cheaper, it is recommended that
organisations should not use DV certificates in production environments.

4.1 Self-Signed or Untrusted Certificates

Not all certificates are required to be signed by a trusted CA. Certificates can be signed by any third
party, or even self-signed by the server hosting the SSL service. However, these certificates would
not be implicitly trusted by client software because they have not been signed by a recognised
authority, and typically a warning message would be displayed warning the user that the server’s
identity cannot be verified.

Many users are unlikely to be able to distinguish between warnings about the genuine but
cryptographically untrusted certificate and those triggered by spoofed certificates, thus making them

8
 http://tools.ietf.org/html/rfc4270#section-6

9
 http://technet.microsoft.com/en-gb/security/advisory/2868725

10
 http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html#some-benchmarks

11
 https://wiki.mozilla.org/Security/Server_Side_TLS

12
 Usually the certificate used to sign a website’s SSL certificate is an intermediate CA, which is only trusted

because it has been signed by a root CA. Only root CAs are explicitly trusted by browsers, while any certificate

in a chain of trust that terminates at a root CA is implicitly trusted.

http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
http://tools.ietf.org/html/rfc4270#section-6
http://technet.microsoft.com/en-gb/security/advisory/2868725
https://wiki.mozilla.org/Security/Server_Side_TLS

NCC Group | Page 6 © Copyright 2014 NCC Group

susceptible to man-in-the-middle attacks. Therefore, self-signed certificates, or certificates
signed by an untrusted third party, must not be used on SSL services accessible from the
Internet.

Ideally, all SSL certificates should be signed by a trusted CA, but doing so for all SSL services
hosted internally could be expensive. A risk assessment should be performed to determine whether
the cost of having genuine certificates for every internal SSL service is out-weighed by the potential
impact of a man-in-the-middle attack.

Alternatively, browsers can be instructed to explicitly trust self-signed or untrusted certificates if they
are known to be genuine, to avoid warnings being generated.

4.2 Mismatched Hostnames

It is important to mention that the underlying encryption used to protect communications is
unaffected by the use of self-signed or untrusted certificates. The issue lies in the fact that the user is
unable to verify the identity of the server hosting the SSL service. In other words, the data sent to the
server will be encrypted but the end-point has not been authenticated. Similarly, when the Common
Name (CN) field of the certificate does not match the hostname on which the SSL service is running,
clients will generate a warning because they are unable to verify the server’s identity. Again, this
does not affect the encryption, but does undermine the security of the service, since the identity of
the server cannot be verified. The likelihood of man-in-the-middle attacks succeeding increases if
users become accustomed to clicking through browser warnings. Therefore, the CN field of the
certificate must match the fully-qualified domain name of the server running the SSL service.

If a server has multiple hostnames, then there are two solutions:

 Multiple certificates can be used. For example, consider a web application accessible at

https://foo.nccgroup.com and https://bar.nccgroup.com. One certificate should be acquired

for foo.nccgroup.com, and a second certificate for bar.nccgroup.com. In both cases, the

hostname would be present in the Subject's Common Name (CN). This relies on the browser

supporting the Server Name Indication (SNI) extension, which indicates the hostname the

client is requesting during the TLS handshake. Without this, the server would not know

which certificate to send to the client.

 A single certificate can carry Subject Alternative Names (SANs), which provide a specific list

of hostnames for which the certificate is valid. In the previous example, the certificate could

list the Subject's CN as foo.nccgroup.com, with bar.nccgroup.com as a Subject Alternative

Name (in fact foo.nccgroup.com should also be listed in the Subject Alternative Name list to

conform to RFC 6125). These certificates are sometimes referred to as "multiple domain

certificates". This method also allows one certificate to be installed on different servers.

A common pitfall of certificates is that they are invalid if the hostname is missing the “www”

prefix, which users often leave out to save typing. This can be avoided if the shortened

hostname is added as a SAN.

4.3 Wildcard Certificates

An alternative to SANs is the use of a wildcard certificate. A wildcard certificate can be used for an
SSL service running on any host matching the Common Name (CN) field. For example, if the CN
field is *.nccgroup.com, then the certificate could be used on foo.nccgroup.com or bar.nccgroup.com.
The use of SSL wildcard certificates minimises certificate management costs, but their use is not
advised. Care should be taken if using wildcard certificates to reduce operational costs.

If a server using a wildcard certificate is compromised, the certificate and its corresponding private
key could be stolen and used to target any of the domains covered by the wildcard. For example, an

NCC Group | Page 7 © Copyright 2014 NCC Group

attacker could use a man-in-the-middle attack to proxy the TLS traffic, compromising the
confidentiality and integrity of the data, or use a DNS attack to direct victims to spoofed sites that
would look legitimate to users. Wildcard certificates can be thought to violate the principle of least
privilege, since they require users to implicitly trust all hosts in the domain.

Finally, note that wildcard certificates cannot achieve Extended Validation (EV) status
13

, and
should not be used.

4.4 Extended Validation Certificates

Extended Validation (EV) certificates do not offer any additional technical security for SSL services,
but do increase user confidence in the service. This is because organisations are required to
undergo more rigorous checks to ensure that the certificate requester is the verified legal entity for
the domain name. Support for EV certificates varies between browsers, but typically a portion of the
address bar will be highlighted green to indicate to users that the site has an EV certificate.

EV certificates, like those used by https://www.nccgroup.com, should be used to increase user
confidence when connecting to a secure site.

4.5 Certificate Validity Period

Expired certificates (that is, certificates used after the timestamp in the “Not Valid After” field) will
also cause clients to generate warnings, making it difficult for many users to distinguish between a
warning about the genuinely expired certificate and one triggered by spoofed certificates. Once
again, this undermines the trust placed in the secured communications between client and server.

Many high profile organisations have been caught out by letting certificates expire. In May 2014 a
certificate used for one of Apple’s software update servers expired

14
, producing a warning for anyone

trying to connect to it. Although it is clearly in the issuing CA’s commercial interest to remind you to
renew a certificate, it is recommended that organisations try to be proactive by setting reminders to
renew certificates in time.

Similarly, certificates used before the timestamp in the “Not Valid Before” field will cause clients to
generate warnings. Therefore, the current date must fall between the timestamps in the “Not
Valid Before” and “Not Valid After” fields of the certificate.

4.6 Revoked Certificates

Sometimes it might be necessary to revoke a certificate before its expiry date. For example, a large
number of certificates were revoked after it was revealed that exploitation of the Heartbleed
vulnerability could lead to the recovery of a certificate’s private key

15
.

When connecting to a TLS service, clients should verify the revocation status as part of the overall
validity check for the certificate, using either a Certificate Revocation List (CRL) or an Online
Certificate Status Protocol (OCSP) record. CRLs, however, have several problems: they have grown
huge, are updated only periodically, and can take a significant amount of time to download.

OCSP is much more lightweight, as only one record is retrieved at a time, but the request must be
made to a third party OCSP responder, which adds latency. Under some circumstances the request
for the OCSP record might fail completely and clients will generally “fail open” in this event, assuming
the certificate to be valid. A man-in-the-middle attacker in possession of a compromised certificate

13
 https://cabforum.org/wp-content/uploads/EV-SSL-Certificate-Guidelines-Version-1.5.1.pdf (section 9.2.3)

14
 http://www.macrumors.com/2014/05/25/apple-software-update-invalid/

15
 http://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-leaked-private-keys/

https://cabforum.org/wp-content/uploads/EV-SSL-Certificate-Guidelines-Version-1.5.1.pdf
http://www.macrumors.com/2014/05/25/apple-software-update-invalid/
http://blog.cloudflare.com/searching-for-the-prime-suspect-how-heartbleed-leaked-private-keys/

NCC Group | Page 8 © Copyright 2014 NCC Group

can take advantage of this fact by interfering with the OCSP request or response in some way, thus
rendering the check useless. (It is primarily for this reason that Chrome decided to use a proprietary
way of managing revocation driven by its so-called “CRLset”

16
.)

The next advance was to allow the server to send its cached OCSP record during the TLS
handshake, therefore bypassing the OCSP responder. This mechanism saves a roundtrip between
the client and the OCSP responder, and is called OCSP Stapling.

The server will send a cached OCSP response only if the client requests it. Most servers will cache
OCSP responses for up to 48 hours. At regular intervals, the server will connect to the OCSP
responder of the CA to retrieve a fresh OCSP record. The location of the OCSP responder is taken
from the Authority Information Access field of the signed certificate.

There is still the scenario in which an attacker could steal a valid certificate, create a duplicate web
site using the stolen certificate, and disable OCSP stapling. If the client is set to fail silently, then it
will assume that everything is fine and proceed with the connection to the malicious web site.

There are currently two proposals to solve this problem:

 Add a “must staple” assertion to the site's security certificate
17

 Create a new HTTP response header

18

OCSP stapling should be used to prevent clients from accepting revoked certificates, with the
anticipation that proposals such as those above will be implemented in the future to strengthen the
effectiveness of the OCSP mechanism.

4.7 Certificates Signed Using Weak Algorithms or Containing a Short Key

Certificates signed using, or containing, keys with lengths less than 2048 bits are considered
insecure. Industry standards set by the Certification Authority/Browser (CA/B) Forum state that
certificates issued after 01/01/2014 must use keys at least 2048 bits in length

19
. Furthermore, some

browsers
20

 will issue warnings when certificates containing keys less than 2048 bits in length are
encountered.

Such certificates are considered insecure because it might be possible to create spoofed certificates
by brute-forcing the signing key. To brute-force the signing key it would be necessary to factor very
large numbers that form the RSA modulus. Currently, numbers as large as 768 bits have been
factored

21
. Factoring techniques are likely to improve over the coming years so it is prudent to future-

proof current certificates by using 2048-bit keys.

Similarly, certificates signed using weak algorithms such as MD2, MD4, or MD5 are considered
insecure. These algorithms are prone to collision attacks which could be exploited by a determined
attacker to generate another certificate with the same digital signature, thus allowing the attacker to
masquerade as the legitimate SSL service. SHA-1 is also showing its age. Some browser vendors,
such as Microsoft

22
 and Google

23
, have announced plans to “sunset” the algorithm by the end of

2015 or sooner. In order to avoid these warnings, certificates must not be signed using weak
algorithms or contain short keys.

16
 https://www.imperialviolet.org/2014/04/19/revchecking.html

17
 http://tools.ietf.org/html/draft-hallambaker-muststaple-00

18
 http://www.ietf.org/mail-archive/web/tls/current/msg10351.html

19
 https://www.cabforum.org/Baseline_Requirements_V1.pdf (Appendix A)

20
 https://cabforum.org/pipermail/public/2013-September/002233.html

21
 http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm

22
 https://technet.microsoft.com/en-us/library/security/2880823.aspx

23
 http://googleonlinesecurity.blogspot.co.uk/2014/09/gradually-sunsetting-sha-1.html

https://www.imperialviolet.org/2014/04/19/revchecking.html
http://tools.ietf.org/html/draft-hallambaker-muststaple-00
http://www.ietf.org/mail-archive/web/tls/current/msg10351.html
https://www.cabforum.org/Baseline_Requirements_V1.pdf
https://cabforum.org/pipermail/public/2013-September/002233.html
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-challenge-numbers.htm
https://technet.microsoft.com/en-us/library/security/2880823.aspx
http://googleonlinesecurity.blogspot.co.uk/2014/09/gradually-sunsetting-sha-1.html

NCC Group | Page 9 © Copyright 2014 NCC Group

5 Vulnerabilities

A number of vulnerabilities have been identified in the SSL and TLS protocols and their various
implementations. The following is a list of the most serious vulnerabilities disclosed in recent years,
but is by no means an exhaustive list. The latest stable and supported versions of SSL
implementations must be used, wherever possible.

5.1 CVE-2009-3555 (SSL Session Renegotiation Vulnerability)

SSL renegotiation allows clients and browsers to renegotiate how data is secured in transit by
triggering a new SSL handshake. It was initially designed as a mechanism to increase the security of
an ongoing SSL communication, by triggering the renewal of the cryptographic keys, and could be
performed by both client and server. This renewal isn't needed with modern cipher suites but
renegotiation can be used by a server to request a client certificate (in order to perform client
authentication) when the client tries to access specific, protected resources on the server. Therefore,
there is no longer a need for clients to renegotiate a connection. Servers that allow client-initiated
renegotiations are vulnerable to denial of service attacks since the amount of computational
resources required to renegotiate a connection is much greater for the server than it is for the client.
Therefore, SSL services must not support client-initiated renegotiation.

Furthermore, in 2009 a protocol flaw in the renegotiation mechanism was found
24

. This flaw allowed
a man-in-the-middle to inject plaintext at the beginning of a SSL communication. For example, the
attacker could inject an HTTP request into a connection a victim was making in such a way that it
could be authenticated by the victim’s pre-existing cookies. As well as not supporting client-initiated
renegotiations, SSL services should be updated to include a fix that makes session renegotiation
secure (as defined by RFC 5746

25
).

5.2 CVE-2011-3389 (BEAST)

The BEAST (Browser Exploit Against SSL/TLS) exploit is a client-based attack that exploits a
vulnerability in the use of Initialisation Vectors with block ciphers (such as AES) in Cipher Block
Chaining (CBC) mode. The attack would allow a man-in-the-middle attacker to recover plaintext
values by encrypting the same message multiple times.

Most modern browsers are now immune to the BEAST attack, but the server workaround is to either:

 Use ciphers based on RC4, which has its own problems; or

 Support only versions of TLS greater than 1.0.

Wherever possible, the latter is recommended since the theoretical issues with RC4 are likely to be
exploitable in the future.

5.3 CVE-2012-4929 (CRIME)

CRIME (Compression Ratio Info-leak Made Easy) is an exploit that reveals web cookies transmitted
using the HTTPS or SPDY protocols with data compression to perform session hijacking. The attack
works by observing changes in the size of requests, which contain the cookie and variable content
controlled by the attacker. When the size of the compressed content is reduced, it can be inferred
that some part of the injected content is likely to match another part of the request, including the
cookie.

24
 https://community.qualys.com/blogs/securitylabs/2009/11/05/ssl-and-tls-authentication-gap-vulnerability-

discovered
25

 http://tools.ietf.org/html/rfc5746

https://community.qualys.com/blogs/securitylabs/2009/11/05/ssl-and-tls-authentication-gap-vulnerability-discovered
https://community.qualys.com/blogs/securitylabs/2009/11/05/ssl-and-tls-authentication-gap-vulnerability-discovered
http://tools.ietf.org/html/rfc5746

NCC Group | Page 10 © Copyright 2014 NCC Group

The CRIME exploit attacks browsers, and the latest releases are not vulnerable. However, it is
prudent that servers mitigate the threat by disabling HTTPS compression. Regarding SPDY, the
situation is a little more complicated. Firefox tackled the problem by disabling header compression

26
,

which will protect cookies. Chrome also disabled header compression, but then quickly adopted
another trick to regain some of the lost efficiency

27
. It was less clear what the position of other

browsers was (probably because they were not supporting SPDY at the time that the CRIME attack
was disclosed). Until the release of version 4 of SPDY, which is said to tackle CRIME but is still in
development in tandem with HTTP/2, disabling support for SPDY would be the most prudent
approach.

5.4 CVE-2014-0160 (Heartbleed)

Heartbleed is a serious vulnerability in versions of OpenSSL between 1.0.1 and 1.0.1f inclusive (also
1.0.2-beta1). Exploiting this vulnerability allows an attacker to read the contents of the host's
memory, which could compromise usernames and passwords, session cookies, and even the private
key corresponding to a certificate.

5.5 CVE-2014-0224 (ChangeCipherSpec)

This vulnerability, when exploited, allows an attacker acting as a man-in-the-middle to force the use
of weak keys, which ultimately allows them to decrypt traffic between the client and server.

This vulnerability is only exploitable if both the server and client are using vulnerable versions of
OpenSSL. That is, this vulnerability can only be exploited if:

 The server is using a version of OpenSSL less than 1.0.1h; and

 The client is also using a vulnerable version of OpenSSL, namely:

 less than 1.0.1h;

 less than 1.0.0m; and

 less than 0.98za.

Note that many browser vendors do not use OpenSSL for their TLS implementations. The exception
to this is Android, and thus mobile users would be the most likely user-base to be affected by an
attack.

5.6 CVE-2014-3566 (POODLE)

POODLE (Padding Oracle On Downgraded Legacy Encryption) is related to the BEAST attack. It
targets block ciphers in CBC mode within a SSLv3 connection. Like BEAST, there are a number of
caveats that the attacker must fulfil such as being a man-in-the-middle and forcing the victim’s
browser to issue multiple requests to a website of interest. In most cases, SSLv3 will not be selected
by the client and server but it has long been known that a man-in-the-middle can interfere with the
TLS handshake of a victim’s browser to try to force it to use SSLv3 as a fallback. Users in hostile
environments such as open Wi-Fi networks will be more at risk.

Disabling support for SSLv3 is the best solution, as it also affords protection from future
vulnerabilities. Old browsers that support SSLv3 as their highest available protocol will no longer be
able to connect, however. As previously stated, the most notable example of this is Internet Explorer
6 in its default state. If support for SSLv3 is required, it is recommended to apply the
“TLS_FALLBACK_SCSV” mechanism to ensure that clients are not subject to a forced downgrade

26
 https://bugzilla.mozilla.org/show_bug.cgi?id=779413

27
 https://www.imperialviolet.org/2012/09/21/crime.html

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224
https://bugzilla.mozilla.org/show_bug.cgi?id=779413
https://www.imperialviolet.org/2012/09/21/crime.html

NCC Group | Page 11 © Copyright 2014 NCC Group

attack. This works by allowing the browser to signal that it is intentionally attempting to connect with
a lower protocol version than it supports, ensuring that SSLv3 is only used when necessary

28
.

Support for this is currently limited but is expected to increase in the light of the POODLE attack.
OpenSSL added an implementation of TLS_FALLBACK_SCSV in version 1.0.1j.

6 HTTP Considerations

The majority of SSL services exposed will be used to encrypt web traffic between the browser and
web server via HTTPS. There are a number of additional factors to consider when using SSL with
HTTPS.

6.1 Reversion to HTTP Post-Authentication

Some applications, upon successful authentication over an encrypted HTTPS channel, will revert to
using HTTP under the assumption that the username and password are all that needs to be secured
from prying eyes. This is a flawed assumption, as any post-authentication requests and responses,
including session tokens, are transmitted in clear text. This could allow an attacker in a position to
sniff network traffic to eavesdrop on the session, steal the session cookie, and hijack the user’s
active session.

Facebook and Twitter previously contained this flaw until it was infamously exploited by the
Firesheep Firefox extension to hijack users’ sessions

29
.

All post-authentication traffic, as well as the login forms themselves, must be transmitted
over HTTPS, and any attempt to downgrade a request to HTTP should cause the application to
redirect the browser to HTTPS. There is an argument that any application requiring security should
always use HTTPS throughout because any content delivered using HTTP is susceptible to man-in-
the-middle attacks, which could be used to tamper with HTTPS links. This is discussed below.

6.2 Mixed Content

Mixed content issues arise when web applications deliver page content using plaintext HTTP as well
as HTTPS. An attacker would struggle to compromise the content delivered using HTTPS, but
tampering with the plaintext content delivered using HTTP can lead to a range of problems from theft
of data in the page acquired over HTTPS to phishing attacks. Exactly what can be achieved depends
on the context of the insecure content.

One important aspect of this context is the nature of the content being served over HTTP. Clearly,
tampering with images, videos and sound (“passive” content) delivered unencrypted will yield little for
an attacker. However, by tampering with scripts or HTML (“active” content) a man-in-the-middle
attacker may be able to capture sensitive information or hijack sessions – even if subsequent content
is delivered using HTTPS.

Mixed content produces browser warnings that could reduce user confidence in the website, and
some browsers

30
 are now blocking cases of mixed active content, which could lead to functional

side-effects.

All “active” content must be delivered using HTTPS. “Passive” content can be delivered using
HTTP, but ideally all content should be delivered using HTTPS.

28
 A detailed treatment can be found at http://www.exploresecurity.com/poodle-and-the-tls_fallback_scsv-

remedy/
29

 http://codebutler.github.io/firesheep/
30

 https://blog.mozilla.org/tanvi/2013/04/10/mixed-content-blocking-enabled-in-firefox-23/

http://www.exploresecurity.com/poodle-and-the-tls_fallback_scsv-remedy/
http://www.exploresecurity.com/poodle-and-the-tls_fallback_scsv-remedy/
http://codebutler.github.io/firesheep/
https://blog.mozilla.org/tanvi/2013/04/10/mixed-content-blocking-enabled-in-firefox-23/

NCC Group | Page 12 © Copyright 2014 NCC Group

6.3 HTTP Strict Transport Security Headers

The HTTP Strict Transport Security header – literally “Strict-Transport-Security” (STS) – is used to
instruct the browser to access a site only over a secure connection. It also specifies a period of time
during which this instruction is valid.

The header primarily mitigates SSL-stripping man-in-the-middle attacks, made famous by Moxie
Marlinspike in his 2009 BlackHat talk "New Tricks for Defeating SSL in Practice"

31
. This attack

transparently converts links to secure HTTPS resources into insecure HTTP equivalents. This can
only be achieved if the page with the HTTPS links is itself delivered over HTTP. The user can see
that the main page is not encrypted, but has no simple way to determine if and when the site will
switch to a secure connection. The impact is that sensitive data (such as credentials or session
cookies) are leaked over HTTP, which can be sniffed and reused by the attacker. The STS header
prevents this attack by instructing the browser to only access the site using a secure connection. Of
course, this mitigation requires that the user has visited the site over SSL before and has received a
STS directive (unless it features in Chrome’s pre-load list

32
).

Most modern browsers support the Strict-Transport-Security header. Notably absent is Internet
Explorer, but support for this header is expected in an upcoming version

33
.

The HTTP Strict-Transport-Security header should be used, with appropriate directives. A
recommended Strict-Transport-Security HTTP header might look like:

Strict-Transport-Security: max-age= 31536000; includeSubDomains

This example ensures that all connections for the next 31536000 seconds (365 days) must be made
using SSL. The includeSubDomains directive indicates that all subdomains of the site meet the
requirements of the header. It’s also important to note that the header must not be set within a HTML
meta tag as compliant browsers will ignore this (as well as when the header is set within an insecure
HTTP response).

6.4 Secure Cookies

By specifying that a cookie is "Secure", the server can guarantee that conforming browsers will not
send the cookie over unsecured HTTP connections, even if the cookie domain and scope matches
that of the URL being requested. The absence of this flag means that affected cookies are at risk of
being transmitted over unencrypted HTTP connections. Note that setting the Secure flag does not
protect the cookie in all scenarios – for example, without the HttpOnly flag the cookie would be at risk
from cross-site scripting attacks.

All sensitive cookies issued over HTTPS must make use of the Secure flag if they are to be
kept confidential from network eavesdroppers. A correct Set-Cookie HTTP header might look like:

Set-Cookie: JSESSIONID=1A530637289A03B07199A44E8D531427; path=/; HttpOnly; Secure

31
 https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-

SSL.pdf
32

 https://hstspreload.appspot.com/
33

 http://status.modern.ie/httpstricttransportsecurityhsts

https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://hstspreload.appspot.com/
http://status.modern.ie/httpstricttransportsecurityhsts

NCC Group | Page 13 © Copyright 2014 NCC Group

6.5 Cacheable HTTPS Content

Some content delivered using HTTPS is likely to be considered sensitive, and as a result it is
important that browsers are instructed about what should and should not be cached. Unless
otherwise directed, browsers may store a local cached copy of received content, often with the aim
of improving website responsiveness for the end user when the same content is subsequently
requested. However, if sensitive information in application responses is stored in the local cache,
then it could be retrieved by other users, malware, or attackers who have access to the same
computer at a later date.

Cache control directives must be used to instruct browsers (and any intermediary HTTPS proxies)
not to store local copies of any sensitive information. Ideally, the following HTTP headers should be
included in all responses containing sensitive content, which can often be achieved by configuring
the web server to prevent caching for relevant paths within the web root:

Cache-control: no-store, no-cache

Pragma: no-cache

Alternatively, most web development platforms allow control over the web server’s caching directives
from within individual scripts. These directives could be included in the HTML code:

<meta http-equiv='pragma' content='no-cache'>

<meta http-equiv='cache-control' content='no-store'>

Using HTTP headers is preferable, however, as meta directives may not be compatible across all
browsers and platforms, and would not be applicable to a non-HTML response, such as a binary
document format.

7 Conclusion

Configuring SSL services is not as straightforward as some might think, and there is much to
consider when doing so correctly. In short, though, SSL services must (wherever possible and
appropriate):

 Prefer TLS 1.1 and 1.2 cipher suites;

 Disable support for SSLv3 (along with SSLv2);

 Not use ciphers that are known to contain cryptographic weaknesses;

 Use ciphers that provide forward secrecy;

 Not use cipher suites that employ symmetric key lengths less than 128 bits;

 Use a valid OV certificate that:

 Contains a key 2048 bits or more in length;

 Is valid for a specific whitelist of hosts, and

 Is signed by a trusted CA with a key 2048 bits or more in length using a secure

hashing algorithm;

 Not support TLS compression;

 Not allow client-initiated renegotiations; and

 Be fully patched against all known security vulnerabilities.

Furthermore, if the SSL service is HTTPS, then the underlying application must:

 Ensure that all sensitive information is delivered securely;

NCC Group | Page 14 © Copyright 2014 NCC Group

 Ensure that all components of sensitive pages are delivered securely;

 Ensure that no sensitive information is cached by the browser; and

 Ensure that all cookies are marked with the Secure flag.

