
ProxMon

Automating Web Application Penetration Testing

Jonathan Wilkins <jwilkins[at]isecpartners[dot]com>
http://www.isecpartners.com

March 29, 2007

Abstract

Performing a web application penetration test is full of repetitive but essential tasks. ProxMon is an
extensible Python based framework that reduces testing effort, improves consistency and reduces errors.
Its use requires limited additional effort as it processes the proxy logs that you’re already generating and
reports discovered issues. In addition to penetration testing, ProxMon is useful in QA, developer testing
and regression testing scenarios.

Key features:
• automatic value tracing of set cookies, sent cookies, query strings and post parameters across sites
• proxy agnostic
• included library of vulnerability checks
• active testing mode
• cross platform
• open source license
• easy to program extensible python framework

1 Introduction

When I’m conducting a web app pen test, I want to get as much as I can done in an automated manner
because I know that if I try and do it manually I’m certain to miss something. No matter how dedicated
you might be, a few hours of staring at broken HTML and bizarre JSP, ASP, PHP or Perl is going to tax
your brain. When testing a large application, unless your notes are meticulous, by day 4 you’re going to be
wondering if you managed to check every last server for writable directories while authenticated.

Automated tools like Nessus are great for network penetration tests, but if you’re working on web
applications, they don’t have access to all of the pages behind the login form, so their utility is limited. Even
if you give them credentials, they have difficulty parsing pages and executing JavaScript.

Other tools leave a lot in the hands of the auditor. If all you want to do is get rid of maxLength on an
input field or tweak a header, you have your choice of about a hundred different applications and browser
plugins. If you want a little more control and a reasonable log of what you’ve seen, there are only a handful
of proxy tools you can use.

http://www.isecpartners.com 1/20

Proxies give you great insight into how an application works and the good ones will support the following
features:

• SSL transactions

• Proxy chaining

• Log seen transactions

• Allow for manual editing of transactions

• Permit scripting

Most auditors I know use WebScarab, though Paros, Burp, SpikeProxy, Pantera and WebScarab-NG all
support the above features and have varying levels of polish.

The Overview section of the WebScarab web page says:

There is no shiny red button on WebScarab, it is a tool primarily designed to be used by people
who can write code themselves, or at least have a pretty good understanding of the HTTP
protocol.

Think of ProxMon as a first step toward that shiny red button. With ProxMon running alongside WebScarab,
all you have to do is browse the target website to start seeing areas that merit further investigation or actual
vulnerabilities. Using ProxMon while testing parameter tampering will often uncover unrelated flaws that
would otherwise require time consuming careful analysis. It doesn’t replace the mind of an experienced web
application auditor, but it helps you ensure proper coverage when faced with large applications and short
schedules.

2 Usage

Basic usage is trivial. If you run ProxMon at the command line, it will automatically scan your most
recent WebScarab temporary directory and report any discovered issues. If you are currently running Web-
Scarab it will also be placed in monitor mode and continue to report issues as you browse the site.

The results below are from an online (-o) test, which includes passive tests (those which only examine
stored transactions) as well as active tests (which will make outbound network connections to hosts seen in
the transactions to perform further tests).

Here’s an example of what you can expect to see when running the tool:
[∗] s t a r t i n g ProxMon v1 . 0 . 1 8 (http ://www. i s e c p a r t n e r s . com)
[∗] Copyright (C) 2007 , Jonathan Wilkins , iSEC Partners Inc .
[∗] Proxmon comes with ABSOLUTELY NO WARRANTY;
[∗] This i s f r e e so ftware , and you are welcome to r e d i s t r i b u t e i t
[∗] under c e r t a i n cond i t i on s ; s ee accompanying f i l e LICENSE f o r
[∗] d e t a i l s on warranty and r e d i s t r i b u t i o n d e t a i l s .
[∗] Loading support f o r : WebScarab
[∗] Loading Checks . . .
− Find i n t e r e s t i n g comments
− Find cook i e va lues that a l s o are sent on the query s t r i n g
− Find HTTP Basic or Digest Authent icat ion usage
− I d e n t i f y frameworks and s c r i p t s in use by s e r v e r
− Find dangerous f unc t i on s in JavaScr ipt code
− NOP − Does nothing
− Find o f f s i t e r e d i r e c t s
− Find cook i e s with the secure f l a g that a l s o get sent c l e a r t e x t
− Find va lues s e t over SSL that l a t e r go c l e a r t e x t
− Find va lues sent to other domains

http://www.isecpartners.com 2/20

− Find common unde s i r ab l e d i r e c t o r i e s
− Find f i l e s that i nd i c a t e common v u l n e r a b i l i t i e s
− Find d i r e c t o r i e s that a l low d i r e c t o r y l i s t i n g
− Find SSL s e rv e r c on f i gu r a t i on i s s u e s
− Find d i r e c t o r i e s wr i t ab l e v ia PUT
[∗] 15 checks loaded
[∗] Finding av a i l a b l e s e s s i o n s . . .
[∗] Proce s s ing s e s s i o n t e s t /webscarab in t e s t
[∗] Running in monitor mode
[∗] Monitoring t e s t /webscarab
[∗] Pars ing e x i s t i n g conve r sa t i on s . . .
[∗] I n t e r e s t i n g comment : XXX in http :// s c ra t ch . b i t l and . net :80/ (TIDs : 35)
[∗] I n t e r e s t i n g comment : bug in http ://www. b i t l and . net :80/ (TIDs : 532)
[∗] I n t e r e s t i n g comment : TODO in http :// s c ra t ch . b i t l and . net :80/ (TIDs : 35)
[∗] I n t e r e s t i n g comment : ??? in http :// s c ra t ch . b i t l and . net :80/ (TIDs : 35)
[∗] I n t e r e s t i n g comment : ! ! ! in http :// s c ra t ch . b i t l and . net :80/ (TIDs : 35)
[∗] Cookie va lue seen on QS: s e c r e t 1 (Secure , SSL) (TIDs : 16)
[∗] Cookie va lue seen on QS: s e c r e t 2 (Secure , SSL) (TIDs : 9)
[∗] Bas ic auth seen : jw i l k i n s : a sd f a sd f (TIDs : 31 , 32)
[∗] Digest auth seen : Author i zat ion : Digest username=” jw i l k i n s ” , realm=”s c r a t c hd i g e s t ” , nonce=”

OI1LOhsmBAA=5ee56732a14ca51e16 fd2a f52a1 f4c2 f6 f0492b0 ” , u r i=”/d ige s tauth ” , a lgor i thm=MD5,
response =”892592 e2a3d58169c6a1f56fd07718e1 ” , qop=auth , nc=00000001 , cnonce=”082c875dcb2ca740”
(TIDs : 34)

[∗] IDed framework : s c ra t ch . b i t l and . net : 80 i s us ing PHP/5 . 2 . 1 (http ://www. php . net) (TIDs : 0)
[∗] IDed framework : www. i s e c p a r t n e r s . com:80 i s us ing YUI/1 . 2 . 3 (http :// deve loper . yahoo . com/yui) (

TIDs : 16)
[∗] Unsafe JavaScr ipt found : eva l at http :// s c ra t ch . b i t l and . net : 8 0/ : 2 2 (TIDs : 35)
[∗] Unsafe JavaScr ipt found : eva l at http :// s c ra t ch . b i t l and . net : 8 0/ : 2 3 (TIDs : 35)
[∗] Secure cook i e value sent c l e a r : s e c r e t 2 (TIDs : 7 , 9)
[∗] Secure cook i e value sent c l e a r : s e c r e t 1 (TIDs : 16 , 36)
[∗] Value s e t over SSL sent c l e a r : va lue s e c r e t 2 (s e t by www. b i t l and . net :443 in s e t c o ok i e) seen as

bar qs (sent to s c ra t ch . b i t l and . net : 8 0) (TIDs : 9)
[∗] Value s e t over SSL sent c l e a r : va lue s e c r e t 2 (s e t by www. b i t l and . net :443 in s e t c o ok i e) seen as

secure2 s e t c o ok i e (sent to s c ra t ch . b i t l and . net : 8 0) (TIDs : 7)
[∗] Value s e t over SSL sent c l e a r : va lue s e c r e t 2 (s e t by www. b i t l and . net :443 in s e t c o ok i e) seen as

secure2 s en t cook i e (sent to s c ra t ch . b i t l and . net : 8 0) (TIDs : 7)
[∗] Value s e t over SSL sent c l e a r : va lue s e c r e t 1 (s e t by www. b i t l and . net :443 in s e t c o ok i e) seen as

asd f post (sent to www. b i t l and . net : 8 0) (TIDs : 36)
[∗] Value s e t over SSL sent c l e a r : va lue s e c r e t 1 (s e t by www. b i t l and . net :443 in s e t c o ok i e) seen as

foobar qs (sent to www. i s e c p a r t n e r s . com : 80) (TIDs : 16)
[∗] Value (s e c r e t 1) sent to mul t ip l e domains : b i t l and . net (TIDs : 5 , 6 , 36)
[∗] Value (s e c r e t 1) sent to mul t ip l e domains : i s e c p a r t n e r s . com (TIDs : 16)
[∗] Bad d i r e c t o r y found : /backup/ on sc ra t ch . b i t l and . net : 80 (TIDs : 0)
[∗] Bad f i l e found : / environ . p l on sc ra t ch . b i t l and . net : 80 (TIDs : 0)
[∗] L i s t i n g o f / l i s t a b l e / on sc ra t ch . b i t l and . net : 80 succeeded (TIDs : 0)
[∗] SSL Config i s s u e https ://www. b i t l and . net : 4 4 3 : aNULL nu l l c iphe r (TIDs : 0)
[∗] SSL Config i s s u e https ://www. b i t l and . net : 4 4 3 : Export s t r ength c i phe r s (TIDs : 0)
[∗] SSL Config i s s u e https ://www. b i t l and . net : 4 4 3 : 40 b i t Export s t r ength c i phe r s (TIDs : 0)
[∗] SSL Config i s s u e https ://www. b i t l and . net : 4 4 3 : Low st r ength c i phe r s (TIDs : 0)
[∗] SSL Config i s s u e https ://www. b i t l and . net : 4 4 3 : SSLv2 pro toco l (TIDs : 0)
[∗] Parsed 38 e x i s t i n g conve r sa t i on s
[∗] S e s s i on i s not act ive , no po int in monitor ing

Some checks are based on a single transaction and some are based on tracking more complicated global
state.

The http auth check will trigger any time it sees an Authorization header. It also decodes the header
so that the username and password can be seen.
[∗] Bas ic auth seen : jw i l k i n s : a sd f a sd f (TIDs : 31 , 32)

The secure cookie sent clear check tracks all cookies that are set with the Secure flag and will report if
their associated value is ever sent clear. To be clear, this check doesn’t care about names. If it ever sees that
value in any cleartext context (for example, under a different name and sent on a query string), it will alert
you.
[∗] Secure cook i e value sent c l e a r : s e c r e t 2 (TIDs : 7 , 9)

Not every result is an actual vulnerability. For instance, the JavaScript checks only point to functions

http://www.isecpartners.com 3/20

that tend to be used insecurely. However, this is a vast improvement over trying to go through all of the
logs manually because you can see interesting events as they occur and investigate further immediately.
[∗] Unsafe JavaScr ipt found : eva l at http :// s c ra t ch . b i t l and . net : 8 0/ : 1 5 (TIDs : 35)

The above check is reporting the server, the function (eval) and line number (15) and the transaction that
it was seen in (TID: 35).

Other checks results indicate a definite issue
[∗] SSL Config i s s u e https ://www. b i t l and . net : 4 4 3 : 40 b i t Export s t r ength c i phe r s (TIDs : 0)

40-bit SSL ciphers are something that shouldn’t be supported.

Some important command line parameters are:

-o: Perform active tests, which include actions like connecting to hosts

-d: Specify a datasource to search for sessions

-c: Summarize cookie information

-q: Summarize query string information

-v: Include verbose information

The verbose mode tells the checks to report a little more information where appropriate. The com-
ment warn check will output the line that contains the relevant comment tag.
[∗] I n t e r e s t i n g comment : TODO in http :// s c ra t ch . b i t l and . net :80/ (TID : 35)
<!−− TODO: − t h i s i s a t e s t −−>

3 Architecture Overview

The main engine in proxmon.py loads the available proxies and checks. The engine then calls the selected
proxy’s sessions() function to get information on all stored sessions or makes a selection using session info()
if a session is specifiec in the command line parameters. Then it uses the proxy’s get() or get next() method
to retrieve logs. The logged requests and responses are then passed to the request and response parsers in
transaction.py. Those methods populate the datastore and execute the appropriate check methods. At the
end of processing, control is passed back to the engine where checks are called one last time to process the
completed transaction (if they have exposed a run() method).

http://www.isecpartners.com 4/20

4 Adding to checks

Many checks rely on simple text configuration files that can be easily edited to increase coverage.

For instance, the bad directory check searches all of the seen directories for accessible subdirectories that
are generally undesirable such as ’backup’ or ’IISAdmin’. If you want to add a directory to the bad directory
check, all you have to do is edit modules/bad directory.cfg and add the directory you want the tool to search
for.

bad d i r s : [backup , bak , v t i b i n , IISHelp , IISAdmin , o ld]

The config file format is quite simple but flexible. 1 If you want a simple string, just type it with no
quotes. Single or double quotes will generally ensure proper escaping. Anything after a # is a comment.

A more complicated example is the bad files check. This check is run in online mode and checks all
detected directories for common problem files such as test scripts, configuration files that might contain
sensitive information or known vulnerable scripts.

b a d f i l e s : [
{ f i l e : ’ i i s s t a r t . asp ’ ,

t ex t : SERVER NAME,
desc : Defau l t page } ,

{ f i l e : ’ env i ron . pl ’ ,
t ex t : SERVER NAME,
desc : ”Test s c r i p t l e ak s s e r v e r in fo rmat ion in i t ’ s output ”} ,

{ f i l e : ’ env i ron . cg i ’ ,
t ex t : SERVER NAME,
desc : ”Test s c r i p t l e ak s s e r v e r in fo rmat ion in i t ’ s output ”}

]

Another useful feature of ProxMon is that it can tell you what frameworks are in use. For instance,
the version of PHP2 or YUI3. These tests require a little more sophistication when specifying strings. This
module allows the use of regular expressions so you can be fairly accurate.

f ramework in fo : [
{

name : dojo ,
u r l : ’ http :// d o j o t o o l k i t . org ’ ,
body : ’ http :// d o j o t o o l k i t . org /community/ l i c e n s i n g . shtml ’ ,
bodyver : ’ dojo . v e r s i on \ s ([\ d+ | \ .]+) ’

}

{ name : YUI ,
u r l : ’ http :// deve loper . yahoo . com/yui ’ ,
body : ’ http :// deve loper . yahoo . net / yui / l i c e n s e . txt ’ ,
bodyver : ’ http :// deve loper . yahoo . net / yui / l i c e n s e . txt \ nver s i on :\ s +(.∗)\n ’

}

{ name : Frontpage ,
u r l : ’ http ://www. mic ro so f t . com ’ ,
r h l : ’ˆ Server :\ s +.∗(FrontPage) ’
r h l v e r : ’ˆ Server :\ s+.∗FrontPage / ([\ d+ | \ .]+) ’

}

1ProxMon uses http://www.red-dove.com/python config.html by Vinay Sajip
2http://www.php.net
3http://developer.yahoo.com/yui

http://www.isecpartners.com 5/20

{ name : PHP,
u r l : ’ http ://www. php . net ’ ,
r h l : ’ˆ Server :\ s +.∗(PHP) ’
r h l v e r : ’ˆ Server :\ s+.∗PHP/([\ d+ | \ .]+) ’

}
]

5 Writing checks

You can add your own checks to allow ProxMon to understand a custom application, or make it aware of
a security issue you are particularly concerned about. If your application always enforces a certain page flow,
ProxMon could have a custom check that verifies this flow is consistent. It could also attempt to perform
actions without sending the correct cookies or modify request values illegally. This can make ProxMon a
valuable part of your regression testing process.

All you need to do to have ProxMon incorporate your check is to place the new check in the modules
subdirectory and ProxMon will automatically detect it if it’s a subclass of pmcheck.

5.1 Passive checks

Here’s a module that does nothing.

1 from pmcheck import ∗
2

3 c l a s s nop (check) :
4 ”NOP − Does nothing ”

Listing 1: ../modules/nop.py

The first line references the file that contains the class definitions for the check classes. The check
class is the base class and it is used for most passive checks. The netcheck class is used for active checks,
anything that will make outbound network connections should subclass from this. The last basic check type
is the postruncheck, which is only run at the end of a session and is used by the cookie summary check and
query summary checks.

The above check doesn’t do anything because it doesn’t implement any functions that are automatically
run during or after transaction processing.

Most checks are based on the check class and, as mentioned above, run when the full transaction has
finished processing and all data is available. To run like this, just declare a function called run()

1 ”Find cook i e s with the s e cure f l a g that a l s o get sent c l e a r t e x t ”
2 from pmcheck import ∗
3 from pmuti l import ∗
4

5 c l a s s s e c u r e c o o k i e s e n t c l e a r (check) :
6 ”Find cook i e s with the s e cure f l a g that a l s o get sent c l e a r t e x t ”
7

8 de f run (s e l f , pmd) :
9 f o r s in pmd. SetCookieSecureValues :

10 i f s in t r i v i a l v a l u e s : cont inue
11 i f s in pmd. ClearValues :

http://www.isecpartners.com 6/20

12 f o r x in xrange (l en (pmd. ClearValues [s])) :
13 desc = ” [∗] Secure cook i e va lue sent c l e a r : %s ” % s
14 id = pmd. ClearValues [s] [x] [’ httpparams ’] [’ id ’]
15 s e l f . a dd s i ng l e (desc , id=id)

Listing 2: ../modules/secure cookies sent clear.py

Here the module is checking pmd (which is the ProxMon Datastore). This is updated constantly with
information on values seen in the various transactions.

The SetCookieSecureValues dictionary is keyed by value. To find out if any value is also seen clear, all
you have to do is loop through the keys in the dictionary and compare against those in pmd’s ClearValues
dictionary.

Knowing that isn’t enough to get output though. A call to the check class’s add single() method is
needed for the application to report on the issue.

Other methods are available. For instance, the req hl parse method is called anytime there’s a request
header line available to process.

1 ”Find HTTP Basic or Digest Authent icat ion usage ”
2 from pmcheck import ∗
3 import re , base64
4

5 c l a s s http auth (check) :
6 ”Find HTTP Basic or Digest Authent icat ion usage ”
7

8 de f r e q h l p a r s e (s e l f , l , t) :
9 m = re . search (’ˆ Author i zat ion :\ sBas i c (. ∗) ’ , l , r e .IGNORECASE)

10 i f m:
11 desc = ” [∗] Bas ic auth seen : %s ” % base64 . decode s t r i ng (m. group (1))
12 vdesc = ’Encoded ve r s i on : %s ’ % (l . s t r i p ())
13 s e l f . a dd s i ng l e (desc , id=t [’ id ’] , verbose=vdesc)
14 e l i f r e . s earch (’ˆ Author i zat ion :\ sDigest ’ , l , r e .IGNORECASE) :
15 desc = ” [∗] Digest auth seen : %s ” % (l . s t r i p ())
16 s e l f . a dd s i ng l e (desc , id=t [’ id ’])

Listing 3: ../modules/http auth.py

Since all this check is concerned with is the request headers, there’s no need to implement a run()
function. The simple presence of an Authorization header is information enough.

5.2 Check methods

The following is in the same order as the methods would be called during normal transaction processing.

5.2.1 Called from transaction.parserequest

rl parse() Parses the first line of the request
This contains the method (’GET’, ’HEAD’, ...), the requested URL (’http://www.isecpartners.com:80/index.html’)
and the HTTP version (’HTTP/1.0’)

req hl parse() Called for each header line
This is passed the whole header line (’Host: www.isecpartners.com\r\n’)

http://www.isecpartners.com 7/20

req body parse() Called to parse the full body
This is generally the POST or PUT contents

5.2.2 Called from transaction.parseresponse

sl parse() Parses the first line of the response. (The status line)
(’200 OK HTTP/1.0’)

resp hl parse() Called for each header line
Similar to the request Headers

resp body parse() Called on the uncompressed response body.
The code in transaction.py will handle gzip and both varieties of deflate.

5.2.3 Called from proxmon.scan or proxmon.tail

run() The full transaction has been handled and the transaction dictionary is fully populated. All values
will have been added to the datastore.

5.3 Active checks

Checks that do more than just parse the stored transactions are also quite easy to write. These checks
allow you to actively test for classes of vulnerabilities that can’t be detected by parsing log files alone.

The urltesting module has a number of convenient functions available that will connect out to target
hosts and check for or retrieve files. This module is based on curl 4 and pyCurl 5.

If your network check uses the functions in urltesting and you are on a network that requires the use
of a proxy (other than WebScarab), it will automatically use the proxy specified in the http proxy and
https proxy environment variables or you can override these via the -p command line parameter. It will also
get access to the appropriate cookies, which are constantly written out as proxmon.cj in Mozilla cookies.txt
format.

The expiry on cookies stored to the proxmon.cj file are incorrect. In order to ensure the availability of
ephemeral cookies or ones with a very short lifetime, the expiry is changed to 1 year after the current time.

1 ”Find d i r e c t o r i e s that a l low d i r e c t o r y l i s t i n g ”
2 from pmcheck import ∗
3 from pmuti l import ∗
4 t ry :
5 import u r l t e s t i n g
6 except ImportError :
7 l o ad e r r o r = True
8

9 c l a s s d i r l i s t i n g (netcheck) :
10 ”Find d i r e c t o r i e s that a l low d i r e c t o r y l i s t i n g ”
11 de f i n i t (s e l f) :
12 netcheck . i n i t (s e l f)
13 s e l f . c h e c k ed d i r s by s e r v e r = {}

4http://curl.haxx.se/
5http://pycurl.sourceforge.net/

http://www.isecpartners.com 8/20

14

15 de f run (s e l f , pmd) :
16 end = len (pmd. Transact ions)
17 f o r t in pmd. Transact ions [s e l f . l a s t t r a n s a c t i o n : end] :
18 d i r s = imp l i e d d i r s (t [’ path ’])
19 f o r d in d i r s :
20 i f t [’ s e rve r ’] in s e l f . c h e c k ed d i r s by s e r v e r :
21 i f d in s e l f . c h e c k ed d i r s by s e r v e r [t [’ s e rver ’]] :
22 cont inue
23 i f u r l t e s t i n g . g i v e s d i r e c t o r y l i s t i n g (t [’ proto ’]+ ’ :// ’+ t [’ s e rver ’]+d) :
24 desc = ’ [∗] L i s t i n g o f %s on %s succeeded ’ % (d , t [’ s e rver ’])
25 s e l f . a dd s i ng l e (desc)
26 i f t [’ s e rve r ’] in s e l f . c h e c k ed d i r s by s e r v e r :
27 s e l f . c h e c k ed d i r s by s e r v e r [t [’ s e rver ’]] . append (d)
28 e l s e :
29 s e l f . c h e c k ed d i r s by s e r v e r [t [’ s e rver ’]] = [d]
30 s e l f . l a s t t r a n s a c t i o n = end

Listing 4: ../modules/dir listing.py

This module waits until transaction processing is complete and then iterates through any unseen trans-
actions. First, it expands the path to include any implied directories (eg /foo/bar/baz/ implies /, /foo,
/foo/bar/). Then it searches through any that it hasn’t seen already and sees if they contain strings that
imply that the directory contents are viewable.

Important to note is the difference between t[’server’] and t[’host’]. ’server’ contains the hostname
and port (such as isecpartners.com:80), whereas host just includes the name or IP of the server (simply
isecpartners.com). You generally want to be careful when writing checks to reference the former instead of the
latter. Different systems are often running on different ports or under different server names. Distinguishing
by ’host’ alone isn’t always sufficient.

5.4 Transaction properties

Given a normal request for http://www.isecpartners.com:80/index.html?a=1&b=2 the values the trans-
action dictionary would have are given in (). The following is in the order the properties are added.

5.4.1 Assigned by the proxy module

id The transaction identifier (1)

5.4.2 Assigned in transaction.py by parsereqline()

method The HTTP method used in the request (’GET’)

url The full URL (’http://www.isecpartners.com:80/index.html?a=1&b=2’)

version The HTTP Version (’HTTP/1.0’)

proto Either http or https (’http’)

hostname Just the host portion of the URL (’www.isecpartners.com’)

domain The last 2 or 3 portions of the hostname (’isecpartners.com’)

qsf The full query string (’a=1&b=2’)

http://www.isecpartners.com 9/20

qs A list with the portions of the QS (’[{’name’: ’a’, ’value’: ’1’} ...]’)

path Server side directory (’/’)

port Port the server is listening on (’80’)

server The combined hostname and port (’www.isecpartners.com:80’)

5.4.3 Assigned in transaction.py by parserequest()

sentcookies A list of cookies sent by the client

host The Host: header value

5.4.4 Assigned in transaction.py by parserequest()

setcookies A list of cookies set by the server, complete with flags

respcontenttype The value of the Content-Type header

respcontentlength The value of the Content-Length header

location The value of the Location header

6 Datastore

Currently the datastore is focused on tracking values that are seen in cookies, on the query string or are
sent as post parameters. These are all set by the transaction module.

Each of these values has the associated transaction details (described above) available under the ’http-
params’ key.

6.1 Lists

Transactions All processed transactions

SetCookies All cookies seen in SetCookie headers

SentCookies All cookies seen in Cookie headers

QueryStrings All values passed on the query string

PostParams All values sent via POST

6.2 Dictionaries (keyed by value)

SetCookieValues All Set-Cookies

SetCookieSSLValues Set-Cookies sent over SSL

SetCookieSecureValues Set-Cookies with the Secure flag

SentCookieValues All values sent in Cookie headers from the client

http://www.isecpartners.com 10/20

AllCookieValues All of the cookies

QueryStringValues All values sent via the query string

QuerySPostParamValues All values submitted in POSTs

ClearValues All values sent cleartext

SecureValues All values sent over SSL

AllValues Everything

7 Supporting Other Proxies

Adding support for other proxies is fairly straight forward. The full interface is documented in the
appendicies, but partially repeated here so that readers can get an idea of the process.

7.1 Methods

New proxy modules must support the following methods:

sessions(where) Gets a list of available sessions, this is populated via the session info() function

session info(where, name) Returns a dict including the session id, whether the session is still active, a
list of domains seen in the session, a list of transactions (only required to contain the request and
status lines) and dates.

get(session, tinfo) Returns the specified transaction from the selected session
get() and get next only have to be able to pass the request and response bodies as strings to the engine
in order to take advantage of the appropriate processing code in transaction.py.

get next(session) Returns the next unseen transaction

7.2 Variables

New proxy modules must also define the following variables:

proxy name The string that will be displayed by the engine

http://www.isecpartners.com 11/20

A Module pmcheck

Contains the base check classes (check, netcheck, postruncheck)

A.1 Variables

Name Description
loaderror Value: False (type=bool)

A.2 Class check

builtin .object

check

Known Subclasses: cookie sent on qs, http auth, id framework passive, interesting comments, js warn,
netcheck, nop, offsite redirect, postruncheck, secure cookie sent clear, ssl val sent clear, value sent thirdparty

Check base class

A.2.1 Methods

init (self)
Overrides: builtin .object. init

add(self, items)

Add a list of new unique results

Parameters
items: list of results

add single(self, desc, id=0, verbose=None, module=None, value=None)

Add a single result to the datastore

Parameters
desc: Description of the issue

clear(self)

Clear all results and reset lastreported and lasttransaction

http://www.isecpartners.com 12/20

config loaded(self)

Checks if a config file has been loaded and prints an error if not
Call this at the top of each function if a cfg file is required

load config(self)

Auto-loads the appropriate configuration file for the module
Config file should have the same name as the python file, with .cfg instead of .py

report(self, pmd)

Full report run at the end of session, mainly used by postrunchecks

req body parse(self, body, info)

Called by the transaction processor on each complete request body

req hl parse(self, line, info)

Called by the transaction processor on all request headers

resp body parse(self, body, info)

Called by the transaction processor to parse the whole response body

resp hl parse(self, line, info)

Called by the transaction processor on each response header

rl parse(self, line, info)

Called by the transaction processor on the first line of each request

run(self, pmd)

Called by scan() or tail() once each transaction has been fully added to pmd

set verbosity(self, verbosity)

Sets the level of information displayed by the check”

Parameters
verbosity: 0 = default, 1=verbose, 2=debug

(type=int)

show all(self)

Show all results

http://www.isecpartners.com 13/20

show new(self)

Show only results that haven’t been displayed before

sl parse(self, line, info)

Called by the transaction processor on the first line of each response

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

A.3 Class netcheck

builtin .object

pmcheck.check

netcheck

Known Subclasses: bad directories, bad files, dir listing, ssl config, writable dir

Base class for all checks that do network stuff

A.3.1 Methods

init (self)
Overrides: pmcheck.check. init

set proxy(self, proxy)

For those network checks that don’t check the environment

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from check: add, add single, clear, config loaded, load config, report, req body parse, req hl parse,
resp body parse, resp hl parse, rl parse, run, set verbosity, show all, show new, sl parse

A.4 Class postruncheck

builtin .object

pmcheck.check

postruncheck

Known Subclasses: cookie summary, query summary

http://www.isecpartners.com 14/20

Base class for report modules

A.4.1 Methods

init (self)
Overrides: pmcheck.check. init

report(self, pmd)

Main output method called for postrunchecks

Overrides: pmcheck.check.report

show all(self)

Overriding because postrunchecks shouldn’t output until the end

Overrides: pmcheck.check.show all

show new(self)

Overriding because postrunchecks shouldn’t output until the end

Overrides: pmcheck.check.show new

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from check: add, add single, clear, config loaded, load config, req body parse, req hl parse,
resp body parse, resp hl parse, rl parse, run, set verbosity, sl parse

http://www.isecpartners.com 15/20

B Module pmdata

Datastore populated by proxy log parsers and consumed by modules

B.1 Class pmdata

builtin .object

pmdata

B.1.1 Methods

init (self)
Overrides: builtin .object. init

add postparam(self, pp)

add querystring(self, qs)

add sentcookie(self, c)

Add a cookie that was sent by a client

Parameters
c: A cookie

add setcookie(self, c)

Set cookie headers contain a single cookie, parse this and add the contents to the various cookie
dictionaries

Parameters
c: A cookie

add transactions(self, trans)

Adds a list of transactions to Transactions

Parameters
trans: The transaction

find value(self, value)

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

http://www.isecpartners.com 16/20

C Module urltesting

Performs testing on urls to determine if they provide directory listings or allow uploading of data with
HTTP PUT and assorted support functions

C.1 Functions

allows upload(url)

file contains(url, string)

get curl()

gives directory listing(url)

url exists(url)

C.2 Variables

Name Description
DEBUG Value: False (type=bool)

http://www.isecpartners.com 17/20

D Package transaction

Exported transaction functions.

$Id: init .py 39622 2005-10-25 21:19:33Z tim one $

D.1 Variables

Name Description
manager Value: <transaction. manager.ThreadTransactionManager -

object at 0x7fe96a4c>
(type=ThreadTransactionManager)

http://www.isecpartners.com 18/20

E Module pmproxy

E.1 Variables

Name Description
loaderror Value: False (type=bool)

E.2 Class pmproxy

builtin .object

pmproxy

Known Subclasses: webscarab

Base class for proxies

These are the functions that have to be implemented for a new proxy to function with the framework

E.2.1 Methods

get(self, session, tinfo)

Get a specific transaction

Return Value
dict

get next(self, session)

Get the next transaction

Return Value
dict

session info(self, where, name)

Get information on the specified session

Return Value
dictionary

http://www.isecpartners.com 19/20

sessions(self, where)

Get a list of all known sessions

Parameters
where: location to look (path, database name, etc), None to use default

Return Value
list of sessions

Inherited from object: init , delattr , getattribute , hash , new , reduce , reduce ex ,
repr , setattr , str

E.2.2 Class Variables

Name Description
proxy name Value: ’Unknown (set proxy name)’ (type=str)

http://www.isecpartners.com 20/20

	Introduction
	Usage
	Architecture Overview
	Adding to checks
	Writing checks
	Passive checks
	Check methods
	Called from transaction.parserequest
	Called from transaction.parseresponse
	Called from proxmon.scan or proxmon.tail

	Active checks
	Transaction properties
	Assigned by the proxy module
	Assigned in transaction.py by parsereqline()
	Assigned in transaction.py by parserequest()
	Assigned in transaction.py by parserequest()

	Datastore
	Lists
	Dictionaries (keyed by value)

	Supporting Other Proxies
	Methods
	Variables

	Module pmcheck
	Variables
	Class check
	Methods

	Class netcheck
	Methods

	Class postruncheck
	Methods

	Module pmdata
	Class pmdata
	Methods

	Module urltesting
	Functions
	Variables

	Package transaction
	Variables

	Module pmproxy
	Variables
	Class pmproxy
	Methods
	Class Variables

