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GLOSSARY

AES  Advanced encryption standard, a cryptography  
  cipher

ASIC  Application-specific integrated circuit, non- 
  programmable hardware logic chip

Bitfile  Binary instruction file used to program FPGAs

CLB  Configurable logic block, an internal part of an  
  FPGA

CPLD  Complex programmable logic device

EEPROM Electronically erasable programmable read- 
  only memory

eFuse  A system to allow one-time writing of data

Flash  Non-volatile memory

FPGA  Field programmable gate array

HDL  Hardware description language, such as  
  Verilog or VHDL

JTAG  Standard test access port on a device (IEEE  
  1149.1 – 1990)

NVRAM  Non-volatile RAM, retaining value after power  
  loss

OTP  One time programmable, allowing write once  
  only

PCB  Printed circuit board

PLA  Programmable logic array, forerunner of FPGA  
  technology

PUF  Physically unclonable function

POWF  Physical one-way function

PSoC   Programmable system on chip, an FPGA and  
  other hardware on a single chip

SoC  System on chip, a non-programmable logic chip  
  with additional hardware

SRAM  Static RAM, volatile memory storage

SystemVerilog HDL programming language, extension of  
  Verilog from 2002 onwards

Verilog  HDL programming language, developed in the  
  1980s and 1990s, with C-like syntax

VHDL  HDL programming language, developed from  
  the 1980s, based on ADA



INTRODUCTION

This document provides an introduction to the use of FPGAs. 
FPGA stands for field-programmable gate array. An FPGA is a 
logic device whose function can be changed while the device is 
in place within its working environment, allowing the hardware 
processing of a system to be altered by an external configuration 
loading process. Configuration bitstreams for FPGAs can be used 
to change the logical processing of input data, and so alter the 
functionality of a device. 

The most common uses of FPGAs are areas within automotive, 
medical, factory equipment and defence equipment that required 
rapid concurrent processing.

The paper examines the process of developing configuration 
binaries for FPGA devices and the potential security problems that 
could be encountered. It assumes no prior knowledge of FPGA 
technology.

The information in this paper is useful for anyone who works 
with embedded devices, software and hardware developers or 
producers who may want to understand the potential security risks 
of using FPGAs within their devices.
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FPGA History

The direct antecedents of FGPAs were the programmable 
logic array (PLA) chips of the late 1970s which allowed the 
programming, though usually not the reprogramming, of a set of 
AND and OR gates into the equivalent of a state machine. The 
development of the technology encompassed several strands, 
including the concurrent, but initially quite distinct, development 
of programmable array logic (PAL) chips, which themselves 
diversified into complex programmable logic devices (CPLDs).

FPGA devices initially differed from CPLD through the use of 
on-board static random-access memory (SRAM). This volatile 
storage system is used as a short-cut, providing the result of logic 
operations as data in a look-up table. Multiple data operations are 
combined in a series of complex logic blocks (CLB). The results of 
the CLB operations are routed via switch blocks to chip outputs or 
as inputs to additional CLB operations. Therefore the complexity 
of the processing within FPGAs is limited by the number of logical 
operations on a chip, usually determined by the semiconductor 
technology, measured since the late 1980s in nanometre size. 

Chip complexity has expanded both by increased density of logical 
operation, approximately following Moore’s Law since 1965, and 
physically, as additional layers can be added horizontally to chip 
design. The result is that top-of-the range modern FPGA chips 
have kept pace with processor evolution and can be far more 
effective compared to microprocessors when reliable concurrent 
or low latency operations are required.

The key step in the development of modern FPGAs was 
the invention of reliable non-volatile electronically erasable 
programmable read-only memory (EEPROM), and its derivative 
flash memory, in the early 1980s. The use of NAND flash 
memory provided a reliable and quick storage system for FPGA 
configuration files and made it feasible to load behavioural logic 
onto FPGA chips during system start-up. 

With the separation of logical behaviour storage from the chip 
carrying out the operations, the ability to alter the programming 
of the device in the field became feasible. Consequently the 
appearance of non-volatile RAM (NVRAM) in proximity to FPGA 
chips in order to store the FPGA configuration file is expected. 

As FPGAs have evolved, the simplicity of the design has been 
complicated by the development of programmable system-on-chip 
(PSoC) families, where processors, non-volatile memory, timing 
sources, and connecting buses are all present alongside the 
FPGA. The configuration file for the FPGA can be loaded directly 
onto these chips, without the need for an external NVRAM device. 
Many PSoC devices have pre-configured libraries of available 
functions and allow quicker initial development, but using such 
devices incurs the cost of reduced flexibility.

ASICs are related to FPGAs and often mentioned alongside them. 
An ASIC (application-specific integrated circuit) can perform the 
same function as an FPGA, but it is not reprogrammable. Instead, 
the circuit design is fixed during manufacture. 

Top-of-the range modern 
FPGA chips have kept 
pace with processor 
evolution and can be far 
more effective compared to 
microprocessors.

As FPGAs have evolved, 
the simplicity of the design 
has been complicated 
by the development of 
programmable system-on-
chip (PSoC) families.
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Because of this, ASICs may share logical security flaws with 
FPGA devices, but not issues related to reprogramming. ASICs 
often require a great deal of investment to design correctly (using 
FPGAs as prototypes within that process) but will run at a much 
lower power and are therefore suitable for mass-production use 
within smaller devices. 

Note that the use of ASICs requires that a design has been 
exhaustively proven to function correctly, and therefore the 
resources needed to develop them are significantly greater. The 
cost of each iteration of ASIC design can be very large, depending 
on the number of layers within the chip, with each layer requiring 
a separate mask to specify the connections on the chip precisely.
This means that ASICs are only economical when used within 
devices with a large volume of sales.

Use of FPGAs

As FPGAs are logic processing units there is no set application 
for which they are used. Unlike a CPU or microprocessor, which 
processes instructions through a sequential list, an FPGA will 
process instructions in parallel and therefore will be capable of 
handling multiple concurrent inputs simultaneously. Uses for this 
property include signal processing, particularly image processing, 
industrial automation, and aerospace or defence systems. Within 
aerospace applications the problem of radiation causing the slow 
degradation of devices through ionisation or sudden changes of 
behaviour through single particle collision events has long been 
recognised. 

Initial solutions were to use one-time programmable (OTP) FPGAs 
without on board SDRAM, but subsequently several companies, 
such as Microsemi [1] and Xilinx [2], developed radiation-tolerant 
FPGAs, specifically for use in non-terrestrial or vulnerable 
locations.

In each case FPGAs will be used where multiple simultaneous 
inputs must be dealt with inside a limited time or where a strictly 
defined latency must be adhered to. While this need can be 
addressed with a microcontroller running a real-time operating 
system, the advantages gained by parallel processing of signals 
can produce timing and precision advantages for FPGAs.

FPGAs have also found increasing use within four recent growth 
areas:

• Automotive, where increasing numbers of monitor points 
require simultaneous processing under extremely time-limited 
conditions. As vehicles continue to increase the areas in 
which autonomous controls can back up or supplant human 
decisions, vehicle data processing must take account of all 
inputs at the same time. A sequential review of data may not 
produce the correct result in the short window of opportunity.

• Medical, where the electronic devices within the 
armamentarium are often not produced in the numbers 
required to make ASIC development feasible. Medical 
applications using FPGAs are particularly focused on image 
processing.

• Data communication, both in data centres and where wired 
communication requires rapid processing of simultaneous 
signals. 

• Cryptography, especially during the Bitcoin mania, which 
made extensive use of FPGA parallelism, though several 
solutions migrated to the use of ASICs to speed up the 
processing once the design was fixed.

An ASIC (application-
specific integrated circuit) 
can perform the same 
function as an FPGA, but it 
is not reprogrammable.

[1]  See http://www.microsemi.com/document-portal/doc_view/131374-radiation-tolerant-proa 
       sic3-fpgas-radiation-effects-report 
[2]  See http://www.xilinx.com/support/documentation/white_papers/wp402_SEE_Considera 
       tions.pdf
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The use of FPGAs and ASICs tends to follow a cyclical pattern, 
with the lower individual cost of ASICs resulting in their increasing 
use as products mature and reach a viable sales volume. However, 
as products develop, ASICs may again be replaced by FPGAs to 
allow new technologies to be introduced, restarting the cycle.

FPGAs tend to be used within larger embedded systems rather 
than within the current Internet of Things proliferation of domestic 
products, though they may be found in prosumer items such as 
higher-level digital cameras. 

As FPGAs are found within a system rather than forming the main 
part, the security around their use can often be overlooked.

Recent FPGA Developments

Currently two companies, Altera [3] and Xilinx [4], are believed to 
account for 85% of all FGPA sales. 

Xilinx was considered to be the leading supplier of the two, 
although Intel [5] has recently acquired Altera, with effects which 
are yet to be fully seen.

Xilinx produce several families of FPGA chips, each of which 
have been designed in multiple versions of increasing cost and 
complexity. These range from the SPARTAN chips, the low-end of 
which is often encountered in training boards, to the cost-focused 
ARTIX, the performance-focused VIRTEX, designed for fast traffic 
processing, and the balanced KINTEX chips recommended for 
digital signal processing. 

All of the chips come in a variety of capabilities, from 45nm to 
ultra-high performance 16nm-based chips. Xilinx separate out 
their SoC offerings into the ZYNQ family, which combine ARM 
processors with the FPGA; the most recent of these is the ZYNQ 
UltraScale+ 16nm SoC device.

Altera produce four families of FPGAs, each of which contains a 
set of FPGAs developed between 2002 and 2015. The Cyclone 
chips are focused on cost, with the Stratix family the equivalent of 
Xilinx VIRTEX in its performance focus. The Arria family balance 
between the two, while the recently introduced Max chip contains 
an ARM processor, dual flash banks, timing, a power regulator and 
RAM.

Other companies that produce FPGAs include Lattice 
Semiconductor [6], whose FPGAs are often used in 
telecommunications devices, Microsemi [7], and Quicklogic [8].

However, as products 
develop, ASICs may again 
be replaced by FPGAs to 
allow new technologies to 
be introduced.

[3]  See www.altera.com 
[4]  See www.xilinx.com
[5] Agreement was reached in June 2015, see http://intelacquiresaltera.transactionannouncement.com/
[6]  See http://www.latticesemi.com/ 
[7]  See http://www.microsemi.com/products/fpga-soc/fpga-and-soc 
[8]  See http://www.quicklogic.com/platforms/connectivity/pp3e/ 
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FPGA Languages

An FPGA is a set of inputs and outputs with configurable gates 
between them. The position of the inputs and outputs depends 
upon the chip in use, but the logical behaviour to be programmed 
into the device should be FPGA-independent, as the logical design 
does not reflect physical characteristics. Because of this, the 
use of higher-level logical descriptions to define the behaviour 
is possible; this is the role of the hardware description language 
(HDL).

The two most common HDLs in use are Verilog and VHDL. 
Verilog has most recently been standardised as IEEE1364-2005 
and tends to be in use more in use in the US than VHDL. VHDL 
stands for very high speed integrated circuit (VHSIC) hardware 
description language, and was most recently standardised within 
IEEE 1076-2008. Although first developed in the US, it tends to 
be used less in the US but is thought to be the preferred language 
within the UK and Europe. 

This document will concentrate on VHDL, but note differences 
with Verilog where appropriate.

VHDL

VHDL is not procedural like C or Java, but a description of data 
flow over logical elements. The feel of the language draws on Ada, 
due to the development of both languages within the Department 
of Defense in the US.

Like other languages, VHDL code files contain libraries and 
packages to allow users to make use of pre-existing logic. Entities 
are added to these, which describe logic inputs and outputs; 
entities do not do anything in themselves, but describe a logical 
map over which architectural code can operate. The third basic 
element of VHDL is the architectural code, which describes the 
logical operations that will take place.

It is important to note that none of the above links the VHDL code 
to any specific hardware. For this, a constraints file is required, 

which describes the relationship between the physical inputs and 
outputs of the FPGA and the logical hardware description code. 
In Xilinx a constraints file can be recognised by the .ucf extension 
(standing for “user constraint file”), but other manufacturers use 
different terms, such as SDC or XDC.

Due to its ADA roots, VHDL is strongly typed. This is generally 
thought to make VHDL code easier to read than Verilog and may 
help prevent obvious coding errors. The ‘self-documenting’ aspect 
of the language, through its verbose syntax, has also led to its 
popularity in teaching and academic circles.

Verilog

Verilog was named after a concatenation of the words 
“verification” and “logic”, and was developed initially as a simulation 
language in the 1980s. Its syntactical roots are in C, a language 
with which it shares the characteristics of weak type enforcement 
and sparse verbosity. These features, however, allow prototype 
logic to be constructed quickly and have increased the popularity 
of the language among the engineering community.

Some tasks are easier to perform in Verilog than in VHDL. For 
example, Verilog has an interface to the C language through the 
Verilog procedural interface (VPI), which allows users to write 
C code to interface directly with the simulation, a feature more 
directly coupled than is the case with VHDL foreign language 
interfaces. 
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FPGA Development

Due to its ADA roots, VHDL 
is strongly typed. This is 
generally thought to make 
VHDL code easier to read than 
Verilog and may help prevent 
obvious coding errors. 
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However, there are aspects of VHDL that are simpler than the 
Verilog equivalent, such as the re-use of code packages, which 
is simpler than the use of library modules within Verilog. In either 
case both languages have the capability, but the task is easier to 
perform in one compared to the other.

Since the mid-1990s Verilog has influenced the development of 
SystemVerilog, an extension of Verilog which is now generally 
considered a separate language. SystemVerilog has extended the 
language to include a greater number of C and object-oriented 
concepts such as records (equivalent to structs), classes, enums, 
and interfaces. Many of these additions give SystemVerilog access 
to features present in VHDL and led to its use as language for 
PSoC devices. 

Process of ‘Compilation’

The process of turning a conceptualised hardware design into 
an FPGA configuration bitstream requires a series of stages to 
take place. Several of these are similar to the stages used when 
compiling and linking a C program into processor-dependent 
binary; however, it is important to keep in mind that for FPGA 
development the end product is a logic description, not a series of 
steps that will be carried out atomically by a processor. 

When developing VHDL the use of a development environment 
such as the Xilinx Vivado [9], IspLever [10] from Lattice 
Semiconductor or Synplify [11] will force the selection of a target 
FPGA and encourage the user to design with that target in mind.

The three necessary steps are:

1. Creation of a hardware description of the logic processes 
required using the chosen language. This is the VHDL and 
associated files.

2. Design synthesis, a process that converts the HDL into a 
general circuit schematic, not necessarily FPGA dependent, 
though the use of a development environment may include 
some aspects of this. In synthesis stage, the code syntax is 
checked, and it is ensured that the design is logically coherent. 

3. Implementation of the design onto the target FPGA; this 
requires the design to be translated, placed and routed 
logically through the specifics of the chip it will run on. The 
final bitstream configuration file will be generated at this point.

The first stage above requires the author to write the HDL code, 
while the second tests the internal logic of the code in order to 
produce a coherent whole. It is only in the third stage that the 
capabilities of the target FPGA device are fully considered.

The output from the third stage of process would be a bitstream 
file, often with a suffix of .bit, that can be loaded onto the FPGA 
during the start-up of the board. During development the bitstream 
may be loaded onto the board via the JTAG interface of the FPGA, 
though the actual mechanism used will depend on the board 
and manufacturer. Once in production the bitstream is present in 
an adjacent or on-chip memory device and will be automatically 
loaded onto the FPGA, usually through a serial configuration port.

[9]     See http://www.xilinx.com/products/design-tools/vivado.html 
[10]   See http://www.latticesemi.com/ispleverclassic 
[11]   See http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/
         Pages/ SynplifyPro.aspx 

Since the mid-1990s 
Verilog has influenced 
the development of 
SystemVerilog, an extension 
of Verilog.





FPGA Assets and Threats

The assets associated with an FPGA can include:

• The intellectual property of the developer, such as the 
FPGA bitstream and configuration files. If this information 
were to be copied, cloned, or emulated, it could allow the 
device to be reproduced by a developer who had not invested 
resources into the development process. The bitstream key will 
be programmed onto non-volatile memory and should not be 
readable by any external process.

• The reputation of the developer, especially if the product 
behaviour can be subverted. If attackers are able to alter 
the behaviour of the FPGA, they may be able to make the 
machine behave in an unexpected manner, or allow access to 
functionality that requires a more expensive license.

• The data being processed within the FPGA. If the system 
processes confidential or personally identifiable information 
this may be obtainable from within the system. This could 
include the use of sensitive keys used for video and audio 
stream decryption, such as those used in DRM. These may be 
stored in volatile memory on the chip during runtime.

A review of FPGA use within a product would include the relevant 
assets and threats to the system.

FPGA Review

An FPGA review would not consider the FPGA in isolation from 
the device in which it is placed. Instead, the whole device would 
be examined, but particular attention would be paid to the FPGA 
configuration file within the device and the data outputs from the 
FPGA chip.

Areas considered in the review would include:

• The assets present on the device, in line with the risks 
identified above. 

• The input and outputs from the FPGA on the PCB: How 
many tracks exist that are not used? Would it be possible to 
extract data from these connections? Are there inputs that 
are not normally used, and could these be activated to subvert 
the behaviour of the device? Do any outputs contain log files 
or other potentially confidential information from the FPGA? 
Are the tracks used to load the software onto the FPGA on 
the surface layer of the PCB? Is any of the output information 
stored on the device, or externally?

• The hardware layout of the equipment: This would 
include a review of the physical ports on the system, both 
accessible from the outside and present on the PCB as either 
a connector or adaptable connector-location. If parts of the 
device can be removed, or if it accepts memory cards or USB 
input, the effects of this will be included in the review. Is it 
possible to connect to the JTAG interface? How much does 
the device rely on physical security to prevent tampering?

• The normal operating location of the device: If the device 
is present in a public location, the opportunity for attack 
may be greater than if the device is kept within a secure 
environment.  The review would also consider the possibility of 
insider or accidental alteration.

• Bitfile security at rest on the device: Is it possible for an 
attacker to obtain the bitfile from the NVRAM present on 
the device? Are bitfiles encrypted or signed, and if so how 
is the key to the encrypted data conveyed to the process 
in charge of loading the FPGA? Is a second copy of the 
bitstream file present elsewhere on the system? Can software 
be downloaded from the device, or the version of the FPGA 
software obtained from a console login to the system? Are 
files in the flash location used without checking their veracity 
or origin? Is more than one version of the FPGA configuration 
file retained on the device?

• The upgrade process: If the device can be upgraded, is 
the upgrade of the FPGA configuration also a possibility? Is 
the version of FPGA in use fixed, or can the chip be changed 

All Rights Reserved.      © NCC Group 2015

 NCC Group Research Insights      12

FGPA Security 
Assessment



All Rights Reserved.      © NCC Group 2015

 NCC Group Research Insights     13

to expose exploitable behaviour? Does the process and 
security of a software upgrade apply also to FPGA files, or is 
there a separate system for FPGA files? What is the delivery 
mechanism for upgraded or altered files? Can local delivery of 
a new file supersede the normal process? Can upgrades be 
initiated by a user with access to the device?

• The encryption of software during transit to the device: 
Where is the decryption key stored on the device? What 
mechanism of encryption is used? What type of memory stores 
the key at different times on the system? Can the key be 
overwritten? Is the transport of the file encrypted at all times 
on its journey? Will bitfiles be stored in transit in intermediate 
servers? Is there a single key in use across the ecosystem, or 
is there a separate key per device?

• The signing of configuration files for the device: Is signing 
in use? Does the device check the signing of FPGA files 
before running them or upon delivery? What mechanism is 
used to verify the signature? Can this be subverted? What anti-
cloning or watermarking techniques are in use?

• Security within the development process: What is the 
security situation at the manufacturing and repair facilities? 
Could the FPGA bitfiles or key leak during testing? At what 
point in the process is the key burned into the FPGA? Are 
all the mechanisms to prevent key retrieval set correctly 
from this point? How much general code could leak from 
the development process? Are schematics, datasheets, and 
configuration guides publicly accessible? Can casual users 
gain access to a relevant development environment? What is 
the security within the development environment location? Can 
information aid any reverse-engineering attacks?

• Developmental debugging facilities and production 
equivalents: How is debugging carried out during 
development? Is any of this accessible in released versions? 
Are log files created and stored during the running of 
the system and will these contain information useful to 
an attacker? Is the same key in use or accepted during 

development, integration testing and release? Is test bench 
data, recording formal test results under particular criteria, 
available for the development?

• FPGA design review:  examination of the datasheets for the 
FPGA, configuration guide for the chip, board schematics for 
the PCB in use, software controlling the board, and design 
specifications referenced by the developers when coding the 
HDL. 

• For more in-depth reviews, can any side channel attacks 
produce meaningful output? Side channel attacks include 
differential power analysis, which may be able to recover the 
key information, optical emissions (at a very low level) from 
the FPGA once the outer covering has been careful removed, 
optical fault injection, and timing attacks.

The above represents a starting point for the review of an FPGA 
implementation, but the process would depend upon the individual 
status of the device in questions; in particular assets on the 
device as described in Section 2.3.1 above and would inform the 
weighting of the subsequent review.

HDL Code Review

Another aspect of the FPGA review process would be an HDL 
code review.

An HDL code review will not limit itself to purely examining the 
HDL code, but will include the aspects of the external processor 
code that deals with FPGA configuration file maintenance, 
storage, and upgrade.

A code review would be conducted with reference to the external 
hardware rather than in isolation. Normal code and business 
logic review techniques would be used, but with reference to the 
following code considerations:

• What version of the development software is in use?

• Does the code make use of well-known libraries? Are any of 
these publicly available or known to be in use by the company?



[12]  See http://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream- 
         encryption.pdf 
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• Does the design implement any security-critical functions or 
features that need to be reviewed in the scope of the wider 
system?

• Have unnecessary connections been activated within the 
constraints file?

• What manufacturer protection mechanisms have been used, 
such as bitfile encryption or JTAG protection? (See section 
2.2.4 below for more details.)

• How are encryption keys managed?

• Are the security mechanisms embedded within the code, or a 
later add-on? 

• Does the code interface with other languages or verification 
test files? Do these files leak any restricted data?

• Does the code deal with external clock sources or work 
asynchronously? What mechanisms to defend against 
metastability have been considered? Does the device support 
multiple power or clock domains, and how are these managed?

• Are test bench simulations available? Are they written by the 
developer?

• What coding guidelines are in use? 

• Is design reuse occurring? What is the implication of this for 
security with reference to the previous and current use of the 
design?

• Is there a naming convention for processes, entities, 
architectures, functions, and signals? Are they easy to find in 
the code?

• Are comments used in the code?

• What interactions are there with other coded or controlled 
components?

• Are test code or feedback mechanisms used? Are these 
removed from the finished code?

FPGA Protections

FPGA manufacturers are aware of the potential security risks 
when designing hardware devices, and have created a number of 
security mechanisms to aid developers. 

Bitfile Encryption

All manufacturers now include encryption within their FPGA 
chips, generally using AES anti-tamper mechanisms, although 
these may have to be activated and used correctly by developers. 
The purpose of the protection is to allow bitstream files to be 
encrypted during transit and delivery to the FPGA itself. 

Decryption will take place on the device, using a key stored 
within the FPGA. Clearly, if the key can be read from the device 
the purpose of the encryption will be defeated, so one-time 
write key fuses can be used to set a key within the FPGA which 
subsequently cannot be read or altered. Doing so is intended to 
limit the programmability of the device to a single manufacturer. 
Storage and security of the relevant keys by the manufacturer 
then becomes the focus of FPGA security.

Xilinx Virtex-6 and Virtex-7 FPGAs [12] have included both 
encryption and HMAC authentication since at least 2010, though 
encryption itself was available for users many years previously. The 
stage at which the anti-tamper mechanisms can be introduced 
to the design is user-controllable. The use of anti-tamper 
mechanisms will consume FPGA resources and therefore may not 
be feasible to add to designs at a later stage.

When encryption is used the key must be stored in a secure 
location, which on embedded systems must be on the device 
itself. The key must also be programmed onto the device using a 

All manufacturers now 
include encryption within 
their FPGA chips.
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different channel to the normal FPGA loading (to ensure the key is 
not removable by simple programming). This can be through JTAG 
programming, and the key stored on the chip in a non-volatile 
location, such as a one-time programmable eFuse [13]. 

The key must be stored in plain text (or there would need to be 
another key stored somewhere to decrypt it) and can be read 
again via JTAG from the device if the eFuse control register bits 
are set to allow it. 

Therefore the setting of these registers is crucial to the security of 
the device. The control register bits can be set to disallow reading 
and to prevent further changes to the control bits themselves. 

FPGA developers need to determine the correct balance of 
security and usability, especially during development. Choosing 
the correct time to make use of the production mechanisms will 
require careful planning.

Altera FPGAs can be configured to only allow encrypted bitfiles if 
programmed over the Configuration via Protocol [14] method. As 
with Xilinx, this key is used with AES256 and can be stored either 
in volatile (requiring on-board battery) or non-volatile memory. 

The non-volatile key is programmed using the JTAG interface, 
and bit switches can be set while programming to ensure only 
encrypted bitstreams are accepted and to place the device in 
secure JTAG mode, where most JTAG instructions are ignored. 
Note that secure JTAG mode can be removed and is not a one-
way change. 

The recent Max family of FPGAs use a 128-bit, rather than 256-
bit, key, and offer a unique Chip ID for each device, though this 
feature has to be manually activated.

Modern FPGAs from Lattice with on-chip non-volatile memory 
allow the use of encrypted bitfiles as the key can be permanently 
stored on the device [15]. The system uses 128-bit AES for 
encryption, and a one-time password fuse mechanism, similar to 
those used by other FPGA manufacturers. 

If encryption is not enabled, a key code can be written into a file, 
which could present a risk as the file is likely to be in text format 
on the development systems. The iCE40 series [16] of FPGAs 
have dedicated non-volatile memory on chip to prevent the need 
for storage of the bitstreams externally for startup.

Some manufacturers include mechanisms for clearing the key 
from the one-time write area if tampering is suspected. The 
configuration and use of this mechanism must be carefully 
controlled, as a false positive would be liable to render the FPGA 
incapable of loading a configuration file.

While these features represent an advance over the security 
position adopted by some FPGA manufacturers during the 
previous fifteen years, many of the protections are voluntary and 
require configuration to be correctly set to assure the maximum 
level of protection. In addition, lower-end products will use FPGAs 
that do not contain the full range of currently advertised security 
measures.

[14]  See https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_cvp.pdf
[15]  See http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/AD/          
         AdvancedSecurityEncryptionKeyProgrammingGuide.pdf 
[16]  See http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/IK/  
         iCE40ProgrammingandConfiguration.pdf?document_id=46502 
[13]  See IBM https://www-304.ibm.com/jct03002c/press/us/en/pressrelease/7246.wss

FPGA developers need to 
determine the correct balance 
of security and usability.

Some manufacturers 
include mechanisms for 
clearing the key from the 
one-time write area if 
tampering is suspected.



[17] See https://www.intrinsic-id.com/technology/physically-unclonable-functions-puf/ 
[18] See https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/  
        wp-01252-secure-device-manager-for-fpga-soc-security.pdf 
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Anti-Cloning Systems

Manufacturers are concerned with the possibility that FPGA 
designs will be copied or cloned and used in rival systems.

Physically unclonable functions (PUF), first introduced as “physical 
one-way functions” in 2002, gained traction through use in 
smartcards due to their low cost. 

The effectiveness of the function derives from the difficulty in 
reproducing output that was added in a semi-randomised manner 
in the production process and which produces a repeatable but 
unique output. 

To reproduce the function, the exact responses of the target 
function must be known and then a method of producing the 
same responses during manufacturing must be found, which using 
current technology is not thought to be feasible.

Recent developments within FPGAs have involved work from 
Intrinsic-ID [17], and have been employed within FPGAs 
developed by Microsemi, while Altera has partnered with Intrinsic-
ID in the development of the new Stratix chips. The Stratix 10 
advertises itself as the “Best-in-Class” [18] FPGA for security, 
with side-channel attack protection through the use of an on-chip 
secure device manager. 

This requires the use of a separate configuration processor 
within the FPGAs, with the result that while security is enhanced, 
the solution is not available on medium and lower end products 
or FPGAs without an additional on-board processor. Additional 
protections against cloning include embedding device numbers 
within chips such as Device DNA in Xilinx.

Other protection measures include JTAG disabling systems, 
monitoring to prevent side-channel attacks, boot code protection, 
and CRC checks to prevent tampering. As with the above 
protections, the use of correct configuration of the device at the 
appropriate point in the development cycle is key to its effective 
deployment. 

Note that the vast majority of these measures are on-chip 
defences, and it is vital that developers consider the threat to the 
FPGA as part of the system as a whole, as well as on the FPGA 
itself.

Manufacturers are 
concerned with the 
possibility that FPGA 
designs will be copied or 
cloned and used in rival 
systems.
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Conclusion 

This document presents an overview of FPGAs from a historical 
and programming perspective and provides information about the 
questions that will be asked during a review of FPGA security. The 
security requirements of an FPGA device begin with the design 
stage of a product and should be established before implementa-
tion begins, particularly if the devices are to be sent to a third party 
for manufacture and programming.

FPGA manufacturers now provide multiple on-chip mechanisms 
for FPGA security, but these must be configured correctly to 
provide the advertised level of security. Older or lower-end 
products may be using FPGAs that do not have the higher level of 
security built in, and ongoing use of these chips should be 
accompanied by a review to ensure that no method of bypassing 
the protections has been left open.

The security requirements 
of an FPGA device begin 
with the design stage of a 
product and should be 
established before 
implementation begins.
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