
RESEARCH
INSIGHTS
Hardware Design: FPGA Security Risks

www.nccgroup.trust

CONTENTS
Author 3

Introduction 4

FPGA History 6

FPGA Development 10

FPGA Security Assessment 12

Conclusion 17

Glossary 18

References & Further Reading 19

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 2

AUTHOR
DUNCAN HURWOOD

Duncan is a senior consultant at NCC Group,
specialising in telecom, embedded systems and
application review. He has over 18 years’
experience within the telecom and security industry
performing almost every role within the software
development cycle from design and development
to integration and product release testing.

A dedicated security assessor since 2010, his
consultancy experience includes multiple
technologies, languages and platforms from web
and mobile applications, to consumer devices and
high-end telecom hardware.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 3

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 18

GLOSSARY

AES Advanced encryption standard, a cryptography
 cipher

ASIC Application-specific integrated circuit, non-
 programmable hardware logic chip

Bitfile Binary instruction file used to program FPGAs

CLB Configurable logic block, an internal part of an
 FPGA

CPLD Complex programmable logic device

EEPROM Electronically erasable programmable read-
 only memory

eFuse A system to allow one-time writing of data

Flash Non-volatile memory

FPGA Field programmable gate array

HDL Hardware description language, such as
 Verilog or VHDL

JTAG Standard test access port on a device (IEEE
 1149.1 – 1990)

NVRAM Non-volatile RAM, retaining value after power
 loss

OTP One time programmable, allowing write once
 only

PCB Printed circuit board

PLA Programmable logic array, forerunner of FPGA
 technology

PUF Physically unclonable function

POWF Physical one-way function

PSoC Programmable system on chip, an FPGA and
 other hardware on a single chip

SoC System on chip, a non-programmable logic chip
 with additional hardware

SRAM Static RAM, volatile memory storage

SystemVerilog HDL programming language, extension of
 Verilog from 2002 onwards

Verilog HDL programming language, developed in the
 1980s and 1990s, with C-like syntax

VHDL HDL programming language, developed from
 the 1980s, based on ADA

INTRODUCTION

This document provides an introduction to the use of FPGAs.
FPGA stands for field-programmable gate array. An FPGA is a
logic device whose function can be changed while the device is
in place within its working environment, allowing the hardware
processing of a system to be altered by an external configuration
loading process. Configuration bitstreams for FPGAs can be used
to change the logical processing of input data, and so alter the
functionality of a device.

The most common uses of FPGAs are areas within automotive,
medical, factory equipment and defence equipment that required
rapid concurrent processing.

The paper examines the process of developing configuration
binaries for FPGA devices and the potential security problems that
could be encountered. It assumes no prior knowledge of FPGA
technology.

The information in this paper is useful for anyone who works
with embedded devices, software and hardware developers or
producers who may want to understand the potential security risks
of using FPGAs within their devices.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 4

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 6

FPGA History

The direct antecedents of FGPAs were the programmable
logic array (PLA) chips of the late 1970s which allowed the
programming, though usually not the reprogramming, of a set of
AND and OR gates into the equivalent of a state machine. The
development of the technology encompassed several strands,
including the concurrent, but initially quite distinct, development
of programmable array logic (PAL) chips, which themselves
diversified into complex programmable logic devices (CPLDs).

FPGA devices initially differed from CPLD through the use of
on-board static random-access memory (SRAM). This volatile
storage system is used as a short-cut, providing the result of logic
operations as data in a look-up table. Multiple data operations are
combined in a series of complex logic blocks (CLB). The results of
the CLB operations are routed via switch blocks to chip outputs or
as inputs to additional CLB operations. Therefore the complexity
of the processing within FPGAs is limited by the number of logical
operations on a chip, usually determined by the semiconductor
technology, measured since the late 1980s in nanometre size.

Chip complexity has expanded both by increased density of logical
operation, approximately following Moore’s Law since 1965, and
physically, as additional layers can be added horizontally to chip
design. The result is that top-of-the range modern FPGA chips
have kept pace with processor evolution and can be far more
effective compared to microprocessors when reliable concurrent
or low latency operations are required.

The key step in the development of modern FPGAs was
the invention of reliable non-volatile electronically erasable
programmable read-only memory (EEPROM), and its derivative
flash memory, in the early 1980s. The use of NAND flash
memory provided a reliable and quick storage system for FPGA
configuration files and made it feasible to load behavioural logic
onto FPGA chips during system start-up.

With the separation of logical behaviour storage from the chip
carrying out the operations, the ability to alter the programming
of the device in the field became feasible. Consequently the
appearance of non-volatile RAM (NVRAM) in proximity to FPGA
chips in order to store the FPGA configuration file is expected.

As FPGAs have evolved, the simplicity of the design has been
complicated by the development of programmable system-on-chip
(PSoC) families, where processors, non-volatile memory, timing
sources, and connecting buses are all present alongside the
FPGA. The configuration file for the FPGA can be loaded directly
onto these chips, without the need for an external NVRAM device.
Many PSoC devices have pre-configured libraries of available
functions and allow quicker initial development, but using such
devices incurs the cost of reduced flexibility.

ASICs are related to FPGAs and often mentioned alongside them.
An ASIC (application-specific integrated circuit) can perform the
same function as an FPGA, but it is not reprogrammable. Instead,
the circuit design is fixed during manufacture.

Top-of-the range modern
FPGA chips have kept
pace with processor
evolution and can be far
more effective compared to
microprocessors.

As FPGAs have evolved,
the simplicity of the design
has been complicated
by the development of
programmable system-on-
chip (PSoC) families.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 7

Because of this, ASICs may share logical security flaws with
FPGA devices, but not issues related to reprogramming. ASICs
often require a great deal of investment to design correctly (using
FPGAs as prototypes within that process) but will run at a much
lower power and are therefore suitable for mass-production use
within smaller devices.

Note that the use of ASICs requires that a design has been
exhaustively proven to function correctly, and therefore the
resources needed to develop them are significantly greater. The
cost of each iteration of ASIC design can be very large, depending
on the number of layers within the chip, with each layer requiring
a separate mask to specify the connections on the chip precisely.
This means that ASICs are only economical when used within
devices with a large volume of sales.

Use of FPGAs

As FPGAs are logic processing units there is no set application
for which they are used. Unlike a CPU or microprocessor, which
processes instructions through a sequential list, an FPGA will
process instructions in parallel and therefore will be capable of
handling multiple concurrent inputs simultaneously. Uses for this
property include signal processing, particularly image processing,
industrial automation, and aerospace or defence systems. Within
aerospace applications the problem of radiation causing the slow
degradation of devices through ionisation or sudden changes of
behaviour through single particle collision events has long been
recognised.

Initial solutions were to use one-time programmable (OTP) FPGAs
without on board SDRAM, but subsequently several companies,
such as Microsemi [1] and Xilinx [2], developed radiation-tolerant
FPGAs, specifically for use in non-terrestrial or vulnerable
locations.

In each case FPGAs will be used where multiple simultaneous
inputs must be dealt with inside a limited time or where a strictly
defined latency must be adhered to. While this need can be
addressed with a microcontroller running a real-time operating
system, the advantages gained by parallel processing of signals
can produce timing and precision advantages for FPGAs.

FPGAs have also found increasing use within four recent growth
areas:

• Automotive, where increasing numbers of monitor points
require simultaneous processing under extremely time-limited
conditions. As vehicles continue to increase the areas in
which autonomous controls can back up or supplant human
decisions, vehicle data processing must take account of all
inputs at the same time. A sequential review of data may not
produce the correct result in the short window of opportunity.

• Medical, where the electronic devices within the
armamentarium are often not produced in the numbers
required to make ASIC development feasible. Medical
applications using FPGAs are particularly focused on image
processing.

• Data communication, both in data centres and where wired
communication requires rapid processing of simultaneous
signals.

• Cryptography, especially during the Bitcoin mania, which
made extensive use of FPGA parallelism, though several
solutions migrated to the use of ASICs to speed up the
processing once the design was fixed.

An ASIC (application-
specific integrated circuit)
can perform the same
function as an FPGA, but it
is not reprogrammable.

[1] See http://www.microsemi.com/document-portal/doc_view/131374-radiation-tolerant-proa
 sic3-fpgas-radiation-effects-report
[2] See http://www.xilinx.com/support/documentation/white_papers/wp402_SEE_Considera
 tions.pdf

 NCC Group Research Insights 8

The use of FPGAs and ASICs tends to follow a cyclical pattern,
with the lower individual cost of ASICs resulting in their increasing
use as products mature and reach a viable sales volume. However,
as products develop, ASICs may again be replaced by FPGAs to
allow new technologies to be introduced, restarting the cycle.

FPGAs tend to be used within larger embedded systems rather
than within the current Internet of Things proliferation of domestic
products, though they may be found in prosumer items such as
higher-level digital cameras.

As FPGAs are found within a system rather than forming the main
part, the security around their use can often be overlooked.

Recent FPGA Developments

Currently two companies, Altera [3] and Xilinx [4], are believed to
account for 85% of all FGPA sales.

Xilinx was considered to be the leading supplier of the two,
although Intel [5] has recently acquired Altera, with effects which
are yet to be fully seen.

Xilinx produce several families of FPGA chips, each of which
have been designed in multiple versions of increasing cost and
complexity. These range from the SPARTAN chips, the low-end of
which is often encountered in training boards, to the cost-focused
ARTIX, the performance-focused VIRTEX, designed for fast traffic
processing, and the balanced KINTEX chips recommended for
digital signal processing.

All of the chips come in a variety of capabilities, from 45nm to
ultra-high performance 16nm-based chips. Xilinx separate out
their SoC offerings into the ZYNQ family, which combine ARM
processors with the FPGA; the most recent of these is the ZYNQ
UltraScale+ 16nm SoC device.

Altera produce four families of FPGAs, each of which contains a
set of FPGAs developed between 2002 and 2015. The Cyclone
chips are focused on cost, with the Stratix family the equivalent of
Xilinx VIRTEX in its performance focus. The Arria family balance
between the two, while the recently introduced Max chip contains
an ARM processor, dual flash banks, timing, a power regulator and
RAM.

Other companies that produce FPGAs include Lattice
Semiconductor [6], whose FPGAs are often used in
telecommunications devices, Microsemi [7], and Quicklogic [8].

However, as products
develop, ASICs may again
be replaced by FPGAs to
allow new technologies to
be introduced.

[3] See www.altera.com
[4] See www.xilinx.com
[5] Agreement was reached in June 2015, see http://intelacquiresaltera.transactionannouncement.com/
[6] See http://www.latticesemi.com/
[7] See http://www.microsemi.com/products/fpga-soc/fpga-and-soc
[8] See http://www.quicklogic.com/platforms/connectivity/pp3e/

All Rights Reserved. © NCC Group 2015

FPGA Languages

An FPGA is a set of inputs and outputs with configurable gates
between them. The position of the inputs and outputs depends
upon the chip in use, but the logical behaviour to be programmed
into the device should be FPGA-independent, as the logical design
does not reflect physical characteristics. Because of this, the
use of higher-level logical descriptions to define the behaviour
is possible; this is the role of the hardware description language
(HDL).

The two most common HDLs in use are Verilog and VHDL.
Verilog has most recently been standardised as IEEE1364-2005
and tends to be in use more in use in the US than VHDL. VHDL
stands for very high speed integrated circuit (VHSIC) hardware
description language, and was most recently standardised within
IEEE 1076-2008. Although first developed in the US, it tends to
be used less in the US but is thought to be the preferred language
within the UK and Europe.

This document will concentrate on VHDL, but note differences
with Verilog where appropriate.

VHDL

VHDL is not procedural like C or Java, but a description of data
flow over logical elements. The feel of the language draws on Ada,
due to the development of both languages within the Department
of Defense in the US.

Like other languages, VHDL code files contain libraries and
packages to allow users to make use of pre-existing logic. Entities
are added to these, which describe logic inputs and outputs;
entities do not do anything in themselves, but describe a logical
map over which architectural code can operate. The third basic
element of VHDL is the architectural code, which describes the
logical operations that will take place.

It is important to note that none of the above links the VHDL code
to any specific hardware. For this, a constraints file is required,

which describes the relationship between the physical inputs and
outputs of the FPGA and the logical hardware description code.
In Xilinx a constraints file can be recognised by the .ucf extension
(standing for “user constraint file”), but other manufacturers use
different terms, such as SDC or XDC.

Due to its ADA roots, VHDL is strongly typed. This is generally
thought to make VHDL code easier to read than Verilog and may
help prevent obvious coding errors. The ‘self-documenting’ aspect
of the language, through its verbose syntax, has also led to its
popularity in teaching and academic circles.

Verilog

Verilog was named after a concatenation of the words
“verification” and “logic”, and was developed initially as a simulation
language in the 1980s. Its syntactical roots are in C, a language
with which it shares the characteristics of weak type enforcement
and sparse verbosity. These features, however, allow prototype
logic to be constructed quickly and have increased the popularity
of the language among the engineering community.

Some tasks are easier to perform in Verilog than in VHDL. For
example, Verilog has an interface to the C language through the
Verilog procedural interface (VPI), which allows users to write
C code to interface directly with the simulation, a feature more
directly coupled than is the case with VHDL foreign language
interfaces.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 10

FPGA Development

Due to its ADA roots, VHDL
is strongly typed. This is
generally thought to make
VHDL code easier to read than
Verilog and may help prevent
obvious coding errors.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 11

However, there are aspects of VHDL that are simpler than the
Verilog equivalent, such as the re-use of code packages, which
is simpler than the use of library modules within Verilog. In either
case both languages have the capability, but the task is easier to
perform in one compared to the other.

Since the mid-1990s Verilog has influenced the development of
SystemVerilog, an extension of Verilog which is now generally
considered a separate language. SystemVerilog has extended the
language to include a greater number of C and object-oriented
concepts such as records (equivalent to structs), classes, enums,
and interfaces. Many of these additions give SystemVerilog access
to features present in VHDL and led to its use as language for
PSoC devices.

Process of ‘Compilation’

The process of turning a conceptualised hardware design into
an FPGA configuration bitstream requires a series of stages to
take place. Several of these are similar to the stages used when
compiling and linking a C program into processor-dependent
binary; however, it is important to keep in mind that for FPGA
development the end product is a logic description, not a series of
steps that will be carried out atomically by a processor.

When developing VHDL the use of a development environment
such as the Xilinx Vivado [9], IspLever [10] from Lattice
Semiconductor or Synplify [11] will force the selection of a target
FPGA and encourage the user to design with that target in mind.

The three necessary steps are:

1. Creation of a hardware description of the logic processes
required using the chosen language. This is the VHDL and
associated files.

2. Design synthesis, a process that converts the HDL into a
general circuit schematic, not necessarily FPGA dependent,
though the use of a development environment may include
some aspects of this. In synthesis stage, the code syntax is
checked, and it is ensured that the design is logically coherent.

3. Implementation of the design onto the target FPGA; this
requires the design to be translated, placed and routed
logically through the specifics of the chip it will run on. The
final bitstream configuration file will be generated at this point.

The first stage above requires the author to write the HDL code,
while the second tests the internal logic of the code in order to
produce a coherent whole. It is only in the third stage that the
capabilities of the target FPGA device are fully considered.

The output from the third stage of process would be a bitstream
file, often with a suffix of .bit, that can be loaded onto the FPGA
during the start-up of the board. During development the bitstream
may be loaded onto the board via the JTAG interface of the FPGA,
though the actual mechanism used will depend on the board
and manufacturer. Once in production the bitstream is present in
an adjacent or on-chip memory device and will be automatically
loaded onto the FPGA, usually through a serial configuration port.

[9] See http://www.xilinx.com/products/design-tools/vivado.html
[10] See http://www.latticesemi.com/ispleverclassic
[11] See http://www.synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/
 Pages/ SynplifyPro.aspx

Since the mid-1990s
Verilog has influenced
the development of
SystemVerilog, an extension
of Verilog.

FPGA Assets and Threats

The assets associated with an FPGA can include:

• The intellectual property of the developer, such as the
FPGA bitstream and configuration files. If this information
were to be copied, cloned, or emulated, it could allow the
device to be reproduced by a developer who had not invested
resources into the development process. The bitstream key will
be programmed onto non-volatile memory and should not be
readable by any external process.

• The reputation of the developer, especially if the product
behaviour can be subverted. If attackers are able to alter
the behaviour of the FPGA, they may be able to make the
machine behave in an unexpected manner, or allow access to
functionality that requires a more expensive license.

• The data being processed within the FPGA. If the system
processes confidential or personally identifiable information
this may be obtainable from within the system. This could
include the use of sensitive keys used for video and audio
stream decryption, such as those used in DRM. These may be
stored in volatile memory on the chip during runtime.

A review of FPGA use within a product would include the relevant
assets and threats to the system.

FPGA Review

An FPGA review would not consider the FPGA in isolation from
the device in which it is placed. Instead, the whole device would
be examined, but particular attention would be paid to the FPGA
configuration file within the device and the data outputs from the
FPGA chip.

Areas considered in the review would include:

• The assets present on the device, in line with the risks
identified above.

• The input and outputs from the FPGA on the PCB: How
many tracks exist that are not used? Would it be possible to
extract data from these connections? Are there inputs that
are not normally used, and could these be activated to subvert
the behaviour of the device? Do any outputs contain log files
or other potentially confidential information from the FPGA?
Are the tracks used to load the software onto the FPGA on
the surface layer of the PCB? Is any of the output information
stored on the device, or externally?

• The hardware layout of the equipment: This would
include a review of the physical ports on the system, both
accessible from the outside and present on the PCB as either
a connector or adaptable connector-location. If parts of the
device can be removed, or if it accepts memory cards or USB
input, the effects of this will be included in the review. Is it
possible to connect to the JTAG interface? How much does
the device rely on physical security to prevent tampering?

• The normal operating location of the device: If the device
is present in a public location, the opportunity for attack
may be greater than if the device is kept within a secure
environment. The review would also consider the possibility of
insider or accidental alteration.

• Bitfile security at rest on the device: Is it possible for an
attacker to obtain the bitfile from the NVRAM present on
the device? Are bitfiles encrypted or signed, and if so how
is the key to the encrypted data conveyed to the process
in charge of loading the FPGA? Is a second copy of the
bitstream file present elsewhere on the system? Can software
be downloaded from the device, or the version of the FPGA
software obtained from a console login to the system? Are
files in the flash location used without checking their veracity
or origin? Is more than one version of the FPGA configuration
file retained on the device?

• The upgrade process: If the device can be upgraded, is
the upgrade of the FPGA configuration also a possibility? Is
the version of FPGA in use fixed, or can the chip be changed

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 12

FGPA Security
Assessment

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 13

to expose exploitable behaviour? Does the process and
security of a software upgrade apply also to FPGA files, or is
there a separate system for FPGA files? What is the delivery
mechanism for upgraded or altered files? Can local delivery of
a new file supersede the normal process? Can upgrades be
initiated by a user with access to the device?

• The encryption of software during transit to the device:
Where is the decryption key stored on the device? What
mechanism of encryption is used? What type of memory stores
the key at different times on the system? Can the key be
overwritten? Is the transport of the file encrypted at all times
on its journey? Will bitfiles be stored in transit in intermediate
servers? Is there a single key in use across the ecosystem, or
is there a separate key per device?

• The signing of configuration files for the device: Is signing
in use? Does the device check the signing of FPGA files
before running them or upon delivery? What mechanism is
used to verify the signature? Can this be subverted? What anti-
cloning or watermarking techniques are in use?

• Security within the development process: What is the
security situation at the manufacturing and repair facilities?
Could the FPGA bitfiles or key leak during testing? At what
point in the process is the key burned into the FPGA? Are
all the mechanisms to prevent key retrieval set correctly
from this point? How much general code could leak from
the development process? Are schematics, datasheets, and
configuration guides publicly accessible? Can casual users
gain access to a relevant development environment? What is
the security within the development environment location? Can
information aid any reverse-engineering attacks?

• Developmental debugging facilities and production
equivalents: How is debugging carried out during
development? Is any of this accessible in released versions?
Are log files created and stored during the running of
the system and will these contain information useful to
an attacker? Is the same key in use or accepted during

development, integration testing and release? Is test bench
data, recording formal test results under particular criteria,
available for the development?

• FPGA design review: examination of the datasheets for the
FPGA, configuration guide for the chip, board schematics for
the PCB in use, software controlling the board, and design
specifications referenced by the developers when coding the
HDL.

• For more in-depth reviews, can any side channel attacks
produce meaningful output? Side channel attacks include
differential power analysis, which may be able to recover the
key information, optical emissions (at a very low level) from
the FPGA once the outer covering has been careful removed,
optical fault injection, and timing attacks.

The above represents a starting point for the review of an FPGA
implementation, but the process would depend upon the individual
status of the device in questions; in particular assets on the
device as described in Section 2.3.1 above and would inform the
weighting of the subsequent review.

HDL Code Review

Another aspect of the FPGA review process would be an HDL
code review.

An HDL code review will not limit itself to purely examining the
HDL code, but will include the aspects of the external processor
code that deals with FPGA configuration file maintenance,
storage, and upgrade.

A code review would be conducted with reference to the external
hardware rather than in isolation. Normal code and business
logic review techniques would be used, but with reference to the
following code considerations:

• What version of the development software is in use?

• Does the code make use of well-known libraries? Are any of
these publicly available or known to be in use by the company?

[12] See http://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-
 encryption.pdf

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 14

• Does the design implement any security-critical functions or
features that need to be reviewed in the scope of the wider
system?

• Have unnecessary connections been activated within the
constraints file?

• What manufacturer protection mechanisms have been used,
such as bitfile encryption or JTAG protection? (See section
2.2.4 below for more details.)

• How are encryption keys managed?

• Are the security mechanisms embedded within the code, or a
later add-on?

• Does the code interface with other languages or verification
test files? Do these files leak any restricted data?

• Does the code deal with external clock sources or work
asynchronously? What mechanisms to defend against
metastability have been considered? Does the device support
multiple power or clock domains, and how are these managed?

• Are test bench simulations available? Are they written by the
developer?

• What coding guidelines are in use?

• Is design reuse occurring? What is the implication of this for
security with reference to the previous and current use of the
design?

• Is there a naming convention for processes, entities,
architectures, functions, and signals? Are they easy to find in
the code?

• Are comments used in the code?

• What interactions are there with other coded or controlled
components?

• Are test code or feedback mechanisms used? Are these
removed from the finished code?

FPGA Protections

FPGA manufacturers are aware of the potential security risks
when designing hardware devices, and have created a number of
security mechanisms to aid developers.

Bitfile Encryption

All manufacturers now include encryption within their FPGA
chips, generally using AES anti-tamper mechanisms, although
these may have to be activated and used correctly by developers.
The purpose of the protection is to allow bitstream files to be
encrypted during transit and delivery to the FPGA itself.

Decryption will take place on the device, using a key stored
within the FPGA. Clearly, if the key can be read from the device
the purpose of the encryption will be defeated, so one-time
write key fuses can be used to set a key within the FPGA which
subsequently cannot be read or altered. Doing so is intended to
limit the programmability of the device to a single manufacturer.
Storage and security of the relevant keys by the manufacturer
then becomes the focus of FPGA security.

Xilinx Virtex-6 and Virtex-7 FPGAs [12] have included both
encryption and HMAC authentication since at least 2010, though
encryption itself was available for users many years previously. The
stage at which the anti-tamper mechanisms can be introduced
to the design is user-controllable. The use of anti-tamper
mechanisms will consume FPGA resources and therefore may not
be feasible to add to designs at a later stage.

When encryption is used the key must be stored in a secure
location, which on embedded systems must be on the device
itself. The key must also be programmed onto the device using a

All manufacturers now
include encryption within
their FPGA chips.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 15

different channel to the normal FPGA loading (to ensure the key is
not removable by simple programming). This can be through JTAG
programming, and the key stored on the chip in a non-volatile
location, such as a one-time programmable eFuse [13].

The key must be stored in plain text (or there would need to be
another key stored somewhere to decrypt it) and can be read
again via JTAG from the device if the eFuse control register bits
are set to allow it.

Therefore the setting of these registers is crucial to the security of
the device. The control register bits can be set to disallow reading
and to prevent further changes to the control bits themselves.

FPGA developers need to determine the correct balance of
security and usability, especially during development. Choosing
the correct time to make use of the production mechanisms will
require careful planning.

Altera FPGAs can be configured to only allow encrypted bitfiles if
programmed over the Configuration via Protocol [14] method. As
with Xilinx, this key is used with AES256 and can be stored either
in volatile (requiring on-board battery) or non-volatile memory.

The non-volatile key is programmed using the JTAG interface,
and bit switches can be set while programming to ensure only
encrypted bitstreams are accepted and to place the device in
secure JTAG mode, where most JTAG instructions are ignored.
Note that secure JTAG mode can be removed and is not a one-
way change.

The recent Max family of FPGAs use a 128-bit, rather than 256-
bit, key, and offer a unique Chip ID for each device, though this
feature has to be manually activated.

Modern FPGAs from Lattice with on-chip non-volatile memory
allow the use of encrypted bitfiles as the key can be permanently
stored on the device [15]. The system uses 128-bit AES for
encryption, and a one-time password fuse mechanism, similar to
those used by other FPGA manufacturers.

If encryption is not enabled, a key code can be written into a file,
which could present a risk as the file is likely to be in text format
on the development systems. The iCE40 series [16] of FPGAs
have dedicated non-volatile memory on chip to prevent the need
for storage of the bitstreams externally for startup.

Some manufacturers include mechanisms for clearing the key
from the one-time write area if tampering is suspected. The
configuration and use of this mechanism must be carefully
controlled, as a false positive would be liable to render the FPGA
incapable of loading a configuration file.

While these features represent an advance over the security
position adopted by some FPGA manufacturers during the
previous fifteen years, many of the protections are voluntary and
require configuration to be correctly set to assure the maximum
level of protection. In addition, lower-end products will use FPGAs
that do not contain the full range of currently advertised security
measures.

[14] See https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_cvp.pdf
[15] See http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/AD/
 AdvancedSecurityEncryptionKeyProgrammingGuide.pdf
[16] See http://www.latticesemi.com/~/media/LatticeSemi/Documents/ApplicationNotes/IK/
 iCE40ProgrammingandConfiguration.pdf?document_id=46502
[13] See IBM https://www-304.ibm.com/jct03002c/press/us/en/pressrelease/7246.wss

FPGA developers need to
determine the correct balance
of security and usability.

Some manufacturers
include mechanisms for
clearing the key from the
one-time write area if
tampering is suspected.

[17] See https://www.intrinsic-id.com/technology/physically-unclonable-functions-puf/
[18] See https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/
 wp-01252-secure-device-manager-for-fpga-soc-security.pdf

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 16

Anti-Cloning Systems

Manufacturers are concerned with the possibility that FPGA
designs will be copied or cloned and used in rival systems.

Physically unclonable functions (PUF), first introduced as “physical
one-way functions” in 2002, gained traction through use in
smartcards due to their low cost.

The effectiveness of the function derives from the difficulty in
reproducing output that was added in a semi-randomised manner
in the production process and which produces a repeatable but
unique output.

To reproduce the function, the exact responses of the target
function must be known and then a method of producing the
same responses during manufacturing must be found, which using
current technology is not thought to be feasible.

Recent developments within FPGAs have involved work from
Intrinsic-ID [17], and have been employed within FPGAs
developed by Microsemi, while Altera has partnered with Intrinsic-
ID in the development of the new Stratix chips. The Stratix 10
advertises itself as the “Best-in-Class” [18] FPGA for security,
with side-channel attack protection through the use of an on-chip
secure device manager.

This requires the use of a separate configuration processor
within the FPGAs, with the result that while security is enhanced,
the solution is not available on medium and lower end products
or FPGAs without an additional on-board processor. Additional
protections against cloning include embedding device numbers
within chips such as Device DNA in Xilinx.

Other protection measures include JTAG disabling systems,
monitoring to prevent side-channel attacks, boot code protection,
and CRC checks to prevent tampering. As with the above
protections, the use of correct configuration of the device at the
appropriate point in the development cycle is key to its effective
deployment.

Note that the vast majority of these measures are on-chip
defences, and it is vital that developers consider the threat to the
FPGA as part of the system as a whole, as well as on the FPGA
itself.

Manufacturers are
concerned with the
possibility that FPGA
designs will be copied or
cloned and used in rival
systems.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 17

Conclusion

This document presents an overview of FPGAs from a historical
and programming perspective and provides information about the
questions that will be asked during a review of FPGA security. The
security requirements of an FPGA device begin with the design
stage of a product and should be established before implementa-
tion begins, particularly if the devices are to be sent to a third party
for manufacture and programming.

FPGA manufacturers now provide multiple on-chip mechanisms
for FPGA security, but these must be configured correctly to
provide the advertised level of security. Older or lower-end
products may be using FPGAs that do not have the higher level of
security built in, and ongoing use of these chips should be
accompanied by a review to ensure that no method of bypassing
the protections has been left open.

The security requirements
of an FPGA device begin
with the design stage of a
product and should be
established before
implementation begins.

All Rights Reserved. © NCC Group 2015

 NCC Group Research Insights 19

References &
Further Reading

FPGA Security Books:

From Features to Capabilities to Trusted Systems, Trimberger &
Moore, 2014

Fault Tolerant Design Implementation on Radiation Hardened By
Design SRAM-Based FPGAs, Schmidt, 2013

Website: http://www.fpgarelated.com/

Education FPGA boards: http://valentfx.com/

Tutorial: http://valentfx.com/wiki/index.php?title=LOGI_Guide_-_
Your_First_Project_using_Xilinx_ISE

Blog: https://blog.digilentinc.com/index.php/history-of-the-fpga/

Spartan-6 User Guide: http://www.xilinx.com/support/docu-
mentation/user_guides/ug384.pdf

Understanding metastability: https://www.altera.com/content/
dam/altera-www/global/en_US/pdfs/literature/wp/wp-
01082-quartus-ii-metastability.pdf

CONTACT US

0161 209 5200
response@nccgroup.trust
@nccgroupplc
www.nccgroup.trust

United Kingdom Europe North America Asia Pacific

Manchester - Head office

Basingstoke

Cambridge

Cheltenham

Edinburgh

Glasgow

Leatherhead

Leeds

London

Milton Keynes

Wetherby

Amsterdam

Copenhagen

Luxembourg

Munich

Zurich

Atlanta

Austin

Chicago

New York

San Francisco

Seattle

Sunnyvale

Sydney

All Rights Reserved. © NCC Group 2016

www.nccgroup.trust
@nccgroupplc

