
Zcash Overwinter Consensus and Sapling
Cryptography Review

Zcash
January 30, 2019 – Version 1.3

Prepared for
Jack Grigg
Zooko Wilcox
Daira Hopwood
Nathan Wilcox
Benjamin Winston

Prepared by
Thomas Pornin
Aleks Kircanski
Mason Hemmel
David Wong
Janet Ghazizadeh
Mathias Hall-Andersen
Javed Samuel

©2019 – NCC Group

Prepared by NCC Group Security Services, Inc. for Zcash. Portions of this document and the templates
used in its production are the property of NCC Group and cannot be copied (in full or in part) without
NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.

Document Change Log
Version Date Change
1.0 2018-05-18 Initial report provided to client
1.1 2018-09-11 Updated report provided to client after retest
1.2 2019-01-24 Updated after public technical review
1.3 2019-01-31 Ready for public release

2 | Zcash Overwinter Consensus and Sapling Cryptography Review

Executive Summary
In the spring of 2018, The Zerocoin Electric Coin Com-
pany engaged NCC Group to perform a two-pronged
review of recent changes to the Zcash cryptocurrency.
The first prong focused on updates to the Overwinter
consensus code, such as architectural changes facilitat-
ing future network upgrades, and new features, such
as transaction expiry. The second prong concentrated
on the implementation of the cryptographic primitives
used in the cryptocurrency’s Sapling release. This
release brings a number of changes to Zcash, including
changes to core cryptographic components such as
the underlying elliptic curves, shielded transaction
structure, and signature scheme.

The Overwinter portion of the engagement consisted of
20 person-days split between two consultants, taking
place between March 26 and April 6, 2018. The
cryptographic review of the Sapling primitives’ imple-
mentation consisted of 20 person-days split between
four consultants. It ran from May 7 to May 18, 2018.
The changes to the Overwinter portion are written
in C++, whereas Sapling cryptographic primitives are
implemented in Rust. Retesting was completed on
September 4 and 5, 2018.

Scope
Overwinter Consensus Phase
The Overwinter review covered the entire code-base
but focused on the following pull requests, chosen by
the Zcash team as representative of the Overwinter
changes:

• 2898
• 2925
• 2903
• 2463
• 2919
• 2874

The review included manual code review, searching for
vulnerabilities specific to public block chain implementa-
tions as well as more general application security issues.

Sapling Cryptography Phase
As for the Sapling cryptographic review, the primary
focus was on the following elements:

• The core Sapling repository, which implements prim-
itives used in the Sapling release, such as variants of
the Pedersen hash, Jubjub curve, Spend and Output
circuits.

• Version 2018.0-beta-19 of the Zcash Protocol Specifi-
cation document was used as primary documentation
on the changes introduced by the Sapling release,
when compared with the Sprout release.

Side channel attacks (e.g. timing attacks) were explicitly
out of scope, since operations that manipulate secret
values are normally performed on offline systems or in
an asynchronous way, which is considered tomake such
attacks impractical.

Key Findings
• Curve BLS12-381 Security Is Less Than 128 Bits.
The newly introduced curve BLS12-381 used inside
zk-SNARKs does not offer a 128-bit security level.
Recent public research1 suggests that the curve
achieves a security level between 117 and 120 bits
at most. It should be noted that while this fact runs
contrary to some stated security goals, it does not
represent a practical threat. More details can be found
in finding NCC-Zcash2018-004 on page 8.

• RedDSA is not SURK-CMA. The Zcash protocol specifi-
cation requires that RedDSA/RedJubjub, a newly intro-
duced signature scheme with re-randomizable keys,
satisfies the Strong Unforgeability with Re-randomized
Keys Under Adaptive Chosen Message Attack (SURK-
CMA) property. However, finding NCC-Zcash2018-009
on page 10 shows the proposed signature scheme in
fact does not satisfy this security property.

• DoS Through Transient Chain View Differences. An
attacker could have a legitimate participant in the
Zcash network banned by sending to the victim a flow
of transactions that are on the brink of expiration. If
the victim node forwards the transactions to other
nodes and other nodes consider the transactions
expired, the network will assess the victim node a non-
zero DoS penalty, potentially leading to banning. This
is shown in finding NCC-Zcash2018-001 on page 6.

1https://hal.archives-ouvertes.fr/hal-01534101/file/main.pdf

3 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash/zcash/pull/2898
https://github.com/zcash/zcash/pull/2925
https://github.com/zcash/zcash/pull/2903
https://github.com/zcash/zcash/pull/2463
https://github.com/zcash/zcash/pull/2919
https://github.com/zcash/zcash/pull/2874
https://github.com/zcash-hackworks/sapling-crypto/tree/5687acfaf83438a993fccc14ab487b67e4afbc68
https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol/sapling.pdf
https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol/sapling.pdf
https://hal.archives-ouvertes.fr/hal-01534101/file/main.pdf

Dashboard
Target Metadata
Name Zcash Overwinter Consensus

and Sapling Cryptography
Review

Type Bitcoin-forked cryptocurrency
Platforms C++, Rust
Environment Zcash’s “Sapling” Cryptography

Engagement Data
Type Protocol and code review
Method Code Assisted
Dates March 26, 2018 to May 18, 2018
Consultants 6
Level of effort 40 person-days

Targets
Core Sapling
Repository

https://github.com/zcash-hackworks/sapling-crypto/tree/5687acfaf83438a993fccc14ab487
b67e4afbc68

Zcash Protocol
Specification

https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol
/sapling.pdf

Finding Breakdown

Critical Risk issues 0
High Risk issues 0
Medium Risk issues 0
Low Risk issues 4
Informational issues 5
Total issues 9

Category Breakdown
Cryptography 3
Denial of Service 1
Other 4
Uncategorized 1

Key
Critical High Medium Low Informational

4 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash-hackworks/sapling-crypto/tree/5687acfaf83438a993fccc14ab487b67e4afbc68
https://github.com/zcash-hackworks/sapling-crypto/tree/5687acfaf83438a993fccc14ab487b67e4afbc68
https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol/sapling.pdf
https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol/sapling.pdf

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 23.

Title Status ID Risk
Asynchronous Chain Updates Can Lead To Network Bans Fixed 001 Low
Curve BLS12-381 Security Is Less Than 128 Bits Reported 004 Low
RedDSA / RedJubjub Are Not Strongly Unforgeable With
Re-Randomized Keys

Fixed 009 Low

Bit Ordering Convention Leads to Mismatches and Confusion Reported 010 Low
Mempool Not Properly Cleared If Connecting or Disconnecting Tips
Fails

Reported 002 Informational

Private Key Decoding Has Limited Interoperability Reported 003 Informational
Discrepancies Between Specification and Circuit Implementation Reported 007 Informational
Typographical Inconsistencies in Zcash Specification Reported 008 Informational
Bias in Random Field Element Generators for Underlying
Representation

Reported 011 Informational

5 | Zcash Overwinter Consensus and Sapling Cryptography Review

Finding Details
Finding Asynchronous Chain Updates Can Lead To Network Bans

Risk Low Impact: Low, Exploitability: Medium

Identifier NCC-Zcash2018-001

Status Fixed

Category Denial of Service

Component P2P Protocol

Location main.cpp, lines 874, 894, 900.

Impact Maliciously crafted transactions may induce victim nodes to reject each other and apply
temporary banning (24 hours), disrupting communications.

Description Zcash nodes exchange transactions and blocks in a peer-to-peer network. When a node
obtains a transaction and deems it valid with regards to internal rules, it forwards it to its
peers. However, if an invalid transaction is received by a node, then the node rejects it, and
may apply a penalty on the sending node (through calls to CValidationState::DoS()).
A total penalty counter is maintained for each known peer; when that counter reaches a
given threshold, the faulty peer is forcibly disconnected, and banned from reconnecting for
a configurable amount of time. By default, the penalty threshold is 100; penalties are 100
(major violations), 10 (minor violations), or 0. The default ban time is 24 hours.

Most of the checks on transactions are intrinsic (e.g. proper encoding format). However,
some checks are contextual: they depend on the current block chain height. For instance,
Overwinter transactionsmay have an “expiry” field that indicates the chain height at which the
transaction ceases to be a valid candidate for inclusion in new blocks. Nodes maintain their
notion of the current block chain height based on the blocks they receive, and the consensus
rules ensure that all nodes that follow the same rules will eventually converge on the same
chain. However, there can be transient discrepancies between the views of the current chain
by the nodes, if only because simultaneity of block reception is not guaranteed. As a new
block propagates through the network, nodes update their view of the block chain, but there
will routinely be a small time window, possibly of several seconds, during which two directly
connected nodes will have distinct notions of the current chain height. During that window,
a given transactionmay be acceptable by one node but not by its peer, because of contextual
checks that depend on the chain height.

This allows a denial-of-service attack that works as follows:

• The attacker sends many transactions to the victim node. The transactions are currently
valid, but will become invalid when the next chain block is mined.

• The victim node forwards the transactions to its peers.
• If a peer node has already received the next block, then it will reject the transactions and
apply a penalty on the victim node. The penalty for contextual rules is typically 10, and the
threshold is 100; therefore, ten malicious transactions are sufficient to trigger a 24-hour
ban.

NCC Group found two types of situations where such an attack is possible:

• Transaction Expiry: An Overwinter transaction can be tagged with an expiry height; when
the block chain height reaches that value, the transaction is no longer acceptable for in-
clusion in blocks. An attacker can thus choose to send to the victim node a stream of
transactions that are on the brink of expiration.

6 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash/zcash/blob/b466c1c90cb7a3f01f40dbdde46dde36dc1820b8/src/main.cpp#L874
https://github.com/zcash/zcash/blob/b466c1c90cb7a3f01f40dbdde46dde36dc1820b8/src/main.cpp#L894
https://github.com/zcash/zcash/blob/b466c1c90cb7a3f01f40dbdde46dde36dc1820b8/src/main.cpp#L900
https://github.com/zcash/zcash/blob/b466c1c90cb7a3f01f40dbdde46dde36dc1820b8/src/consensus/validation.h#L35

• Protocol Upgrade: Before the activation height of the new protocol (Overwinter), pre-
upgrade transactions (v2) are deemed acceptable, but post-upgrade transactions (v3) are
not. When the height is reached, the situation is reversed. The attacker can then send a
stream of v2 transactions to a victim node, hoping for its peers to obtain the next block
slightly earlier; alternatively, the attacker can send a stream of v3 transactions to a victim
node that just obtained the new block, in case its peers are lagging.

The attack on transaction expiry can be performed on every new block; on the other hand, the
protocol upgrade is a one-time opportunity for the attacker, and is thus unlikely to result in
prolonged disruption. However, the latter might occur by chance, without any actual attack,
if a sufficient number of v2 transactions are transferred at the wrong time.

It should be noted that a similar attack situation might have occurred with the “lock time”
mechanism, except that a penalty of value zero is applied,2 thereby not contributing to the
banning threshold:

if (!CheckFinalTx(tx, STANDARD_LOCKTIME_VERIFY_FLAGS))
return state.DoS(0, false, REJECT_NONSTANDARD, "non-final");

The penalty/banmechanismwas added to the Bitcoin code base in 20113 as a generic mech-
anism aiming at reducing the impact of DoS attacks. At that time, it was already noted that
duplicate transactions shall not trigger a non-zero penalty, to prevent an attacker from induc-
ing bans by injecting conflicting transactions at different nodes in the peer-to-peer network.
Currently, the only possible attack situations NCC Group found are related to Overwinter, and
do not apply to the Bitcoin network.

Recommendation The penalty applied for contextual violations should be set to zero, at least for off-by-one
errors—when a transaction is rejected with regards to the current height h, but would have
been accepted with height h+1 or h-1. Take care NCC Group does not advocate accepting
more transactions, but only applying a lower penalty when an invalid transaction is rejected
for contextual reasons.

Retest Results Commit 473a1132419d05911933ac0095b207c4e2fc59f3 sets the penalty level to 0 when
receiving a transaction that has just expired, and would have been acceptable if the height
had been one less than its current value. This matches NCC Group recommendation, and
addresses the issue with expired transactions. Zcash deemed the similar issue on protocol
upgrade, which may happen only once at protocol switch time, too limited in its possible
consequences to warrant any action.
2https://github.com/zcash/zcash/blob/b466c1c90cb7a3f01f40dbdde46dde36dc1820b8/src/main.cpp#L1205
3https://github.com/bitcoin/bitcoin/pull/517

7 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash/zcash/commit/473a1132419d05911933ac0095b207c4e2fc59f3
https://github.com/zcash/zcash/blob/b466c1c90cb7a3f01f40dbdde46dde36dc1820b8/src/main.cpp#L1205
https://github.com/bitcoin/bitcoin/pull/517

Finding Curve BLS12-381 Security Is Less Than 128 Bits

Risk Low Impact: Medium, Exploitability: None

Identifier NCC-Zcash2018-004

Status Reported

Category Cryptography

Component Sapling

Location New pairing-friendly curve.

Impact The selected new curve (BLS12-381) does not achieve the targeted “128 bits” security level.

Description The zk-SNARKS internally operate over a pairing-friendly curve. Such a curve is defined over
a finite field of order q, and allows defining two groups G1 and G2 of prime order r; group
G1 is typically the subgroup of the points of r-torsion in the curve over field Fq . The pairing
is a bilinear function that maps an element of G1 with an element of G2 into an element of
a third groupG3, which is the group of r-th roots of unity in the finite field extension Fqk for
a given integer k called the embedding degree. For the curve to be deemed secure, discrete
logarithm (DL) must be hard in all three groups. In particular:

• Order r must have size at least 2n bits if the target security level is “n bits”, since there are
generic DL solving algorithms that work in costO(

√
r) for any group of size r (e.g. Pollard’s

rho algorithm4).
• Finite field extension order qk must be large enough to defeat index calculus methods, in
particular based on the number field sieve.5

Zcash currently uses a Barreto-Naehrig curve such that q and r have sizes about 254 bits, for
a DL solving cost of 2127 operations, and the embedding degree is k = 12. The general NFS
algorithm would have cost slightly above 2128 in Fq12 . Thus, when first defined, that curve
was rated as achieving security level at least “127 bits”.

That assertion relied on the idea that the general number field sieve (GNFS) was the most
efficient algorithm for DL in Fqk . However, in late 2015, Kim and Barbulescu6 found that
the specific structure of q, inherent to the generation method used by Barreto and Naehrig,
could be exploited into a faster DL solving algorithm called SexTNFS (special extended tower
NFS). Menezes, Sarkar, and Singh7 then used SexTNFS to estimate the actual security level
of 256-bit BN curves at around 110 bits. This prompted Zcash to choose a new curve, in
the “BLS12” family, that would restore the 128-bit security level.8 The chosen curve has the
following characteristics:

• Field order q is a 381-bit prime.
• Curve subgroup order r is a 255-bit prime.
• Embedding degree is still k = 12; the Menezes-Sarkar-Singh estimate of security of DL in
the field extension is then about 131 bits.

However, in December 2017, Barbulescu and Duquesne published a new analysis9 that stud-
4https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_logarithms
5Initially invented by Pollard for factoring big integers, the number field sieve algorithm was adapted to solving
discrete logarithms by Gordon in 1993.
6https://eprint.iacr.org/2015/1027
7https://eprint.iacr.org/2016/1102
8https://blog.z.cash/new-snark-curve/
9https://hal.archives-ouvertes.fr/hal-01534101/file/main.pdf

8 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_logarithms
https://en.wikipedia.org/wiki/General_number_field_sieve
https://www.semanticscholar.org/paper/Discrete-Logarithms-in-GF(P)-Using-the-Number-Field-Gordon/1020f10f733cba8562db77fcceef47145118b8bc
https://eprint.iacr.org/2015/1027
https://eprint.iacr.org/2016/1102
https://blog.z.cash/new-snark-curve/
https://hal.archives-ouvertes.fr/hal-01534101/file/main.pdf

ies in more details the different phases of SexTNFS; in particular, they point out some sources
of imprecision in the work of Menezes, Sarkar, and Singh. The revised attack costs are then
lower:

• 256-bit BN curves now rate at about 100 bits of security instead of 110 bits.
• The new BLS12-381 curve would be estimated to achieve between 117 and 120 bits at
most, falling short of the initially stated target level of 128 bits.

Barbulescu and Duquesne suggest new parameters for 128-bit and 192-bit security levels.
In particular, for 128-bit security with a BLS12 curve, the base field should have order of at
least 460 bits.

In practical terms, none of these curves are breakable with existing or foreseeable technol-
ogy, not even the current 254-bit BN curve used by Zcash (even at “100-bit” resistance, it is
still stronger than, for instance, RSA-2048). While not achieving “128-bit security”, BLS-381 is
still virtually one million times stronger than BN-254 (corresponding to the extra 20 bits of
security), which ought to be robust enough for the use case of Zcash. The value of reaching
“128-bit” is mostly psychological.

Recommendation The new analysis by Barbulescu and Duquesne shows that BLS-381 cannot be truthfully
advertised as offering “128-bit security”. It supports, however, assertions that BLS-381 is
substantially stronger than BN-254, which is already unbreakable with existing technology
and algorithms.

Since SexTNFS is still an active research subject, and results are very recent, it is conceivable
that even the revised estimates are not definitive. In order to better support potential im-
provements on SexTNFS, NCC Group recommends, as a long-term goal, studying a further
switch to a new curve selected with a margin of safety. Performance considerations imply
that the curve subgroup order should have size 256 bits or so; thus, a new long-term curve
would need an embedding degree of more than 12. Candidates include the KSS curves10
with embedding degrees 16 or 18, as well as BLS24 curves.
10https://eprint.iacr.org/2007/452

9 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://eprint.iacr.org/2007/452

Finding RedDSA / RedJubjub Are Not Strongly Unforgeable With Re-Randomized Keys

Risk Low Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-Zcash2018-009

Status Fixed

Category Cryptography

Component Sapling

Location Zcash specification, sections 4.1.6.1 and 5.4.6.1.

Description Section 4.1.6.1 defines the concept of a signature scheme with re-randomizable keys. For a
given private key sk, a new private key can be derived by the adjunction of a randomization
value α. Signature verification then works over the randomized public key, which can be
derived from the core public key with the randomization value α. Re-randomizable keys
are used to support spending authorization signatures while keeping spending statements
unlinkable to actual signer identities. The security requirement for such a signature scheme
is called Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message Attack
(SURK-CMA); it is described in the specification with the following game:

• A given signature oracle knows the private key sk.
• The attacker may submit arbitrary queries (m,α) to the oracle, where m is a message to
sign, and α is a randomization value.

• To each query, the oracle responds with a signature σ computed over the message m,
using the randomized private key obtained by combining sk and α.

• The oracle records pairs (m,σ) (the message from the query, and the obtained signature).
• The goal of the attacker is to obtain a triplet (m′, α′, σ′) such that:
– σ′ is a valid signature onm′ when verified against the public key randomized with α′.
– The (m′, σ′) pair is not part of the list of queries recorded by the oracle.

The attacker wins if there was no query containingm′ such that the oracle returned signature
σ′. However, a query may have containedm′ but yielding a signature different from σ′; or the
oracle may have returned σ′ but for a message different from m′. Note that randomization
parameters α are freely chosen by the attacker, and are not recorded by the oracle.

Section 5.4.6 defines an incarnation of Schnorr signatures called RedDSA, which supports
re-randomization. RedJubjub is RedDSA, when using the Jubjub curve as underlying group.
Section 5.4.6.1 specifies that RedJubjub is to be used as signature schemewith re-randomized
keys, in the sense of section 4.1.6.1.

However, RedDSA is not SURK-CMA. Here is a (simplified) description of RedDSA:

• The algorithm uses a group G that has a subgroup of prime order n. Point P is a conven-
tional fixed generator for the prime order subgroup. Subgroup elements can be encoded
into sequences of bits with a deterministic injective mapping. A hash function H works
over arbitrary binary inputs, and produces a value modulo n as output.

• For private key sk and randomization value α:
– The “raw” public key is: Q = [sk]P
– The re-randomized private key is: skα = sk+ α mod n

– The re-randomized public key is: Qα = [sk+ α]P
• For messagem, private key sk, and randomization value α, the signature σ is computed as
follows:

10 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol/sapling.pdf

– An integer r is chosen randomly and uniformly in the [1..n− 1] range.
– Let: R = [r]P
– Let: s = (r +H(R ∥ m)(sk+ α)) mod n

– Signature is: σ = (R, s)

• Signature verification usesmessagem and randomized public keyQα (note thatQα can be
computed fromQ andαwithout knowledge of the private key sk). The signature σ = (R, s)

is accepted if the following equation holds: [s]P = R+ [H(R ∥ m)]Qα

Suppose that a signature oracle is used, as in the definition of SURK-CMA. The attacker may
then win the game in the following way:

• The attacker submits a query (m,α), and obtains the signature σ = (R, s).
• The attacker chooses a non-zero value β modulo n, and computes the following values:
– Let: m′ = m

– Let: α′ = α+ β mod n

– Let: σ′ = (R, s′) where s′ = s+H(R ∥ m)β mod n

It can be verified that σ′ is a valid signature for message m′, relative to the public key re-
randomized with α′:

[s′]P = [r +H(R ∥ m)(sk+ α) +H(R ∥ m)β]P
= [r]P + [H(R ∥ m)(sk+ α+ β)]P
= R+ [H(R ∥ m)]Qα′

However, with overwhelming probability, σ′ is distinct from σ (because s′ ̸= s). Thus, the
pair (m′, σ′) is not part of the pairs recorded by the oracle. Therefore, RedDSA (and thus
RedJubjub) is not SURK-CMA.

Exact impact is undetermined. The attack above does not contradict existential unforgeabil-
ity, in which the oracle records only messages m, and the attacker may win the game only
if finding (m′, α′, σ′) such that m′ was never submitted to the oracle. However, the Zcash
specification (section 4.1.6.1) insists on requiring strong unforgeability:

Note that we require Strong Unforgeability with Re-randomized Keys, not Exis-
tential Unforgeability with Re-randomized Keys (the latter is called “Unforgeability
under Re-randomized Keys” in [FKMSSS2016, Definition 8]).

The attack above produces a new signature value σ′ for a message m that was signed by
the oracle; the message itself is unmodified. Since re-randomized signatures are used for
spending authorization, such an attack will not result in a forged transaction. Moreover, in
Zcash, the signed data contains a copy ofQα, which would prevent that exact alteration from
being successfully applied in practice.

Retest Results On September 5, 2018, a new version of the protocol specification (2018.0-beta-30) and the
Zcash implementation (Git tag v2.0.0 and dependencies) was checked for a fix of this issue.
The new protocol amends the definition of RedDSA to now computeH(R ∥ vk ∥ m) (where vk
is an unambiguous representation of the public key Qα) instead ofH(R ∥ m). This addition
prevents the attack described above, and thus addresses the issue.

It must be noted that while the old protocol did not mandate inclusion of the public key
as part of the hash function input in RedDSA, its uses within the Zcash protocol (for Spend

11 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash/zips/blob/88e255b63ff96947fdcd5fb0d7d3bc16f0e5b809/protocol/sapling.pdf
https://github.com/zcash/zcash/tree/v2.0.0

Authorization Signatures and Balance and Binding Signatures) already added the encoding of
the public key as a prefix to the signed data, which was functionally equivalent. The v2.0.0
version of Zcash internally follows the old convention, in that the RedDSA implementation
expects the caller to have already prefixed the encoded public key; in that sense, the internal
structure of the Zcash code does not match the formal description in the specification, but
the computed values and externally observable behavior are in accord with it.

The RedDSA verification was also slightly altered, in that the final verification equation was
transformed from:

[s]P = R+ [H(R ∥ vk ∥ m)]Qα

into:

[h](−[s]P +R+ [H(R ∥ vk ∥ m)]Qα) = O

where h is the curve cofactor (h = 8 for Jubjub). This change was done in order to allow for
optimized batch verification of several signatures, a process described in a new section B.1
in the protocol specification. The batch verification uses a linear combination of curve points
with random coefficients; the multiplication by the cofactor is necessary to make the batch
verification reliable (otherwise, maliciously crafted signatures may induce non-deterministic
acceptance, which would break consensus rules). Non-batch verification must then also use
the cofactor, so that batch and non-batch versions always agree.

Use of the cofactor is permitted in the specification of EdDSA,11 from which RedDSA is in-
spired; it does not diminish security. NCC Group recommends that explicit notes be added
in the specification (sections 5.4.6 and B.1) to make the use of the cofactor mandatory, in
order to ensure consensus: Indeed, many existing implementations of EdDSA do not use
the cofactor, because it does not matter in most situations where signatures are used, but
Zcash requires all implementations to fully agree on which signatures are acceptable.
11Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-speed high-security signatures: http
s://ed25519.cr.yp.to/ed25519-20110926.pdf

12 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf

Finding Bit Ordering Convention Leads to Mismatches and Confusion

Risk Low Impact: Low, Exploitability: None

Identifier NCC-Zcash2018-010

Status Reported

Category Other

Component Sapling

Location src/group_hash.rs:36

Impact The little-endian ordering of bits within octets is opposite to widespread conventions, which
leads to slight inefficiencies, confusion, and mismatches between specification and imple-
mentation.

Description The Zcash specification (section 5.2) defines encoding rules for elements used in Zcash, which
fall in roughly three categories: bit strings, octet12 strings, and big unsigned integers (which
are usually modular integers). Endianness is the name for the ordering convention of sub-
elements within a bigger element. In practice, endianness will be defined at two levels: bits
within octets, and octets within big integers. The general rule in Zcash is to use little-endian
ordering for both levels. While little-endian ordering of octetswithin big integers corresponds
to the natural encoding rules of many modern architectures (in particular x86), the little-
endian ordering of bits within octets is opposite to widespread conventions, which leads to
slight inefficiencies, confusion, and mismatches between specification and implementation.

As an illustration, the MD5 hash function is normally defined as using little-endian encoding;
this applies to interpreting sequences of octets into 32-bit integers. However, it uses big-
endian encoding of bits within bytes: the MD5 padding rule for the last block involves adding
a bit of value 1, followed by bits of value 0, to the input bit sequence; when expressed in
octets, the first octet to append has value 0x80, which means that the first bit in the padding
sequence is most significant within the first octet, not least significant. This rule is pervasive
in most cryptographic standards and related areas; e.g. it also corresponds to the ordering
of bits within a DER-encoded ASN.1 BIT STRING value.

The main consequence of the use of the little-endian convention at the bit level is that, when
decoding incoming data as a big integer, or encoding it back, there must be a step by which
bits are moved within each byte value (or within a larger word). In the sapling-crypto
package, this is usually done with the swap_bits_u64() function, see src/util.rs:5. This
is used, for instance, in read_scalar(), src/redjubjub.rs:11. The input sequence of
bits is received as a sequence of octets (u8 values), which is interpreted in full big-endian
convention (both at bit and octet levels) and decoded into a sequence of 64-bit words; that
sequence is then reversed, as well as the sequence of bits within each word.

Since this bit-swapping step is relatively inefficient and inconvenient to implement, the Zcash
specification and implementation tend to avoid it when possible, either through exceptions
in the specification, or through coalescing operations in the implementation. An example of
an exception is in section 5.4.1.1: the SHA-256 function is defined by NIST13 as operating on
sequences of bits, which are decoded with full big-endian convention (at bit and octet levels);
to avoid the bit-swapping operation, the Zcash specification states that the input bits are
12In the Zcash specification, the generic term “byte” is used for an octet; however, the conversion functions use “OS”
to designate a string of bytes.
13FIPS 180-4, Secure Hash Standard, https://csrc.nist.gov/publications/detail/fips/180/4/final

13 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf/src/group_hash.rs#L36
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf/src/util.rs#L5
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf/src/redjubjub.rs#L11
https://csrc.nist.gov/publications/detail/fips/180/4/final

assumed to have already been converted to an octet string (i.e. with big-endian convention
at the bit level), and SHA-256 operates on octets.

Compounding the issue is the fact that encoding rules are not enforced by the Rust type
system, and in fact traverse abstraction layers. For instance, the pairing library defines both
a PrimeField trait, which defines a given field, and a PrimeFieldRepr trait which denotes
the encoding of an element as a sequence of 64-bit words. Decoding a field element from
octets involves going through instances of both traits, first the PrimeFieldRepr, then the
PrimeField itself. Value validation is then split into two separate steps: the PrimeFieldRepr
instance checks that the input has the expected number of bytes, but only PrimeField
checks (as part of the from_repr() function) that the source value is lower than themodulus.
In order to implement full little-endian convention, sapling-crypto relies on PrimeFiel-
dRepr not validating the decoded integer against the field modulus. In that sense, the
abstraction fails to abstract away encoding details.

In sapling-crypto, these encoding issues led to a mismatch between specification and
implementation:

• Section 5.4.8.3 defines that abstJ maps a sequence of bits into a point on the Jubjub curve.
It uses full little-endian convention to convert the 256-bit input into an integer z, such that
z mod 2255 will be the v coordinate of the point.

• Section 5.4.8.5 defines the first step of the “Group Hash” function as:
P := abstJ(LEOS2IP256(BLAKE2s-256(D,CRS ∥ M))

This definition is invalid, since LEOS2IP yields a big integer, while abstJ expects a sequence
of bits. This seems to be a typographical error: LEOS2BSP should have been used. This
may be a consequence of overzealous coalescing: abstJ starts with decoding bits into a
big integer, and the combination of LEOS2BSP followed by that decoding into an integer is
what LEOS2IP implements.

• Notwithstanding the typographical error above, the group_hash() function (in src/group_-
hash.rs:18) implements big-endian decoding, not little-endian. The BLAKE2 output is a
sequence of octets; the leftmost (most significant) bit of the first octet is cleared, then the
resulting sequence of bytes is interpreted as the v coordinate of the point with big-endian
interpretation (read_be() is used). This sequence actually duplicates the Point.read()
method in src/jubjub/edwards.rs:95, butwithout the full word-and-bits reversal, thereby
using big-endian encoding throughout.

It shall be noted that CRHivk (section 5.4.1.5) is defined as using a BLAKE2 output, which
formally consists of a sequence of octets (not a sequence of bits), and converting it into
a big integer with LEOS2IP. Since the bit-swapping comes from the bit-level endianness
convention, that specific function does not entail any bit-swapping. The implementation (see
src/primitives/mod.rs:89) uses a reverse() call to reverse the order of octets within
the array, then read_be(). It is possible that the intent of group_hash() was to follow the
same sequence. However, group_hash() lacks the reverse() call.

Recommendation Since the specification and the implementation of GroupHash do not match, one (or both)
should be modified. As also noted, the specification is already formally invalid since it uses
a big integer as input to abstJ instead of a bit string. Notwithstanding, the implementation
uses big-endian encoding, which is opposite to the usual conventions in Zcash.

The use of little-endian ordering at the bit level is a source of confusion and implies cumber-
some and expensive bit-swapping operations. NCCGroup recommends that Zcash considers
modifying the encoding conventions so that big-endian order is used for bits within octets
(even if octets themselves use little-endian orderingwithin big integers). It should be possible

14 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash-hackworks/sapling-crypto/blob/5687acf/src/jubjub/fs.rs#L262
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acf/src/jubjub/fs.rs#L107
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acf/src/jubjub/fs.rs#L265
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acf/src/group_hash.rs#L18
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acf/src/group_hash.rs#L18
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acf/src/jubjub/edwards.rs#L95
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acf/src/primitives/mod.rs#L89

to avoid all bit-swapping operations. Moreover, in order tomake the abstraction clearer, code
from outside of the pairing library should refrain from manipulating the internal represen-
tation of a PrimeFieldRepr instance.

15 | Zcash Overwinter Consensus and Sapling Cryptography Review

Finding Mempool Not Properly Cleared If Connecting or Disconnecting Tips Fails

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-Zcash2018-002

Status Reported

Category Other

Component P2P Protocol

Location main.cpp, line 2609

Impact An edge condition during a reorg (blockchain reorganization in which the client discovers a
new difficultywise-longest chain) may cause the client to behave differently than specified by
the design, leaving both pre-activation and post-activation transactions inside the mempool.
If this happens on a miner node, the miner may waste mining power on a block that includes
transactions valid only by the pre-activation rules.

Description The Overwinter Zcash release introduces a concept of activation height, which is a predeter-
mined block height at which validation rules change. In particular, the block with ACTIVA-
TION_HEIGHT height is the first block validated against the updated set of rules. As for the
mempool, as stated in ZIP 200, “When the current chain tip height reaches ACTIVATION_-
HEIGHT, the node’s local transaction memory pool SHOULD be cleared of transactions that
will never be valid on the post-upgrade branch.” See the PR that implements ZIP 200.

This finding shows that edge cases exist in which both pre-activation and post-activation
transactions may be left in the mempool. This may happen if the ConnectTip and Dis-
connectTip functions used to connect and disconnect new blocks to the active chain fail
without setting the state to invalid.

In particular, during a reorg, the tip of the chain is peeled off using the DisconnectTip
function until the forking block is reached (see the ActivateBestChainStep function). On
each invocation, the DisconnectTip function adds transactions to the memory pool, verify-
ing them according to the ongoing height’s validation rules. After all the blocks have been
disconnected from the chain and the corresponding new blocks connected to the chain, the
memory pool is finally cleared using the mempool.removeWithoutBranchId function called
inside ActivateBestChainStep.

As such, during a short period of time, both pre-activation and post-activation transactions
are in the mempool, i.e., before they get cleared. If during this period, one of the Discon-
nectTip or ConnectTip calls return false , the client continues functioning with an incon-
sistent mempool. The ConnectTip function will return false (and not set the corresponding
state flag to MODE_INVALID) in a case of a disk space error and DisconnectTip will return
false in erroneous scenarios such as inconsistencies between block and undo data, read
failures.

Recommendation Whenever DisconnectTip or ConnectTip return false, clear the mempool of either pre-
activation or post-activation transactions. The type of transactions to be cleared should be
decided based on the active chain height.

Even with the fix above, technically, the mempool will still contain both types of transactions
over a short period of time in case of a reorg over activation height. If a more stringent
property is to be enforced, by which pre- and post-activation transactions should never be in
the mempool at the same time, then consider the following change: make the Disconnect-

16 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2609
https://github.com/zcash/zips/blob/master/zip-0200.rst
https://github.com/zcash/zcash/pull/2898
https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2470
https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2408
https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2408
https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2609
https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2505
https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2421
https://github.com/zcash/zcash/blob/780f526/src/main.cpp#L2421

Tip function activation height aware and delete post-activation transactions when switching
to pre-activation block height. In order not to lose the deleted transactions, they need to
be kept in an auxiliary store and considered for adding once traversing over the activation
height with ConnectTip. The remaining question is when to clear the auxiliary store: it could
be cleared on each ActivationBestChainStep exit.

17 | Zcash Overwinter Consensus and Sapling Cryptography Review

Finding Private Key Decoding Has Limited Interoperability

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-Zcash2018-003

Status Reported

Category Uncategorized

Component WalletDB

Location key.cpp, function ec_privkey_import_der()

Impact Some standard-compliant elliptic curve private key files will fail to be loaded.

Description Elliptic curve private keys are meant to be encoded using ASN.1/DER structures that follow
the syntax originally specified in SEC 1 (section C.4)14:

ECPrivateKey ::= SEQUENCE {
version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
privateKey OCTET STRING,
parameters [0] ECDomainParameters {{ SECGCurveNames }} OPTIONAL,
publicKey [1] BIT STRING OPTIONAL

}

The parameters field is nominally optional, but is traditionally included in such structures.
However, there are two possible formats for the parameters:

• the base field modulus, equation parameters, curve order, and conventional generator
coordinates, may be encoded explicitly;

• for some specific curves of known parameter, a symbolic designation (OBJECT IDENTI-
FIER) may be used instead.

The use of a symbolic name yields amuch shorter encoding. Moreover, this is the only format
supported by PKIX for Internet-related standards,15 and, as such, is more widely supported
by existing cryptographic libraries.

The ec_privkey_import_der() function is a non-validating function that tries to locate the
private key itself (privateKey field) and ignores the rest. It works by decoding the SEQUENCE
tag and length, then skipping over the version field (after verifying its contents), and then
grabbing the private key. The decoding process of the length of the SEQUENCE supports
exactly two formats:

• “81 xx”: length is encoded in byte xx (for lengths 128 to 255 bytes)
• “82 xx yy”: length is encoded over two bytes xx yy (for lengths 256 to 65535 bytes)

However, this function does not tolerate the normal DER encodingwhen the SEQUENCE length
is less than 128 bytes (such a short length is encoded over a single byte of value 0 to 127).
In particular, if a private key for curve secp256k1 is encoded with its symbolic name (OID
1.3.132.0.10), then thewhole contents of the SEQUENCEwill use only 116 bytes, and the length
will be encoded as a single byte of value 0x74. The ec_privkey_import_der() function
cannot load such a private key.

In Zcash, private keys are decoded in two places:
14http://www.secg.org/sec1-v2.pdf
15https://tools.ietf.org/html/rfc5480, section 2.1.1

18 | Zcash Overwinter Consensus and Sapling Cryptography Review

http://www.secg.org/sec1-v2.pdf
https://tools.ietf.org/html/rfc5480

• in WalletDB, that handles encoding and decoding of private keys in a dedicated database;
• in the alert sending mechanism, the alert being signed with a private key hardcoded in the
node at compilation time.

Since WalletDB typically generates key pairs itself, and the encoding function ec_privkey
_export_der() uses the encoding format with explicit parameters, most serialized private
keys used in practice have a format that ec_privkey_import_der() supports, which avoids
the issue. As for alert signing, the private key is supposed to be generated by the installer
using OpenSSL commands specified in the top comment in sendalert.cpp; in particular,
the top command uses the “-param_enc explicit” argument, which instructs OpenSSL to
use the explicit parameter encoding format. Therefore, common usage of the Zcash client
is not impacted. However, interoperability with externally provided private keys is reduced,
especially since the “explicit parameter” encoding format is discouraged in the PKIX world.

Recommendation The length-decoding ec_privkey_import_der() function is currently implemented as fol-
lows:

/* sequence length constructor */
if (end - privkey < 1 || !(*privkey & 0x80u)) {

return 0;
}
size_t lenb = *privkey & ~0x80u; privkey++;
if (lenb < 1 || lenb > 2) {

return 0;
}
if (end - privkey < lenb) {

return 0;
}
/* sequence length */
size_t len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0u);
privkey += lenb;

These lines may be replaced by the following:

/* sequence length decoding */
if (end - privkey < 1) {

return 0;
}
size_t len = *privkey ++;
if (len >= 0x80) {

if ((size_t)(end - privkey) < (len - 0x80)) {
return 0;

}
if (len == 0x81) {

len = *privkey ++;
} else if (len == 0x82) {

len = *privkey ++;
len = (len << 8) + *privkey ++;

} else {
return 0;

}
}

This modification would make ec_privkey_import_der() compatible with encoded private
keys that use the “named curve” encoding format.

19 | Zcash Overwinter Consensus and Sapling Cryptography Review

Finding Discrepancies Between Specification and Circuit Implementation

Risk Informational Impact: None, Exploitability: None

Identifier NCC-Zcash2018-007

Status Reported

Category Other

Component Sapling

Location sapling-crypto/src/circuit/sapling/mod.rs, lines 296 to 308
sapling-crypto/src/circuit/sapling/mod.rs, lines 476 to 556

Impact The discrepancies between the specification and the circuit implementation impair interoper-
ability between Zcash implementations. Other independent implementations based on the
protocol specification will be incompatible with the reference implementation.

Description The order of arguments to NoteCommitSapling
rcm in the Spend and Output circuits differs be-

tween the specification and the implementation found in sapling-crypto. According to the
specification the note commitment (cm) is computed as follows16:

cm = WindowedPedersenCommitrcm([1]6 || g⋆d || pk⋆d || I2LEBSP64(value))

However both Output and Spend circuits verify the note commitment as:

cm = WindowedPedersenCommitrcm([1]6 || I2LEBSP64(value) || g⋆d || pk⋆d)

The relevant code in sapling-crypto for the Spend circuit can be seen below:

// Place the value in the note
note_contents.extend(value_bits);

}

// Place g_d in the note
note_contents.extend(

g_d.repr(cs.namespace(|| "representation of g_d"))?
);

// Place pk_d in the note
note_contents.extend(

pk_d.repr(cs.namespace(|| "representation of pk_d"))?
);

The implementation for the Output circuit is longer, but similarly injects the value before g⋆d
and pk⋆d , contrary to the specification.

Recommendation Both parameter orders are appropriate from a security point of view, since the elements have
a fixed length, thus making the concatenation unambiguous. However, either the specifica-
tion or the implementation should be modified so that they match.
16Zcash Specification, version 2018.0-beta-19, Section 5.4.7.2 (p. 57, Windowed Pedersen Commitments)

20 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b67e4afbc68/src/circuit/sapling/mod.rs#L296
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b67e4afbc68/src/circuit/sapling/mod.rs#L476
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b67e4afbc68/src/circuit/sapling/mod.rs#L296
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b67e4afbc68/src/circuit/sapling/mod.rs#L476
https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol/sapling.pdf

Finding Typographical Inconsistencies in Zcash Specification

Risk Informational Impact: None, Exploitability: None

Identifier NCC-Zcash2018-008

Status Reported

Category Other

Component Sapling

Location Sapling

Impact Discrepancies between the specification and the implementation make protocol evolution
and auditing more difficult.

Description Listed here are a few discrepancies between the specification and the implementation, that
are mere typographical errors, and should be fixed in the specification for the sake of con-
sistency and clarity of documentation.

Page 20: A Signature with Re-Randomizable Keys is defined as using two algorithms:
Sig.RandomizePrivate : Sig.Random× Sig.Private → Sig.Private
Sig.RandomizePublic : Sig.Random× Sig.Public → Sig.Public

However the concrete instantiation RedDSA (page 55), is defined by algorithms:
RedDSA.RandomizePrivate : RedDSA.Private× RedDSA.Random → RedDSA.Private
RedDSA.RandomizePublic : RedDSA.Public× RedDSA.Random → RedDSA.Public

The random and public/private key arguments are thus in reverse order. The meaning will
be clear to most readers, but consider permuting the arguments in RedDSA to clarify.

Page 49: The Pedersen hash is defined as a linear combination computed over a sequence
of generator points ID

i . The input data is split into segments of c chunks of 3 bits each; each
segment is encoded into a scalar by which a dedicated generator point is multiplied. Security
relies on the generators being all different. However, the formula that defines ID

i uses
floor(i−1

c), which makes generators for i = 1 to c identical to each other. This is obviously a
confusion between the segment index and the chunk index: the formula for ID

i expects the
chunk index, but it is used with the segment index. The implementation uses the segment
index, which is the proper thing to do.

Page 55: Typo in definition of RedDSA.RandomizePublic: the type signature of RedDSA.Ra
ndomizePublic is followed by a function called RedDSA.RandomizePrivate.

Page 56: The Spend Authorization Signature is defined as using RedJubjub, parametrized
with a generator point G, defined in section 4.2.2. However, G is not defined in section 4.2.2,
nor anywhere else in the specification document. The implementation uses (in sapling_-
crypto, file src/jubjub/mod.rs, line 281):

G = FindGroupHashJ(”Zcash_G_”, ””)

21 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash/zips/blob/7e0b51011a5fcf021e40a4c7882da54f1d6627fa/protocol/sapling.pdf
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b67e4afbc68/src/jubjub/mod.rs#L281

Finding Bias in Random Field Element Generators for Underlying Representation

Risk Informational Impact: None, Exploitability: None

Identifier NCC-Zcash2018-011

Status Reported

Category Cryptography

Component Sapling

Location https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b6
7e4afbc68/src/jubjub/fs.rs#L46

Impact If this randomness function is used to generate secrets in the future, an attacker will have an
advantage in predicting them.

Description The Sapling cryptography library implements elements of the scalar field of the Jubjub curve
in two layers. At the higher level is the Fs type, which offers a clean interface into these
elements, and at the level below is the FsRepr type, which handles the necessary lower-level
functionality for these elements. Currently, an FsRepr is implemented as an array of four u64
values.

The FsRepr type’s implementation of the Rand trait leverages rng.gen() to implement the
required rand() function. This means that the random generator will create a random
array of four u64 values. However, this means that randomly generated FsReprs are not
necessarily elements of Fs.

This is mitigated by the appropriate checks in the higher level Fs type’s rand implementation,
and so is not a risk to the current implementation. This fact is reflected in the “Informational”
level of risk in this finding. Nevertheless, the FsRepr trait is public, which means that future
development may assume this function will always offer a valid element of the scalar field.

Recommendation Any trait implemented by FsRepr that is likely to change across implementations should be
made private, then offered transparently through an equivalent trait implementation in Fs
(i.e. a trait implementation that calls the equivalent from FsRepr along with any changes
necessary to offer it publicly). Additionally, any methods that could potentially be unsafe
should be explicitly labelled as such.

22 | Zcash Overwinter Consensus and Sapling Cryptography Review

https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b67e4afbc68/src/jubjub/fs.rs#L46
https://github.com/zcash-hackworks/sapling-crypto/blob/5687acfaf83438a993fccc14ab487b67e4afbc68/src/jubjub/fs.rs#L46

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

23 | Zcash Overwinter Consensus and Sapling Cryptography Review

Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

24 | Zcash Overwinter Consensus and Sapling Cryptography Review

	
	Executive Summary
	Scope
	Key Findings

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions

