

Threshold ECDSA Cryptography

Review

DFINITY USA Research LLC
Version 1.2 – June 14, 2022

©2022 – NCC Group

Prepared by NCC Group Security Services, Inc. for DFINITY USA Research LLC. Portions of this

document and the templates used in its production are the property of NCC Group and cannot be

copied (in full or in part) without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Paul Bottinelli

Marie-Sarah Lacharité

Thomas Pornin

Prepared For

Robin Künzler

Raghav Sundaravaradan

1 Executive Summary

Synopsis

In March 2022, DFINITY engaged NCC Group to conduct a security and cryptography

review of a threshold ECDSA implementation, which follows a novel approach described in

the reference paper entitled “Design and analysis of a distributed ECDSA signing service”

and available on the IACR ePrint archive at https://eprint.iacr.org/2022/506. The threshold

ECDSA protocol will be deployed into the architecture of the Internet Computer. The ability

for canisters to perform threshold signature generation and verification will facilitate the

integration of the Internet Computer with other blockchains using ECDSA signatures,

including Bitcoin and Ethereum.

The project methodology primarily relied upon manual code review supported by dynamic

interaction with the test cases, as well as review of the supporting reference paper. This

project was delivered by three consultants over 15 person-days of effort. Full source code

access was provided.

Following this review, in early May 2022, NCC Group performed a retest of the findings

uncovered during the initial engagement. That follow-up engagement also included the

review of a short pull request incorporating changes to the underlying encryption scheme.

Scope

NCC Group’s evaluation included the following components from the ic repository,

available on GitHub at https://github.com/dfinity/ic/. The review was performed on commit

a18a6fa14041650e36444d959dc34ec9b23a23b6 , dated Tuesday March 8.

The crate tECDSA , part of the larger DFINITY cryptographic library.

The traits IDkgProtocol , ThresholdEcdsaSigner , ThresholdEcdsaSigVerifier defined

in the file canister_threshold_sig.rs and their respective implementations, including

the methods implementing the algorithms defined in the paper, such as

create_dealing() , sign_share() or verify_sig_share() .

A number of code pointers suggested by the DFINITY team, including the function

generate_idkg_dealing_encryption_keys() to generate dealing encryption keys, as

well as a number of traits related to the Crypto Service Provider (CSP) and some of their

respective implementations in the Vault.

Additionally, the NCC Group team also used the supporting internal draft reference paper

“Design and analysis of a distributed ECDSA signing service” dated March 14, 2022.

During the retest, the NCC Group team also reviewed a pull request (CRP-1455) that added

a zero-knowledge proof to the underlying MEGa encryption and decryption procedures in

order to closely follow the reference paper.

Limitations

Good coverage of the in-scope elements was achieved within the given time frame.

However, the CSP and Vault implementations are complex components whose

functionalities extend past the usage of the threshold ECDSA implementation. As such,

they were reviewed in the context of the tECDSA library and their integration with the rest

of the IC architecture was not investigated in great depth, due to the time-boxed nature of

the engagement. Additionally, the development and implementation of state-of-the-art

cryptographic algorithms may have subtle issues that a time-boxed review may not

necessarily uncover.

•

•

•

2 / 23 – Executive Summary

NCC Group

https://eprint.iacr.org/2022/506
https://github.com/dfinity/ic/
https://github.com/dfinity/ic/tree/master/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa
https://github.com/dfinity/ic/tree/master/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa
https://github.com/dfinity/ic/tree/master/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa
https://github.com/dfinity/ic/blob/master/rs/interfaces/src/crypto/sign/canister_threshold_sig.rs
https://github.com/dfinity/ic/blob/master/rs/interfaces/src/crypto/sign/canister_threshold_sig.rs
https://github.com/dfinity/ic/blob/master/rs/interfaces/src/crypto/sign/canister_threshold_sig.rs
https://github.com/dfinity/ic/commit/d8605feca47e53e6ca1acd315d378a9db6888eed

Key Findings

The assessment did not uncover any critical or high severity findings. Among the five

findings reported, the reviewers identified a common theme; three findings were related to

side-channel leakage:

Non-Constant-Time Check for Duplicate Scalars.

Conditional Assignment Is Not Constant-Time.

Square Root Extraction Leaks Input Validity.

A section containing engagement notes is provided in Engagement Notes.

After retesting, NCC Group found that the majority of the findings had been addressed.

Out of a total of five (5) original findings, four (4) were marked as Fixed while one (1)

informational finding was marked as Partially Fixed. Additionally, the NCC Group team

noted that DFINITY diligently addressed a majority of the observations presented in the

informational Engagement Notes section.

Strategic Recommendations

Pay careful attention to side-channel leakage and to the mitigations implemented,

particularly since compiler updates or new target platforms may render some of the

mitigations obsolete. Consider writing more end-to-end tests exercising the threshold

ECDSA functionalities, including comprehensive negative tests.

Finally, consider updating the implementation to more closely follow the reference paper,

including defining and naming structures that mimic the ones defined in the paper. For

example, the algorithms implemented could be annotated with direct references to the

paper, which would help future reviewers and drive community adoption of this novel

algorithm.

•

•

•

3 / 23 – Executive Summary

NCC Group

2 Dashboard

Target Data Engagement Data

Name Threshold ECDSA Type Cryptography Review

Type Cryptographic library and

calling functions

Method Code-assisted

Platforms Rust Implementation Dates 2022-03-07 to

2022-03-18

Environment Local Consultants 3

Level of Effort 15 person-days + 5

person-days for the retest

Targets

tecdsa Cryptographic library containing the threshold ECDSA implementation:

https://github.com/dfinity/ic/tree/master/rs/crypto/internal/crypto_lib/

threshold_sig/tecdsa.

DFINITY’s IC

Rust

repository

General Rust repository which includes some of the traits (i.e.

IDkgProtocol , ThresholdEcdsaSigner , and ThresholdEcdsaSigVerifier)

under review: https://github.com/dfinity/ic/blob/master/rs.

Finding Breakdown

Critical issues 0

High issues 0

Medium issues 2

Low issues 2

Informational issues 1

Total issues 5

Category Breakdown

Cryptography 3

Data Validation 1

Patching 1

 Critical High Medium Low Informational

4 / 23 – Dashboard

NCC Group

https://github.com/dfinity/ic/tree/master/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa
https://github.com/dfinity/ic/tree/master/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa
https://github.com/dfinity/ic/blob/master/rs

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Conditional Assignment Is Not Constant-Time Fixed P4M Medium

Non-Constant-Time Check for Duplicate Scalars Fixed LB4 Medium

Square Root Extraction Leaks Input Validity Fixed TBP Low

MEGa Ciphertext’s verify_is() Function Does Not

Check Ephemeral Key’s Curve

Fixed WXX Low

Outdated Dependencies Partially Fixed T4U Info

5 / 23 – Table of Findings

NCC Group

4 Finding Details

Conditional Assignment Is Not Constant-Time

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-E003936-P4M

Category Cryptography

Status Fixed

Impact

Attackers may infer the value of the control Boolean from timing-based side channels.

Description

The ct_assign() function is defined by the derive_field_element() macro, as part of an

implementation of a prime order finite field. The role of this function is to copy a source

value (other) into a field element variable (self), conditionally on a control value

(assign):

This function tries to be constant-time, i.e. not to allow outsiders from guessing any

information on the source inputs, including the Boolean control value, from timing-based

side channels. The code shown above computes a 64-bit “mask” value (the all-zero or all-

one value, depending on the value of assign), then performs Boolean bitwise operations

to select, limb by limb, the new value for the target structure. At least, such is the intent.

The reality is different. Looking at the assembly output produced by the Rust compiler on

this function (for a 256-bit modulus, with rustc 1.57.0 on an x86_64 Linux system), we find

this sequence:

In this code, the assign Boolean is obtained in the edx register. That value is tested, and,

if found equal to 0 (i.e. false), a conditional jump (je) skips the rest of the function; if the

value is not 0, then a simple copy is performed (here, with two 128-bit wide copies using

SSE2 registers, since this example was compiled for a 256-bit modulus). In other words,

the compiler worked out that the function was really a conditional assignment, and

helpfully “optimized” it with a conditional jump and a copy, i.e. a non-constant-time

sequence of opcodes. The resulting execution time and memory access pattern will

depend on the value the Boolean control value, making it conceptually accessible to

attackers though timing-based side channels.

Medium

/// If assign is true then set self to other

pub fn ct_assign(&mut self, other: &Self, assign: bool) {

let mask = 0u64.wrapping_sub(assign as u64);

for i in 0..#limbs {

self.limbs[i] = (self.limbs[i] & !mask) ^ (other.limbs[i] & mask);

}

}

testl %edx, %edx

je .LBB2_2

movups (%rsi), %xmm0

movups 16(%rsi), %xmm1

movups %xmm1, 16(%rdi)

movups %xmm0, (%rdi)

.LBB2_2:

retq

6 / 23 – Finding Details

NCC Group

The culprit here is the bool type. The compiler knows that a Boolean can only have values

true and false ; it thus tries to find what optimizations are possible in the code sequence

assuming that the value is one or the other. The compiler then finds that if assign is true ,

then mask is the all-one value and the loop is a simple copy, which it can unroll and inline,

while a value of false for assign leaves the structure unmodified.

Note: in the current implementation of threshold-ECDSA, ct_assign() is invoked only as

part of the hash-to-curve implementation, which is not used on private data for the

moment. However, ct_assign() is a public library function, and the set of potential callers

is conceptually unbounded.

Recommendation

The case of Booleans is a special case of range analysis, in which the compiler maintains a

notion of the possible values of a given variable as a range. When the range is so short

than only a few values are possible, the compiler may switch to systematic exploration and

use unexpected conditional jumps, as demonstrated here. To avoid such issues, the

following rules are recommended:

Do not use bool for secret values. Secret Booleans should be held in an unsigned

integer type such as u64 .

Do not use 1 for true , but a larger value, to obtain a larger “range” (in terms of range

analysis). It is convenient to normalize on 0 for false and 0xFFFFFFFFFFFFFFFF for

true .

Alternatively, rely on the external subtle 1 crate for constant-time operations. This crate

internally uses the u8 type to hold secret Booleans, and has additional mitigations to avoid

overzealous compiler optimizations.

Location

tecdsa/fe-derive/src/lib.rs, line 278

Retest Results

2022-05-03 – Fixed

As part of commit 34703fad, the ct_assign() function was updated according to the

recommendation. The function changed the type of the assign parameter to a

subtle::Choice , and now uses the conditional_select() function, both provided by the

subtle crate, as can be seen in the code excerpt below.

As such, the finding was marked as “Fixed”.

•

•

/// If assign is true then set self to other

pub fn ct_assign(&mut self, other: &Self, assign: subtle::Choice) {

use subtle::ConditionallySelectable;

for i in 0..#limbs {

self.limbs[i] = u64::conditional_select(&self.limbs[i], &other.limbs[i], assign);

}

}

1. https://crates.io/crates/subtle

7 / 23 – Finding Details

NCC Group

https://github.com/dalek-cryptography/subtle/blob/b4b070c3faf87cb8f324bd0ed0a5e5ec32d3a5b0/src/lib.rs#L217
https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/fe-derive/src/lib.rs#L278
https://github.com/dfinity/ic/commit/34703fad074f5bb53142b2cf5f569c5c66c6c3b1
https://crates.io/crates/subtle

Non-Constant-Time Check for Duplicate

Scalars

Overall Risk Medium

Impact Medium

Exploitability Low

Finding ID NCC-E003936-LB4

Category Cryptography

Status Fixed

Impact

Information on the value of the involved secret scalars leaks through timing-based side

channels, even in the normal situation where there is no duplicate.

Description

The contains_duplicates() function verifies that a given list of elliptic curve scalars are

all different from each other:

The comment indicates that under normal conditions, there will be no duplicate, and if

there is, then the duplicate will be excluded and the fact that it happened does not yield

any usable information to attackers, thereby making the early exit innocuous. However,

even under normal conditions, some extra information on the involved scalars leaks

through timing-based side channels:

The implementation of HashSet uses the default hashing and equality functions on the

values, which here are encoded scalars and have type Vec<u8> . The equality

comparison on the two such vectors of bytes is not constant-time since it exits early, as

soon as a byte difference is found.

HashSet uses a hashtable, accumulating values in “buckets” (lists) indexed by the

(truncated) hash value; the memory access pattern when adding a new value into the

set will depend on the number of values which already fell into the same bucket, which

depends on the hash values computed over previous values. The hash function used is

non-cryptographic and any information on its output is liable to be translated into

algebraic information on the scalar.

The contains_duplicate() function is not public. In the threshold ECDSA implementation,

it is called from one place, which is the at_value() function that performs Lagrange

interpolation on polynomials.

Medium

•

•

pub(crate) fn contains_duplicates(scalars: &[EccScalar]) -> bool {

let mut set = std::collections::HashSet::new();

// This function is only used in cases where we need to exclude duplicates

// and will immediately return an error, so an early exit (leaking if there

// are duplicates or not) does not have implications wrt side channels.

for scalar in scalars {

if !set.insert(scalar.serialize()) {

return true;

}

}

false

}

8 / 23 – Finding Details

NCC Group

Recommendation

There are two main ways to remove the side-channel leaks reported here:

The simple way is to replace the HashSet with pair-wise constant-time comparisons on

the scalars. It will unfortunately require a number of comparisons quadratic in the

number of scalars, which may have a high cost if used on a large list of scalars.

Another way is to generate a random, transient symmetric key K, then use K to compute

HMAC/SHA-256 over each serialized scalar, and then use the HashSet on the HMAC

outputs.

With such methods, the fact that there is a duplicate will still leak (but this is innocuous in

the current use of the function), but no otherwise usable information will leak to outsiders

through timing-based side channels.

Location

tecdsa/src/group.rs, line 696

Retest Results

2022-05-02 – Fixed

As part of commit 69f47b7d, the code was updated to clearly indicate that this non

constant-time check was used exclusively on public data.

As such, the finding was marked as “Fixed”.

•

•

9 / 23 – Finding Details

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/group.rs#L696
https://github.com/dfinity/ic/commit/69f47b7d64b4148c0087680a16630979b79fd996

Square Root Extraction Leaks Input Validity

Overall Risk Low

Impact Medium

Exploitability Low

Finding ID NCC-E003936-TBP

Category Cryptography

Status Fixed

Impact

Outsiders may infer whether a given value was a valid quadratic residue or not, based on

timing-based side channels.

Description

The sqrt() function, implemented on finite field elements through the

derive_field_element() macro, computes the square root of a given input. If the input is

not a quadratic residue in the field, then the function is documented to return the field

element zero:

This calls for two comments:

If the input is zero, then it is a quadratic residue. Thus, a returned value equal to zero

does not necessarily indicate that the input was not a quadratic residue; the caller must

also verify whether the input was already zero or not. This test might be missed by the

caller, leading to zero wrongfully declared a non-square.

While the check on the output uses the constant-time ct_eq() function, a conditional

jump is performed immediately on the output of the test, leading to a different execution

time and memory access pattern when the source value is not a quadratic residue. This

occurrence is conceptually detectable through timing-based side channels.

The non-constant-time check may lead to exploitable vulnerabilities in some situations,

e.g. if the square root call is part of a hash-to-curve process on low-entropy secret input

such as a password. In that case, it is normal that square roots may be attempted on values

which have probability about 1/2 of being quadratic residues. Information about whether a

square root attempt worked or not can help an attacker reduce the cost of dictionary

attacks on the low-entropy secret.

Note: In the current tECDSA implementation, this sqrt() function is not used. However, it

is part of the public API, both directly on the defined field element type, and on the

EccFieldElement wrapper (defined in src/fe.rs), making the issue potentially exploitable

when the library is used in a larger application.

Low

•

•

/// Return the square root of self mod p, or zero if no square root exists.

pub fn sqrt(&self) -> Self {

// For p == 3 (mod 4) square root can be computed using x^(p+1)/4

let sqrt = self.pow_vartime(&Self::MODULUS_PLUS_1_OVER_4);

// Check that the result is valid before returning

if sqrt.square().ct_eq(self) {

return sqrt;

}

Self::zero()

}

10 / 23 – Finding Details

NCC Group

Recommendation

A constant-time clearing of the result can be obtained in the following way:

Additionally, the API may be modified so that the sqrt() function returns two values, the

value computed above, and an additional u64 value equal to 0 if the square root failed, or

0xFFFFFFFFFFFFFFFF otherwise (i.e. the value of mm in the code above). Such a modified

API would force callers to explicitly consider the failure case, and allow them to use the

returned mask for further constant-time operations.

Location

tecdsa/fe-derive/src/lib.rs, line 505

Retest Results

2022-05-03 – Fixed

As part of commit 34703fad, the sqrt() function was updated and now follows the

approach outlined in the recommendation. Specifically, the function no longer performs a

conditional jump if the result is invalid, and returns a tuple indicating whether the square

root computation was correct. Additionally, equality testing as well as conditional

zeroization of the result are now facilitated by the subtle crate, as can be seen in the

code excerpt below.

As such, the finding was marked as “Fixed”.

pub fn sqrt(&self) -> Self {

// Compute putative square root in r.

let mut r = self.pow_vartime(&Self::MODULUS_PLUS_1_OVER_4);

// Check that r^2 yields back the input.

let t = r.square();

let mut mm = 0u64;

for i in 0..#limbs {

mm |= self.limbs[i] ^ t.limbs[i];

}

// mm == 0 if and only if the value r is valid.

// If mm != 0, then mm or -mm (or both) has its top bit set to 1.

mm = ((mm | mm.wrapping_neg()) >> 63).wrapping_neg();

for i in 0..#limbs {

r.limbs[i] &= mm;

}

r

}

pub fn sqrt(&self) -> (subtle::Choice, Self) {

// For p == 3 (mod 4) square root can be computed using x^(p+1)/4

// though will be nonsense for non quadratic roots.

let mut sqrt = self.pow_vartime(&Self::MODULUS_PLUS_1_OVER_4);

let sqrt2 = sqrt.square();

let is_correct_sqrt = sqrt2.ct_eq(self);

// zero the result if invalid

sqrt.ct_assign(&Self::zero(), !is_correct_sqrt);

(is_correct_sqrt, sqrt)

}

11 / 23 – Finding Details

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/fe-derive/src/lib.rs#L505
https://github.com/dfinity/ic/commit/34703fad074f5bb53142b2cf5f569c5c66c6c3b1

MEGa Ciphertext’s verify_is() Function

Does Not Check Ephemeral Key’s Curve

Overall Risk Low

Impact Low

Exploitability Undetermined

Finding ID NCC-E003936-WXX

Category Data Validation

Status Fixed

Impact

Incomplete validation of the ephemeral_key component of a MEGaCiphertext may be

contrary to users’ expectations and may lead to hard-to-debug errors later in other

functions.

Description

MEGa ciphertexts have two components: an ephemeral_key (the common component, a

single ECC point) and some ctexts (the individual components, a vector of ECC scalars for

MEGaCiphertextSingle , or a vector of pairs of scalars for MEGaCiphertextPair). Since both

the EccPoint and EccScalar types have inherent associated elliptic curves (K256 or

P256), ciphertexts must be checked to be consistent. A MEGaCiphertext ’s verify_is()

function (copied below for reference) appears to provide this validation: it checks that all

values in ctexts have the same curve type, equal to the function’s curve parameter.

However, it does not perform any validation of the ciphertext’s ephemeral_key component.

In particular, it seems that if the function publicly_verify_dealing() (lib.rs) is passed a

dealing whose ciphertext contains an ephemeral_key from a curve other than the one

specified in the function’s algorithm_id parameter, then the function could still return

Ok(()) . The caller could then proceed to call privately_verify_dealing() . (Comments

indicate that “private verification must be done after the dealing has been publically

Low

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

pub fn verify_is(

&self,

ctype: MEGaCiphertextType,

curve: EccCurveType,

) -> ThresholdEcdsaResult<()> {

let curves_ok = match self {

MEGaCiphertext::Single(c) => c.ctexts.iter().all(|x| x.curve_type() == curve),

MEGaCiphertext::Pairs(c) => c

.ctexts

.iter()

.all(|(x, y)| x.curve_type() == curve && y.curve_type() == curve),

};

if !curves_ok {

return Err(ThresholdEcdsaError::CurveMismatch);

}

if self.ctype() != ctype {

return Err(ThresholdEcdsaError::InconsistentCiphertext);

}

Ok(())

}

12 / 23 – Finding Details

NCC Group

verified”.) If that function is called, then the dealing ’s ciphertext ’s decrypt() function

will return a CurveMismatch error when attempting scalar multiplication of the ciphertext’s

ephemeral_key and the private_key (line 426 of mega.rs for MEGaCiphertextSingle , line

516 for MEGaCiphertextPair). This is the “correct” error, however, a user may be confused

since publicly_verify_dealing() and MEGaCiphertext.verify_is() both return Ok(()) .

Recommendation

Update the MEGaCiphertext ’s verify_is() function in mega.rs to check that

self.ephemeral_key ’s curve type is equal to the supplied curve parameter.

Expand testing (in tests/mega.rs) to include unit tests for positive and negative cases of

verify_is() .

Location

tecdsa/src/mega.rs, line 141

Retest Results

2022-05-02 – Fixed

As part of commit d8605fec, the following check was added to the verify_is() function:

As such, the finding was marked as “Fixed”.

•

•

if self.ephemeral_key().curve_type() != curve {

return Err(ThresholdEcdsaError::CurveMismatch);

}

13 / 23 – Finding Details

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/mega.rs#L141
https://github.com/dfinity/ic/commit/d8605feca47e53e6ca1acd315d378a9db6888eed

Outdated Dependencies

Overall Risk Informational

Impact Undetermined

Exploitability Low

Finding ID NCC-E003936-T4U

Category Patching

Status Partially Fixed

Impact

Unmaintained or deprecated dependencies are unlikely to receive future security updates if

a vulnerability is found. Dependencies with known vulnerabilities may provide an advantage

to an attacker, as the details of these vulnerabilities are publicly disclosed.

Description

The cargo-audit tool automatically scans Rust projects for crates with known security

vulnerabilities or warnings. One dependency of the tecdsa project gets flagged by this

tool because it is unmaintained.

Additionally, the cargo outdated subcommand highlights a number of the dependencies

as outdated, see the excerpt below.

Info

Crate: serde_cbor

Version: 0.11.2

Warning: unmaintained

Title: serde_cbor is unmaintained

Date: 2021-08-15

ID: RUSTSEC-2021-0127

URL: https://rustsec.org/advisories/RUSTSEC-2021-0127

Dependency tree:

serde_cbor 0.11.2

├── ic-crypto-internal-threshold-sig-ecdsa 0.1.0

└── criterion 0.3.5

└── ic-crypto-internal-threshold-sig-ecdsa 0.1.0

warning: 1 allowed warning found

Name Project Compat Latest Kind Platform

---- ------- ------ ------ ---- --------

autocfg->autocfg 1.1.0 --- Removed Normal ---

block-buffer->block-padding 0.2.1 --- Removed Normal ---

block-buffer->generic-array 0.14.5 --- Removed Normal ---

digest->generic-array 0.14.5 --- Removed Normal ---

fe-derive->num-bigint-dig 0.7.0 --- 0.8.1 Normal ---

generic-array->typenum 1.15.0 --- Removed Normal ---

generic-array->version_check 0.9.4 --- Removed Build ---

getrandom->cfg-if 1.0.0 --- Removed Normal ---

getrandom->libc 0.2.120 --- Removed Normal cfg(unix)

getrandom->wasi // <snip>

getrandom->wasi // <snip>

num-bigint-dig->autocfg 0.1.8 --- Removed Build ---

rand 0.7.3 --- 0.8.5 Development ---

rand->getrandom 0.1.16 --- Removed Normal ---

rand->rand_chacha 0.2.2 --- 0.3.1 Normal // <snip>

rand->rand_core 0.5.1 --- 0.6.3 Normal ---

rand->rand_hc 0.2.0 --- Removed Development ---

rand_chacha 0.2.2 --- 0.3.1 Normal ---

14 / 23 – Finding Details

NCC Group

The fe-derive crate currently also uses a few outdated dependencies.

Recommendation

Update all dependencies and tools to the latest versions recommended for production

deployment. Add a gating milestone to the development process that involves reviewing all

dependencies for outdated or vulnerable versions.

Location

tecdsa/Cargo.toml

tecdsa/fe-derive/Cargo.toml

Retest Results

2022-05-03 – Partially Fixed

Some of the dependencies were updated, for example as part of commit 4faa01f2.

However, ensuring dependencies are up-to-date and do not expose known vulnerabilities is

a constant battle. For example, a run of the cargo audit tool (excerpted below) now

highlights the crossbeam-channel crate as having been yanked .

Additionally, DFINITY indicated that the unmaintained serde_cbor crate would be

addressed at a later point, and that the risk was currently accepted.

As such, this finding was marked as “Partially Fixed”.

•

•

rand_chacha->rand_core 0.5.1 --- 0.6.3 Normal ---

rand_core 0.5.1 --- 0.6.3 Normal ---

rand_core->getrandom 0.1.16 --- 0.2.5 Normal ---

rand_core->getrandom 0.1.16 --- Removed Normal ---

rand_hc->rand_core 0.5.1 --- Removed Normal ---

sha2 0.9.9 --- 0.10.2 Normal ---

sha2->block-buffer 0.9.0 --- Removed Normal ---

sha2->digest 0.9.0 --- 0.10.3 Normal ---

sha2->opaque-debug 0.3.0 --- Removed Normal ---

Name Project Compat Latest Kind Platform

---- ------- ------ ------ ---- --------

autocfg->autocfg 1.1.0 --- Removed Normal ---

num-bigint-dig 0.7.0 --- 0.8.1 Normal ---

num-bigint-dig->autocfg 0.1.8 --- Removed Build ---

Crate: crossbeam-channel

Version: 0.5.3

Warning: yanked

Dependency tree:

crossbeam-channel 0.5.3

└── rayon-core 1.9.1

└── rayon 1.5.1

└── criterion 0.3.5

└── ic-crypto-internal-threshold-sig-ecdsa 0.1.0

15 / 23 – Finding Details

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/Cargo.toml
https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/fe-derive/Cargo.toml
https://github.com/dfinity/ic/commit/4faa01f22eb10e9f9c3b87aa689a09ddc2d6c613

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

16 / 23 – Finding Field Definitions

NCC Group

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

17 / 23 – Finding Field Definitions

NCC Group

6 Engagement Notes

This informational section contains a selected subset of notes and observations generated

during the project. While all security issues have already been presented in the preceding

individual findings, the following content presents non security-related observations and

additional comments on the reference paper.

Hash to curve

The file tecdsa/src/hash2curve.rs implements a number of functions to support encoding

or hashing of arbitrary strings to points on an elliptic curve. These algorithms follow the

IETF draft Hashing to Elliptic Curves. The NCC Group team noted that the version referred

to in the source code (v12) is slightly outdated and set to expire on 20 March 2022 – the

current draft is v14. Even though the changes are minimal and do not directly affect the

algorithms implemented, it is good practice to monitor updates and use the latest possible

published versions.

Additionally, some performance improvements could be implemented in the function

sqrt_ratio() , for the generic prime case. Specifically, that function provides a fast

algorithm for curves where p == 3 (mod 4), but implements a naive algorithm in the general

prime case, resulting in relatively slow computations.

Appendix F.2.1.1. of the Hashing to Elliptic Curves draft defines a faster variant which

applies to any field, while Appendix F.2.1.3. describes an optimized variant for p == 5 mod

8.

Minor discrepancy between paper and implementation

In the function mega_shared_hash_to_scalars() in tecdsa/src/mega.rs, which implements

the hash function/random oracle H_M that outputs elements in the message space for the

purpose of encryption, an additional input is given to the random oracle, namely the

dealer_index :

Since this adds more context to the computation than in the reference paper, the security

posture is not diminished. However, consider closely matching function calls between the

if curve_type == EccCurveType::P256 || curve_type == EccCurveType::K256 {

// Fast codepath for curves where p == 3 (mod 4)

// See https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-12.html#appendix-

F.2.1.2

// <snip>

} else {

// Generic but slower codepath for other primes

let z = EccFieldElement::sswu_z(curve_type);

let vinv = v.invert();

let uov = u.mul(&vinv)?;

let sqrt_uov = uov.sqrt();

let uov_is_qr = !sqrt_uov.is_zero();

let z_uov = z.mul(&uov)?;

let sqrt_z_uov = z_uov.sqrt();

Ok((uov_is_qr, cmov(&sqrt_z_uov, &sqrt_uov, uov_is_qr)?))

}

ro.add_usize("dealer_index", dealer_index as usize)?;

ro.add_usize("recipient_index", recipient_index as usize)?;

ro.add_bytestring("associated_data", associated_data)?;

ro.add_point("public_key", public_key)?;

ro.add_point("ephemeral_key", ephemeral_key)?;

ro.add_point("shared_secret", shared_secret)?;

18 / 23 – Engagement Notes

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/hash2curve.rs
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html#appendix-F.2.1.1
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html#appendix-F.2.1.1
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html#appendix-F.2.1.3
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-14.html#appendix-F.2.1.3
https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/mega.rs

implementation and the reference paper, and this for all functions that are direct

implementations of algorithms specified in the reference paper.

Address TODOs

In consensus/src/ecdsa/complaints.rs, a TODO pertaining to the verification of the number

of openings satisfying the threshold is still present. This early exit condition should be

implemented.

Additionally, consider addressing all outstanding TODO s (at least pertaining to the

threshold ECDSA implementation) prior to deployment.

Serialization of the point-at-infinity

In usual standards covering elliptic curve points (SEC1, ANSI X9.62, FIPS 186-4…), a curve

point (x,y) can be encoded in either compressed or uncompressed formats. The

uncompressed format starts with a byte of value 0x04, followed by the encodings of x and

y (big-endian). The compressed format starts with a byte of value 0x02 or 0x03

(depending on the least significant bit of y), followed by the encoding of x only. The curve

point-at-infinity does not have defined x and y coordinates; its standard encoding is a

single byte of value 0x00. The elliptic curve backend crates deviate from the standards in

that they encode the point-at-infinity into a sequence of bytes of value 0x00, with the

same output length as the encoding of a non-infinity byte. Therefore, a “compressed point-

at-infinity” for curve secp256k1 is a sequence of 33 bytes of value 0x00.

The EccPoint structure, defined in tecdsa/src/group.rs, includes the serialize() and ser

ialize_uncompress() functions, that output the compressed and uncompressed encodings

of a point, respectively. The deserialize_any_format() function performs decoding and

accepts both compressed and uncompressed formats, while deserialize() accepts only

compressed encodings. The test in the latter, though, rejects encodings of the point-at-

infinity:

This function rejects any encoding whose first byte is not equal to 0x02 or 0x03; in

particular, it rejects the encoding of the point-at-infinity, which starts with 0x00. This

implies that serialize() and deserialize() are not perfect mirrors of each other:

serialize() may produce an output that deserialize() rejects. Whether encodings of

the point-at-infinity should be tolerated at all depends on the protocol, but the discrepancy

between the behaviours of serialize() and deserialize() is a source of confusion that

will make ulterior software maintenance harder.

Polynomial output length overestimate

The Polynomial::mul() function (src/poly.rs, line 178) computes the product of two

polynomials. If the number of coefficients of the two operands are m and n, respectively,

then the output should have, in general, m+n-1 coefficients. The function includes an extra

// TODO: check num openings satisfies the threshold

match IDkgProtocol::load_transcript_with_openings(&*self.crypto, transcript, &openings) {

// <snip>

pub fn deserialize(curve: EccCurveType, bytes: &[u8]) -> ThresholdEcdsaResult<Self> {

if bytes.len() != curve.point_bytes() || (bytes[0] != 2 && bytes[0] != 3) {

return Err(ThresholdEcdsaError::InvalidPoint);

}

Self::deserialize_any_format(curve, bytes)

}

19 / 23 – Engagement Notes

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/consensus/src/ecdsa/complaints.rs
https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/group.rs
https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/poly.rs#L178

step to handle the case when both operands are the null polynomial with no coefficient at

all (m = n = 0):

The max() call, in that case, avoids the production of -1, an integer overflow for the

unsigned type usize . This expression accurately computes the number of coefficients of

the result, except in case one of the operand is the null polynomial while the other has at

least two coefficients: if m = 0 but n ≥ 2, then n_coeffs is equal to n-1, which is at least 1,

while the product computation itself produces no coefficient value at all. The produced

polynomial then has more coefficients than it should (but the extra coefficients are

correctly set to zero).

This is an edge case that probably has no practical consequence.

Undetected failure mode in polynomial interpolation

The Polynomial::interpolate() function (defined in src/poly.rs(), starting at line 243)

computes, given two sequences of scalars x
i
 and y

i
, a polynomial f such that f(x

i
) = y

i
 for all

i. The computation processes pairs (x
i
,y

i
) one by one, building in parallel the polynomial f,

and a helper polynomial g whose roots are exactly equal to the already processed x
i
. For

the input x
i
, the process involves in particular computing 1/g(x

i
), which raises the question

of what happens if g(x
i
) happens to be equal to zero. In that case, the function simply

ignores that pair (x
i
,y

i
).

Mathematically, g(x
i
) can be zero only if x

i
 is equal to a previously processed x

i’
 (for some i’

< i). If the corresponding y
i
 is equal to y

i’
, then this is a spurious duplicate and ignoring it is

mathematically correct, though that situation is probably erroneous; if y
i
 ≠ y

i’
, then

interpolation is not possible and should fail. In either case, the interpolate() function

should probably report an error whenever g(x
i
) = 0, rather that silently ignoring it.

Hash function length check in signatures

In src/sign.rs, line 327, an explicit check on the hash function length, with regard to the

curve size, is performed:

This calls for two remarks:

This check is in the signature verification function (ThresholdEcdsaCombinedSigInternal

::verify()) but is not present in the signature generation function

(ThresholdEcdsaCombinedSigInternal::new()). If the situation might arise one day,

then it would probably be better to catch it at signature generation time rather than

waiting for verification to fail.

The check is not technically complete. The ECDSA rules, specified in ANSI X9.62 and

FIPS 186-4, are that the hash output is converted into a scalar by first truncating it to

the size of the curve (sub)group order in bits, then interpreted as an integer (with

unsigned big-endian encoding) and reduced modulo that order. The size in bytes

returned by scalar_bytes() may overestimate the actual size. For instance, if this code

were to be used with Curve25519 (using its short Weierstraß representation2), whose

1.

2.

let n_coeffs = std::cmp::max(lhs_coeffs + rhs_coeffs, 1) - 1;

// ECDSA has special rules for converting the hash to a scalar,

// when the hash is larger than the curve order. If this check is

// removed make sure these conversions are implemented, and not

// just doing a reduction mod order using from_bytes_wide

if hashed_message.len() != curve_type.scalar_bytes() {

return Ok(false);

}

20 / 23 – Engagement Notes

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/poly.rs#L243
https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/sign.rs#L327

subgroup order is a 253-bit integer, the ECDSA rules would call for truncating the

SHA-256 output to 253 bits before modular reduction, a step that the current threshold-

ECDSA implementation does not perform; however, the check on line 327 would not

detect the issue.

In practice, this has no consequence as long as only curves with orders of size exactly 256

bits are used, such as secp256k1 and secp256r1. However, in the interest of future

reliability, it would be appropriate to modify the test to use scalar_bits() instead of

scalar_bytes() , and to include a copy of the same test in the signature generation

function.

Potential for side-channel leakage from resizing done by

Polynomial.get_coefficients()

If the parameter num_coefficients is greater than the length of the polynomial’s

coefficients vector, whether an error is returned by Polynomial.get_coefficients() will

depend on whether the higher coefficients are 0 or not. (See

Polynomial.get_coefficients() in poly.rs, line 121.) Suppose an adversary can control the

value of num_coefficients passed to this function and can observe whether the function

returns an error or not. Then, they could submit num_coefficients with one less than the

small number of coefficients and see if an error is returned or not. If not, then they would

learn whether the leading coefficient is 0.

Currently, the function is not used in a way that makes this side channel exploitable. This

note is simply meant to point out that, if the protocol changes the way it uses this function,

such abuse may be possible. If the functionality of truncating upper zero coefficients is not

necessary, consider removing it to eliminate this side channel.

Also note that in SimplePolynomial::create() , a comment says “The polynomial must

have at most num_coefficients coefficients”, but this function will succeed if it has more

coefficients and the extra coefficients are 0.

No-op ciphertext length check

As part of the Pull Request CRP-1455 Add PoP to MEGa encryption in Threshold ECDSA, a

check_validity() function was introduced in the implementation of the MEGa ciphertexts,

in mega.rs on line 163. This function performs a number of consistency checks, the first

one being a length check on the number of ciphertexts and the number of expected

recipients, passed as a parameter to that function. This can be seen in the code excerpt

provided below:

pub fn check_validity(

&self,

expected_recipients: usize,

associated_data: &[u8],

dealer_index: NodeIndex,

) -> ThresholdEcdsaResult<()> {

if self.ctexts.len() != expected_recipients {

return Err(ThresholdEcdsaError::InvalidRecipients);

}

// <snip>

2. https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-23

21 / 23 – Engagement Notes

NCC Group

https://github.com/dfinity/ic/blob/a18a6fa14041650e36444d959dc34ec9b23a23b6/rs/crypto/internal/crypto_lib/threshold_sig/tecdsa/src/poly.rs#L121
https://github.com/dfinity/ic/commit/d8605feca47e53e6ca1acd315d378a9db6888eed
https://github.com/dfinity/ic/commit/d8605feca47e53e6ca1acd315d378a9db6888eed#diff-23fb1648a0d1def931483dee215db134a5f18c8bbcc5a8f478e91ce3afa7b066R163
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-23

In some instances, for example in the decrypt() function of the same file, this function is

called with the length of the ciphertexts vector as the first argument (the

expected_recipients argument), as follows:

Hence, in that specific case, the first check in check_validity() essentially tests that

self.ctexts.len() is equal to itself. Consider slightly modifying the code to pass in the

actual expected ciphertexts length in that case.

Additionally, the NCC Group team noticed that commenting out the call to

self.check_validity() in the decrypt() function (the same one highlighted previously)

did not result in any of the tests failing. While this does not necessarily indicate a potential

security issue, it does highlight that no tests are currently in place to test that functionality.

Minor typos in the reference paper

The page numbers correspond to the paper dated March 18, 2022.

Page 2. “We an analyze the security” -> “We analyze the security”

Page 4. “The protocol in [GKSS20] has is somewhat” -> “The protocol in [GKSS20] is

somewhat”

Page 4. “Rather than compare are work” -> “Rather than compare our work”

Page 7. “These variations are more variations in the the forgery attack” -> “These

variations are more variations in the forgery attack”

Page 8. “and also a the execution of a resharing” -> “and also the execution of a

resharing”

Page 8. “Typically, the security of of a threshold” -> “Typically, the security of a

threshold”

Page 14. “which us used to identify” -> “which is used to identify”

Page 17. “Feldman’s VSS scheme [Ped91a] is a variation of Feldman’s” -> “Feldman’s”

should maybe be replaced with “Pedersen’s”

Page 17. “which is signature on a message” -> “which is a signature on a message”

Page 19. “Suppose the that during key generation” -> “Suppose that during key

generation”

Page 48. “there is no compelling reason to so” -> “there is no compelling reason to do

so”

Page 48. “and other aspects of a will change depending on context” -> and “other

aspects of a dealing will change depending on context”

Page 50. “We assuming corresponding batch specifications” -> “We assume

corresponding batch specifications”

•

•

•

•

•

•

•

•

•

•

•

•

•

self.check_validity(self.ctexts.len(), associated_data, dealer_index)?;

22 / 23 – Engagement Notes

NCC Group

7 Contact Info

The team from NCC Group has the following primary members:

Paul Bottinelli – Consultant

paul.bottinelli@nccgroup.com

Marie-Sarah Lacharité – Consultant

marie-sarah.lacharite@nccgroup.com

Thomas Pornin – Consultant

thomas.pornin@nccgroup.com

Javed Samuel – Practice Director

javed.samuel@nccgroup.com

The team from DFINITY USA Research LLC has the following primary members:

Robin Künzler

robin.kunzler@dfinity.org

Raghav Sundaravaradan

raghav.sundaravaradan@dfinity.org

•

•

•

•

•

•

23 / 23 – Contact Info

NCC Group

mailto:paul.bottinelli@nccgroup.com
mailto:marie-sarah.lacharite@nccgroup.com
mailto:thomas.pornin@nccgroup.com
mailto:javed.samuel@nccgroup.com
mailto:robin.kunzler@dfinity.org
mailto:raghav.sundaravaradan@dfinity.org

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Conditional Assignment Is Not Constant-Time
	Non-Constant-Time Check for Duplicate Scalars
	Square Root Extraction Leaks Input Validity
	MEGa Ciphertext’s verify_is() Function Does Not Check Ephemeral Key’s Curve
	Outdated Dependencies

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes
	Contact Info

