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Abstract
Trusted Execution Environments (TEEs) such as ARMTrustZone are in widespread use

in bothmobile and embedded devices, and they are used to protect sensitive secrets

while often sharing the same computational hardware as untrusted code. Although

there has been limited research in the area, the threat of microarchitectural attacks

against ARMTrustZone has not been thoroughly studied. This is not the case for other

TEEs, such as Intel SGX, where the security promises of the TEE have been violated

numerous times by the academic community, showing that it is possible to use side-

channel attacks to gain detailed insight into themicroarchitectural behavior of trusted

code. In this work, we show that TrustZone is susceptible to similar attacks, and we

demonstrate the ability to achieve cache attacks with high temporal precision, high

spatial precision, and low noise. These tools make it easy to monitor the data flow

and code flow of TrustZone code with great resolution, and we apply our techniques

to investigate the security of a real-world application. We examine ECDSA signing in

Qualcomm’s implementation of Android’s hardware-backed keystore and identify a

series of vulnerabilities that leak sensitive cryptographic information through shared

microarchitectural structures. By using the powerful attacks developed in this paper,

we are able to successfully extract this sensitive information and fully recover a 256-bit

private key from Qualcomm’s version of the hardware-backed keystore.
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1 Introduction

Modern devices are growing increasingly complex, with new security defenses being designed to defend

against increasingly capable attackers. Even in the case of device compromise, defenders wish to find ways

to secure sensitive information. Trusted Execution Environments (TEEs) aim to provide this level of protection

by restricting secrets to a segregated domain. This environment may run on the same computational hard-

ware that untrusted code uses, but the separation is distinct from the typical user-kernel or kernel-hypervisor

boundaries. Even if an attacker fully compromises the operating system on a device, the secrets kept within

the TEE should remain secure.

There are primarily two classes of TEE-supporting hardware which are commonly available today: Intel’s

Software Guard Extensions (SGX) and ARM’s TrustZone. SGX is found on Intel processors and is available

in both desktop and server environments [CD16]. SGX provides a way to run user-supplied code within an

enclave, aiming to protect the memory contents and execution from all entities outside of the enclave. Even

a malicious OS should be unable to leak secrets from an SGX enclave. However, Intel excludes side-channel

attacks from its SGX threat model [Cor15, CD16], and the promised protections have been systematically

and repeatedly broken by microarchitectural attacks, described below. However, despite this intense focus

on SGX, the same attention has not been given to the exploitation of TrustZone.

This is a bit surprising, considering the widespread use of TrustZone. While practical applications for SGX

are still being developed, ARMTrustZone is used daily by countlessmobile devices and embedded systems.

It is found in the flagship devices from Samsung, Google, and many others, and it is used for many sensitive

operations such as full disk encryption, fingerprint processing, and device authentication [Sam16, CL16]. It

is also advertised for use in smart home systems, digital currency wallets, and medical devices [Mar18].

That’s not to say that the threat of compromising TrustZone has not been recognized. Both attackers and

defenders have known for years that standard memory corruption bugs can be used to exploit vulnerable

TrustZone implementations [lag15a, lag15b, Ros14], and so code is developed with these threats in mind.

Other recent works have demonstrated that TrustZone TEEs can sometimes leak information through low-

powered microarchitectural attacks, also described below. Despite these works, research into the microar-

chitectural security of TrustZone lags behind that of SGX, and the same level of powerful microarchitectural

attacks have not been practically demonstrated against this ubiquitous TEE.

In this work, we show that powerful side-channel attacks are possible on ARM, and we use them to extract

cryptographic keys from the hardened TrustZone-based keystore on Android phones.

1.1 Related Work

A number of recent publications have focused on TEEs, microarchitectural attacks, ARM, or Android key-

stores. In the controlled channel attack [XCP15], an untrusted operating system uses page faults to leak

coarse control-flow information from SGX-based TEEs. The Cachezoom [MIE17] attack uses OS-scheduled

timer interrupts to perform a cache attack on SGX with high temporal precision. Nemesis [VBPS18] targets

multiple TEEs, including SGX, and infers execution information with single-instruction precision. Branch

Shadowing [LSG+17] enables an attacker to target SGX enclave control-flow information with increased

spatial resolution by monitoring the branch predictor. These attacks paved the way for compromising real-

world cryptographic implementations in SGX [MES18, DDME+18].

ARMageddon [LGS+16] explores a cross-core cache attack onARM-basedmobile devices and considers the

applicability to attacking TrustZone. However, this attack is performed from a compromised application, and

it suffers from imperfect temporal resolution and measurement noise. TruSpy [ZSS+16] focuses on same-

core cache attacks against TrustZone from both a compromisedOS and compromised userland application.

This attack recovers a secret key from an intentionally flawed AES implementation, but it also suffers from
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poor temporal resolution and measurement noise. CLKSCREW [TSS17] uses the malicious OS’s access

to energy management hardware to induce faults in TrustZone computations, extract an AES key from an

intentionally flawed implementation, and bypass real-world code signing in the Nexus 6 cell phone.

Lastly, there has been research into the security of keys protected by Android’s keystores. Researchers have

found flaws in the lower-assurance software-based keystore [Cor14, ST16], but these do not impact TEE-

based keystores. The security providedby thesehardware-backed keystores is discussedelsewhere [CdRP14,

CPVtG14], including analysis of Qualcomm’s hardware-backed keystore. However, this research did not

find ways to compromise keys in theses implementations. While hardware-backed keys can be extracted

by compromising the entire TrustZone TEE [lag16b], we are unaware of any prior practical attacks on the

hardware-backed keystore which do not require full compromise of the secure computing environment.

1.2 Contributions

This work significantly improves the power of microarchitectural attacks against ARM TrustZone. We take the

concepts used to target Intel SGX and apply them to ARM TrustZone, demonstrating that a software-based

attacker can gain substantial insight into the data flow and control flowof TrustZone applications. Our attacks

improve on existing ARM microarchitectural techniques in three main categories.

1. Temporal Resolution: The TruSpy attack performs only one set of side-channel measurements per

encryption in TrustZone [ZSS+16], meaning the order of memory accesses is indistinguishable by

this attack. The ARMageddon attack demonstrates improved temporal resolution by executing the

victim TrustZone code on one core andmonitoring the last-level caches from a second core [LGS+16].

However, the temporal resolution of this style attack is limited, since increasing the sample rate leads

to an increasedprobability ofmissing victimmemory accesses [YF14]. In contrast, our attack is capable

of achieving arbitrary temporal resolution, capturing TrustZone memory accesses which occur during

very small time slices of victim execution.

2. Spatial Resolution: Existing attacks are limited by the dimensions of the memory caches. The TruSpy

and ARMageddon attacks each have a spatial resolution of 64 bytes, since more granular accesses

result in indistinguishable memory cache behavior. This applies to both attacks revealing control flow

and data flow. Our attack reveals TrustZone control flow with 16-byte resolution, meaning code which

was secure under the old attacks can be vulnerable to these new attacks.

3. Noise: The ARMageddon attacks must cope with cache thrashing, and this results in a compromise

where, in one case, 1
16 of victim accesses are missed. In addition, since unprivileged timing is used to

distinguish cache behavior, there is a minute chance that the microarchitectural behavior is misiden-

tified. Our attack improves upon this by drastically reducing the probability of missing certain victim

behavior and virtually eliminating behavior misidentification.

While the limited information exposed by existing attacks is enough to compromise security in specific

scenarios, our attacks are very general and capable of inferring fine-grained control-flow and data-flow

in arbitrary TrustZone applications. This is in part due to our use of processor features accessible to our

malicious but privileged OS, something which is a part of the TrustZone threat model [ARM15, Chapter 17]

but has not been taken full advantage of in prior work.

We successfully implemented our attacks in a loadable kernelmodule, andwe further built a set of extensible

software tools around this kernel module to facilitate the collection, analysis, and automation of these side-

channel attacks. Our software has been open sourced1 and can be adapted to support new attacks, other

1https://github.com/nccgroup/cachegrab
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sources of cache-based side-channel attack data, and new analysis methods.

Finally, to demonstrate the effectiveness of these attacks, this tool is used to compromise a 256-bit ECDSA

key stored in Qualcomm’s hardware-backed keystore. This attack would not have been possible without the

development of our high-resolutionmicroarchitectural attacks. The full attack completes in amatter of hours

and shows that, despite the mitigations present in the library, small secret-dependent behavior is sufficient

to completely compromise a private key.

1.3 Disclosure

We disclosed the key extraction vulnerability to Qualcomm in March 2018, and from then until October

2018, they developed, reviewed, and propagated a fix. Qualcomm notified affected OEMs and carriers at

this point, triggering the start of a six-month recertification process. Finally, the issue was publicly disclosed

in April 2018. This issue was assigned identifier CVE-2018-11976.
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2 Background

2.1 TrustZone

Recent ARM Systems-on-Chip (SoCs) provide a Trusted Execution Environment (TEE) via TrustZone technol-

ogy [ARM15, Chapter 17]. This TEE offers a way to run secure code in an isolated environment with the

goal of protecting code execution from a potentially compromised operating system. TrustZone segments

execution on the SoC into a Secure world and Non-secure world, and it imposes restrictions on how the

Non-secure world can interact with the Secure world.

A processor can execute code within both of these worlds at different exception levels, starting at EL0

(Exception level zero). EL0 is used for userland code, EL1 is used for kernel code, and EL2 is used for

hypervisor code. The exception to this split is EL3, ormonitor mode, which only ever executes in the Secure

world. Monitor mode handles interrupts and facilitates switching between the two worlds.

Code within the Non-secure world is typically feature-rich, such as the Android OS and applications in a cell

phone or the Linux-based firmware in an embedded device. Code within the Secure world has limited func-

tionality, as this reduces attack surface and makes it easier to audit the Secure world code for vulnerabilities.

All exception levels in the Secure world should be protected against the Non-secure world. That is, the

untrusted OS in Non-secure EL1 should not be able to compromise the trusted applications, or TAs, running

in Secure EL0, even though EL1 has access to a more privileged set of processor features than EL0. Even in

the context of a fully compromised Non-secure OS, an attacker should be unable to access the memory or

monitor the execution of a TA.

2.2 Hardware-Backed Keystore

One common use of TrustZone TAs on Android devices is the hardware-backed keystore. This feature

frequently uses the Keymaster TA, which runs within the Secure world, to handle cryptographic operations

such as generating private keys, importing keys, and creating signatures. Although the Android OS can

direct the Secure world to sign arbitrary payloads, keys generated within the Keymaster TA should never

be accessible to the Non-secure world. This work only focuses on the implementation of ECDSA within a

particular version of Qualcomm’s Keymaster TA, but other cryptographic algorithms are supported as well.

An Android application can use the hardware-backed keystore to interface with the Keymaster TA, enabling

developers to create and use keys with the additional protections of TrustZone’s Secure world. In the event

that an attacker compromises the Android OS, they can steal keys which are only protected by the Non-

secure world, but they should still be unable to extract keys generated within the hardware-backed key-

store [Goo18a]. This property is called device binding [CdRP14], and it allows an application developer to

be confident that all signatures from a bound key pair were generated by the same physical device.

This feature is useful for operations like device authentication. A device-bound private key can be used to

sign a server-generated challenge, giving the server confidence that the request originated from the same

physical device as prior requests. Using the hardware-backed keystore for this purpose is recommended

by both Google [Wil17] and the FIDO Alliance [FID18]. This proof of device ownership for second-factor

authentication requires that the device-binding of the keystore cannot be defeated.

The hardware-backed keystore contains additionalmitigations against compromise, but these are not always

used. First, it is possible to place restrictions on how frequently a hardware-backed key can be used or to

require fingerprint verification before signing a challenge with a key [Goo18a]. Additionally, public keys

in the hardware-backed keystore can be signed by factory-installed attestation keys, increasing confidence

that a key was generated within the keystore and giving stronger guarantees than just device binding. Some

devices, such as the Nexus 5X targeted by this work, lack a factory-installed attestation key. However, the
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lack of an attestation key is not considered a negative security indicator [Goo18c].

Whatever the use of the hardware-backed keystore, it is important that application developers can depend

on this feature for security. Once a key has been installed within the hardware-backed keystore, this key

should be close to impossible for an adversary to extract.

2.3 Cache Attacks

Caches are microarchitectural structures within processors which accelerate accesses to commonly used

resources. When a vulnerable piece of code uses the cache in a way that depends on sensitive information,

an attacker can sometimes monitor the cache and observe the change in speed and cache behavior to infer

the victim’s secrets. These attacks can be used to reveal the locations where the victim is accessing data,

referred to as data flow, or which code the victim is running, referred to as control flow.

Our use of cache attacks focuses on set-associative caches. In a set-associative cache, the entire memory

address space is segmented into a number of short cache lines, often 64 bytes in length. Each cache line is

bucketed into one of typically a few hundred cache sets. When information from a cache line is accessed,

the entire cache line is read into the assigned cache set. Each cache set can only hold a fixed number of

cache lines, referred to as the number of ways or the associativity. That is, in a 4-way set-associative cache,

each set can hold four cache lines. If a fifth entry belonging to the same set needs to be stored in the cache,

one of the four existing entries in the set must be evicted to make room.

Inmany cache attacks, the attacker and victim share the same cache. This means that the process of storing a

victim line in the cache can evict an attacker’s line, and vice versa. Cache attacks also require that the attacker

has a way of querying the cache state to know if a particular cache line is stored in the cache or not. There

are a number of viable cache attacks, but our work only focuses on one.

2.3.1 Prime+Probe

Prime+Probe [OST06] is a cache attack where the attacker and victim possess distinct cache lines. The attack

has two phases, and it begins with the attacker selecting a particular cache set to monitor. In the priming

phase, the attacker accesses several particular locations in their ownmemory to fill up every way of the cache

set with attacker data. The victim process then executes, potentially accessing a cache line belonging to the

monitored set. If this happens, one of the attacker’s lines is evicted to make room for the victim’s entry.

In the probing phase, the attacker determines which of their cache lines remain in the cache. This could be

done by timing accesses to the attacker’s cache lines which were previously in the cache. If the cache line

is still in the cache after the victim execution, the access is fast, while if the line has been evicted, the access

is slow. Regardless of how the processor chooses which line in a set to evict, the attacker knows that if all

of their lines are still cached, the victim has not accessed a line in the set. If one of the attacker’s lines is not

cached, the victim has accessed that set.

An attacker can monitor multiple cache sets simultaneously to learn more detailed information about which

sets the victim accesses. However, note that the attacker does not learnwhich cache lines the victim accesses

or the contents of the cache lines.

2.3.2 Repetition in Attacks

An attacker may perform a cache attack multiple times throughout the victim execution, partitioning victim

execution into a sequence of disjoint time steps. Each time step reveals information about victim cache

usage, so the attacker can observe how the victim’s behavior changes over time.

There are multiple ways an attacker can perform this repetition [GYCH18]. In a hardware-threading attack
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such as [Per05], the attacker and victim run concurrently on the same core, simultaneously accessing a shared

cache. However, such simultaneous attacks may miss victim accesses that occur during the attack setup or

measurement phases, preventing an attack from having both low noise and high temporal resolution [YF14].

In a time-sliced attack, the attacker and victim are interleaved in time on the same core. Since the victim

is not executing during the attack setup and measurement, the attack captures all victim accesses during a

single time step. However, the attacker also captures accesses caused by switching contexts from attacker

to victim code, introducing noise. Time slicing of victim execution can be controlled by the attacker [MIE17]

or not, as in [GYCH18].

The result of a repeated Prime+Probe attack is a two-dimensional Boolean array where one dimension

specifies the time step, the other specifies the list of monitored sets, and the data show whether a particular

set was accessed by the victim during a given time step.

2.3.3 Types of Caches

There are multiple caches within a processor [GYCH18], but this work concentrates on three.

• L1D: The Level 1 Data cache is used by a processor to storememory which was recently accessed by code.

This cache is typically unique to a single core, and an attack on the L1D cache reveals data flow.

• L1I: The Level 1 Instruction cache stores memory containing recently-executed instructions. This cache is

also typically unique to a core. An attack on the L1I cache reveals control flow.

• BTB: The Branch Target Buffer is a cache-like structure which stores information about the branches in

cache-line-sized sections of memory. This information is used to predict the direction branches are taken,

potentially reducing the time spent speculatively executing thewrongbranch and speeding up instruction

execution. Instead of storing a copy of the line’s memory contents within the cache, the cache stores

prediction information such as prior branch results anddestinations. It is possible to perform cache attacks

on the BTB [AKS07b, AKS07a, EPAG16, ERAG+18] to reveal control flow.

2.4 ECDSA side-channel attacks

ECDSA private keys have been successfully targeted by side-channel attacks in the past [Rya19, vdPSY15,

GB17]. ECDSA is a NIST-standardized digital signature algorithm [KSD13] that relies on the difficulty of the

elliptic curve discrete logarithm problem. Signatures consist of two finite field elements r, s ∈ Fq and are

calculated from a hashm of a message and private key x:

r = [k ∗G]X

s = k−1(m+ rx)

The value k ∈ Fq is the nonce, andG is a base point of order q on the elliptic curve. r is therefore calculated
by taking theX coordinate of the scalar multiplication of k andG. k is also used when calculating s from r,
x, andm.

Howgrave-Graham and Smart recognized that partial information about k can be reformulated into partial
information aboutx via representation as an instance of the hiddennumber problem (HNP) [HGS01]. Solving

this problemwith the lattice-based approach of Boneh andVenkatesan [BV96] yields private keyx and allows
the attacker to forge signatures as the victim.

To perform this nonce-leak attack, the attacker must learn sufficient information about the value of k. In the
original attack, this is accomplished by knowing a combination of the most-significant and least-significant
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bits in the dlog2 qe-bit representation of q. This approach requires a single continuous block of unknown
bits in the middle of k, but there are other approaches which enable key recovery when there are multiple
blocks of unknown bits [HGS01, NS01, NS02, HR07, vdPSY15, FWC16a]. However, these cases require

proportionally more bits of k to leak per signature or other special conditions in order to recover x.

A sufficient number of signatures with nonce leakage must be observed before the instance of HNP is

solvable. Theminimum number of bits leaked per nonce and signatures required depend on the key length

and choice of HNP-solving algorithm. Lattice-based algorithms can occasionally recover a 256-bit key when

three most- or least-significant bits of each nonce are known for around 100 signatures [LCL13], and they

can reliably recover keys when at least four bits are known for around 80 signatures [Rya19]. Alternative

methods to solving the HNP exist [DMHMP13, AFG+14, TTA18] that can recover a 256-bit key with three or

even two bits leaked per nonce, but these require millions to even trillions of signatures.

Many attacks havebeen successfully performedusingnonce leaks [FWC16b, BT11, BvdPSY14, BH09,GPP+16,

BFMRT16]. A common approach is to target the point multiplication of G by k, as the behavior of the
multiplication algorithm may depend directly on the values of the bits of k.

2.5 Fixed-Window Multiplication

Computing the point multiplication of G by k is central to ECDSA signing, and numerous algorithms exist
to efficiently calculate this value. The properties of elliptic curves used for cryptography make it easy to flip

the sign of a point (inversion), compute the sum of one point with another (addition), and compute the sum

of a point with itself (doubling). Efficient multiplication algorithms combine these elementary operations to

compute the final product.

Fixed-windowmultiplication (See [KMVOV96, Algorithm 14.82]), with window size four, separates the nonce

k into l four-bit windows, with k0 being the four most-significant bits, k1 being the four next-most-significant
bits, continuing up to kl−1, the four least-significant bits. The fixed-window multiplication algorithm is de-

scribed in Algorithm 1.

Algorithm 1: Fixed-Window Point Multiplication

Input: Nonce values k0, k1, . . . , kl−1

Output: Product of the nonce and base pointG

1 PrecomputedTable← [0 ∗G, 1 ∗G, . . . , 15 ∗G]
2 T ← 0 ∗G
3 for i← 0 to l − 1 do
4 T ← 16 ∗ T // Double point T four times

5 P ← PrecomputedTable[ki]
6 T ← T + P // Add to point T

7 return T

Note that this algorithm involves four doubling operations and one addition operation per iteration. Also

note that this algorithm indexes into a precomputed lookup table. If an attacker can reveal the retrieved

indices ki of multiple consecutive iterations, the attacker learns many consecutive bits of k which can be
used in a nonce leak attack.

10 | Hardware-Backed Heist: Extracting ECDSA Keys from Qualcomm’s TrustZone NCC Group



3 Qualcomm ECDSA Implementation

To motivate the development of our microarchitectural attack techniques, we examine the implementation

of ECDSA signing in a particular version of Qualcomm’s Secure Execution Environment (QSEE). QSEE is

Qualcomm’s implementation of a TrustZone Secure world OS and backs operations which need to be pro-

tected from the AndroidOS [lag16a]. This ECDSA implementation is used by the hardware-backed keystore

on recent Android devices with Qualcomm hardware.

In particular, we examine the QSEE ECDSA implementation on the Nexus 5X. We target firmware version

7.1.1 (N4F26T [Goo17]), which was released in March 2017, near the beginning of this research. However,

this choice of target does not necessarily mean that implementation weaknesses only impact the Nexus 5X.

Many other devices use QSEE to support hardware-backed keys, and so these devices may inherit the same

weaknesses from shared QSEE source code.

3.1 Algorithm

QSEE’s implementation of elliptic curve point multiplication was identified in the cmnlib block device2 at

offset 0x00ff04. We analyzed this function in order to understand how QSEE performs the multiplication.

QSEE uses a variant of fixed-window multiplication techniques with a window size of four bits. However,

there are important differences between QSEE’s implementation and standard fixed-window techniques

which alter how nonce bits are consumed by the algorithm. In the standard algorithm, every iteration of the

loop consumes four bits of the nonce to select one of sixteen elliptic curve points {0 ∗G, 1 ∗G, . . . , 15 ∗G}.
The points are selected by referencing an index in a precomputed table with sixteen entries.

InQSEE’s implementation, every iteration of the loop consumes four bits of the nonce to select one of sixteen

elliptic curve points {−15 ∗ G,−13 ∗ G, . . . , 13 ∗ G, 15 ∗ G}. These points are selected by referencing an
index in a precomputed table with eight entries {1∗G, 3∗G, . . . , 15∗G} and conditionally flipping the sign
of the precomputed point, which can be done quickly. It is not immediately clear why this difference exists,

but the purpose may be to reduce the size of the lookup table or to avoid operations involving the point at

infinity 0 ∗G, which QSEE handles separately.

To support this smaller lookup table, the nonce is effectively recoded on the fly, converting four bits of nonce

ki to a 1-bit sign σi and three-bit index µi. To generate these ki, a 256-bit nonce is first zero-extended at
its beginning to 288 bits and then for the sake of the recoding is prepended with a single set bit. Besides

extending the length to a multiple of four bits, the zero-extension has no bearing on the correctness of the

algorithm. The four most significant bits of this 289-bit value are k0, the next four bits are k1, and so on, up
to k71. The recoding to σi and µi, for i ∈ {0, . . . , 71} is found by

ki = b(k + 2288)/2285−4ic mod 16

σi = bki/8c
µi = b|2ki − 15|/2c.

Note that this approach consumes 288 bits of the 289-bit value, and the least significant bit has not been

recoded. Let σ72 be the least significant bit of the nonce k.

The behavior of the QSEE multiplication algorithm is described in Algorithm 2. Note once again that, in a

single iteration, there are four doublings, one lookup in a precomputed table, and one addition.

Although the QSEE implementation does not explicitly calculate the recoded σi and µi before running the

2This image is pulled from /dev/block/platform/soc.0/f9824900.sdhci/by-name/cmnlib.
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Algorithm 2:QSEE Point Multiplication Algorithm

Input: Recoded nonce values σ0, µ0, . . . , σ71, µ71, σ72
Output: Product of the nonce and base pointG

1 PrecomputedTable← [1 ∗G, 3 ∗G, . . . , 13 ∗G, 15 ∗G]
2 T ← 0 ∗G
3 for i← 0 to 71 do
4 T ← 16 ∗ T // Double point T four times

5 P ←HardenedLookup(PrecomputedTable, µi)

6 P ←ConstantSelect(σi, P,−P)

7 T ← T + P // Add to point T

8 if σ72 = 1 then
9 sel← 0

10 else

11 sel← 1
12 T ←ConstantSelect(sel, T −G,T)
13 return T

algorithm, the end result of having a 3-bit index and a possible inversion per loop iteration is still present.

Recall that an attacker is interested in recovering the least significant or most significant bits of nonce k. By
our recoding definition, the least significant bit of k is σ72, which specifies whether a conditional subtraction
should take place. Due to the prepending of k with 32 unset bits and one set bit, the contents of k0, . . . , k7
are known and constant, and recovering these values does not give additional information about the nonce.

However, the lower three bits of k8 are themost-significant bits of the original k, and the top bit of k8 is unset
due to the zero-extension. This means that k8 takes one of eight values, and each value uniquely maps to a
single possible value of µ8. Thus observing µ8 allows us to recover the three most-significant bits of k.

To make it clear that we are targeting the unknown bits of the nonce, we refer to the HardenedLookup call

with argument µ8 as the first table lookup. Even though there are prior lookups determined by the constant

zero-extension bits, this is the first lookup operation within the precomputed table which involves the secret

bits of k.

Learning whether or not the conditional subtraction occurs at the end of the algorithm and the index of the

first table lookup therefore reveals σ72 andµ8. This in turn reveals the least-significant bit and the threemost-

significant bits of k. By [HGS01], the ability to recover these four bits is sufficient to reliably compromise a
256-bit ECDSA key. The remainder of this section explores how to leak this information.

3.2 Conditional Subtraction Implementation

The comparison on line 8 of Algorithm 2 leaks the final bit via non-constant control flow. Although the

algorithm uses a constant-time conditional selection method on line 12, this method takes a mask as an

argument to determine which value to select. As found at offset 0x01038c, the assignment of the mask has

non-constant control flow.

Note that after evaluating the last bit σ72, the code may proceed to either the if block or the else block,
and control flow is eventually reunited at line 12. However, the behavior of this conditional leaks through

microarchitectural state in two ways. Because of how the program was compiled, line 11 falls in a different

L1I cache set than the other lines. Thus if a cache attack observes the victim using the L1I cache set of line 11,
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then the attacker infers that the last bit of the nonce is not set.

The branching behavior can also be observed by monitoring the BTB. There is an unconditional branch

from line 11 to line 12, and this branch falls in a different BTB set than any of the neighboring branches.

Concretely, when the last bit is set, the victim uses BTB sets 57, 58, and 59, but when the last bit is unset,

they use sets 57, 58, 59, and 60.

Since the critical L1I and BTB sets are both used by the victim in non-secret-dependent ways elsewhere in the

algorithm, a successful time-sliced attack must include a time step that captures only the secret-dependent

usage of these sets. This requires high temporal resolution. However, provided the attacks are capable

enough, this side-channel data leaks the last bit of the nonce in a straightforward way.

3.3 Table Lookup Implementation

The table lookupon line 5 is complicated and attempts to hide the index valuewith randomizedmasking, but

it also leaks the index information through a combination of non-constant control flow andmemory accesses.

A more complete representation of the lookup function is given in Appendix A, but due to the complexity

of this implementation, we will begin by describing a naive lookup implementation and explaining how

Qualcomm’s version differs.

Recall that the table has eight entries, which we refer to by the indices 1, 2, . . . , 8. Each entry has size 220
bytes, so this means that each entry occupies different sets in the L1D cache. We will consider the order of

accesses to the memory of the entries in this table. Since memory operations access four bytes of memory

at a time, the naive implementation reading entry 3 to an output buffer would have memory access pattern
33333 . . .. However, an attacker monitoring the L1D cache can easily observe that the secret index is 3, so
this naive implementation is insufficient.

The Qualcomm implementation instead reads from all eight entries and uses eight logical masks to deter-

mine which values to keep and which to discard. These logical masks are applied in constant time. Here,

the access pattern appears as 123456781234 . . .where the underline denotes that the mask used preserves
the read value. By changing which of the eight masks is set, the lookup function no longer leaks information

through the L1D cache. However, if the attacker learns that the thirdmask is set, the attacker has successfully

leaked that the index is 3.

The Qualcomm implementation is further complicated by randomization. Every call to the lookup function

randomly changes which entry is read from first. For example, the access pattern may actually look like

78123456781234 . . .. Even though the first access is randomized, the progression from one access to the

next stays the same, so, for example, 4 is always read following 3.

Even with this randomization, note that if the attacker learns that the first entry read is 7 and the fifth mask
is set, then the attacker knows that the secret index is 3. The attacker therefore has the goals of detecting
which entry is read first and which mask is set.

3.3.1 Recovering Entry Ordering

The first piece of information leaks through a time-sliced L1D cache attack. Note that, in the previous

example, a time step at the beginning of the table accesses may observe L1D sets corresponding to entries

1, 2, 7, and 8 (from access pattern 7812). Even though the cache attack does not directly reveal the order of

these accesses in this time step, the attacker can use the knowledge of the fixed progression to infer that 7
was accessed first.

Not all possible time steps will successfully leak this information. Assume instead that the attack captures
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the first 11 table accesses 78123456781 in a single time step. The L1D cache will show accesses to all eight

entries, and it will be impossible to disambiguate which one came first. It is therefore crucial that the L1D

cache attack has high temporal resolution in order to capture as few table accesses as possible during the

first time step of the table lookup.

3.3.2 Recovering Mask Values

Of the eight logical mask values used in the table lookup function, only one of them will be set, since only

the values from one table entry need to be written to the output buffer. These masks are applied in constant

time, but much like the flaw in Section 3.2, the mask values are not initialized in constant time.

Each of the eight logical masks is cleared or set by the if block or the else block of a conditional statement.

Since there are eight conditional statements and only one of the masks is set, executing this part of the

lookup function will result in executing seven if blocks and one else block. Unfortunately for the attacker,

these eight possible control flows use the same L1I cache sets, so a L1I cache attack would be infeasible.

However, as before, the else blocks contain unconditional branches, and thesebranches are only takenwhen

the else block is executed. These unconditional branches can then be observed in particular BTB sets, and

identifyingwhich of the eight rejoining unconditional branches is taken reveals whichmask is set. In practice,

not all possible control flows result in a unique BTB usage signature, but three of them do. This adds extra

attack overhead, but the attacker may just collect samples until one of these three cases is encountered.

3.4 Key Recovery

A combination of powerful data-flow and control-flow time-sliced cache attacks is therefore capable of

revealing the final nonce bit and the index of the first table lookup, exposing four nonce bits and making

key recovery possible. The following section details how Cachegrab is able to accomplish such attacks with

these desirable properties.

14 | Hardware-Backed Heist: Extracting ECDSA Keys from Qualcomm’s TrustZone NCC Group



4 Cachegrab

We developed the Cachegrab tool3 in order to facilitate performing practical and powerful microarchitec-

tural attacks on ARM. Since TrustZone implementations are commonly on mobile and embedded devices,

and these devices often run a Linux variant for the Non-secure OS, the heart of Cachegrab is implemented

as a loadable kernel module. This is in line with TrustZone’s threat model of a compromised Non-secure

world, and it makes it possible to perform these attacks with minimal changes to the Non-secure OS.

Cachegrab also contains a companion userland application and visualization software to assist in these

attacks. It currently supports passive time-sliced Prime+Probe attacks on AArch64 ARMv8 systems, but

it is flexible and allows expansion to support new passive time-sliced attacks or other platforms. Using

Cachegrab, multiple attacks can be performed simultaneously, exposing the usage of multiple caches over

the same time steps.

4.1 Temporal Resolution

In order to achieve high temporal resolution, the attacker’s code, running in the Non-secure world, must be

capable of frequently examining the state of shared caches during the execution of the victim’s code in the

Secure world. The caches targeted by Cachegrab are unique to individual cores and used exclusively by

a single thread, so the only way to poll the cache state during victim execution is by halting the victim and

executing attacker code on the victim’s core before resuming the victim. This repeats until the victim has

completed execution.

This interleaving of the victim execution between priming and probing means that the attacker does not

miss any victim accesses. It also means that the cache accesses from switching into and out of the TA will be

mixed in with the desired TA cache information. Since some of these extra accesses come from the attacker’s

interrupt handling code, the attacker’smemory can bemarked as uncacheable, partiallymitigating this issue.

In order to achieve this interleaving, we adopt the techniques of [MIE17]. This attack uses timer interrupts

to halt SGX enclave execution on Intel processors and transfer control back to the malicious OS, which

performs the Prime+Probe attack. By increasing the frequency of interrupts, the authors could achieve

arbitrary temporal resolution.

This attack does not necessarily work on TrustZone-capable ARM devices. When a interrupt occurs during

Secure world EL0 execution, control transfers to Secure world EL3 monitor mode, not to the attacker’s code.

This was observed by [ZSS+16] as a limitation of ARM systems and an indication that time-sliced attacks on

TrustZone cannot use interrupts.

However, a Non-secure LinuxOS relies upon interrupts to function, so in practice, themonitormodemay just

transfer control directly to the Non-secure world [ARM15, Figure 17-1]. This occurs with minimal processing

to ensure Non-secure interrupts are fast.

This behavior is exploited by Cachegrab to achieve high temporal granularity. One physical core is assigned

to run the victim code and another is assigned to trigger the interrupts. As the victim executes the TA, the

second core uses smp_call_function_single to trigger an inter-processor interrupt on the first core. This

halts executionof the TA, transfers control to themonitormode interrupt handler, and receives the forwarded

interrupt within the untrusted Linux OS. This calls the attacker’s code on the first core, and victim execution

resumes when the attacker’s interrupt finishes. This achieves the attacker-victim interleaving at an attacker-

controlled frequency, making high-temporal resolution Prime+Probe attacks possible.

3https://github.com/nccgroup/cachegrab
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4.2 Noise Reduction

An attacker must be able to reliably detect the state of shared caches in order tomount a successful microar-

chitectural attack. In the Prime+Probe attack, the attacker must detect if their cache lines have been evicted

from the cache by a victim entry. Traditionally, this has been done by using a timer to measure the latency

of a memory read operation [Yar16, GYCH18]. Cache misses take longer to complete than cache hits, so a

timer can usually reveal if an entry is in the L1 caches.

Timers are useful in these attacks because they are accessible from low-privileged execution contexts, en-

abling one user process to attack the kernel or another process. However, this limitation does not exist in

the TrustZone threat model, since the attacker controls the high-privileged but Non-secure EL1. Cachegrab

takes advantage of this fact by querying the processor directly for cache state information.

ARMv8 processors contain performance counters which can be configured to monitor for various events.

Among these are L1Dcache refills (misses), L1I cache refills, andbranchmispredictions [ARM16, Section 11.4.2].

For attacks on the L1D cache, we read the relevant performance counter to record the number of L1Dmisses,

load a previously primed attacker cache line, and reread the number of misses. If this number incremented,

the probed address had been evicted from the cache.

For the L1I cache, we place the performance counter read instructions in separate L1I cache lines and prime

the L1I cache by executing thismeasurement code. During probing, executing themeasurement code again

causes potential misses as the L1I cache lines are reread, and thesemisses are captured by the performance

counter reads.

For the BTB, we use the experimentally observed fact that branches not in the BTB are predicted to be not

taken. We prime the BTB by executing several branches and training the predictor that these branches are

always taken. We probe the BTB by executing the same branches with periodic performance counter reads.

If the entry is still in the BTB, the branch is correctly predicted as taken, but if not, the branch is mispredicted.

While the timing difference of a single mispredicted branchmay be small [LSG+17], the use of performance

counters gives a very low noise signal for BTB behavior.

4.3 Spatial Granularity

Similar to [LSG+17], we use the branch predictor to improve the spatial resolution of control-flow attacks.

Attacks on the L1D and L1I caches are limited by the size of cache lines, which is typically 64 bytes. However,

the effective cache line size of the cache-like BTB may be even smaller.

In [LSG+17], the aliasing behavior of Intel’s BTB means that an attacker could place a branch at a particular

address so that executing the branchwould reference the BTB entry of a branch in the victim’s address space.

This is analogous to performing a cache attack on shared memory, since the attacker and victim branches

alias to the same BTB entry.

Our attack follows [AKS07b] in filling the BTB with attacker entries which map to the same BTB set as a victim

branch but not to the same BTB entry. Their approach is analogous to a Prime+Probe attack, where the

attacker and victim share a cache, but do not share cache entries. Unlike [AKS07a], we find that the number

of attacker branches per set should equal the associativity of the BTB and notmore. Sincewedonot explicitly

consider the eviction policy of the BTB, it is possible that priming one attacker branch could evict another

primed attacker branch, leaving some victim entries in the BTB set after priming completes. We find that

executing all attacker branches several times is enough to ensure that only attacker entries are likely to be

the only ones in the BTB.
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5 Results

We used these side-channel attacks to successfully extract an unknown ECDSA P-256 private key fromQual-

comm’s TrustZone keystore. To perform the test, we installed Cachegrab on a rooted Nexus 5X, reflecting

the level of access of an attacker who has compromised the Non-secure Android kernel. Note that rooting

the device does not affect the operation of the keystore in the Secure world.

We performed the attack in two stages. First, we imported a known 256-bit key x into the hardware-backed
keystore. By the ECDSA equations, we can use x and a generated signature (r, s) to recover nonce k by
k = s−1(m + rx). We can then compare this actual nonce value against the nonce bits recovered by the
side-channel attacks on that signature. We then tuned the attack and analysis to reduce the probability of

recovering an incorrect value.

Next, we generated an unknown 256-bit ECDSA key within the hardware-backed keystore, and we ran the

tuned attack against this unknown key. When the side-channel data of a single signature captured the

needed data, the attack would output its guess of the partial nonce bits for that signature. When enough

nonce-bit guesses were recovered, we used the lattice-based key recovery algorithm to generate candidate

values for the private key. These were checked against the public key reported by the keystore until the

correct private key was found. Finally, to analyze the attack performance, we used the recovered private key

to calculate the nonces of every signature and determine the frequency of successful nonce-bit leakage.

The Nexus 5X uses the Qualcomm Snapdragon 808, which has four Cortex-A53 cores and two Cortex-A57

cores [Qua15]. We configured Cachegrab to run the victim process on CPU 5, and to trigger interrupts from

CPU 4, the two Cortex-A57 cores. The time step was configured to value 2500 with a maximum number of

20000 samples during the ECDSA signing operation of the Keystore TA.

The attack simultaneously monitored the L1D cache and the BTB. The L1D cache is 2-way set associative

with 256 sets and a line size of 64 bytes. The BTB behaves as a 2-way set associative cache with 2048 cache

sets and an effective cache line size of 16 bytes, as we determined by using the techniques in [UM09]. The

L1D module in Cachegrab collected sets 89 through 118 inclusive, which contain the precomputed table.

The BTB module collected sets 1875 through 2047 and 0 through 102 inclusive.

5.1 Initial Processing

An example capture with these settings is shown in Figure 1. As progress within the algorithm increases from

left to right, the repetitive behavior in the L1D and BTB traces reveals that the majority of the ECDSA signing

operation is spent within a loop. This corresponds to the loop of the QSEE elliptic curve multiplication

algorithm. We can also identify the portions of the trace which correspond to setting up the precomputed

table and the conditional subtraction based on the final bit.

Note that this image also contains horizontal lines and vertical lines artificially rendered in a lighter color.

The horizontal lines correspond to cache sets that are used in every time step, a phenomenon which was

also observed in the Cachezoom attack [MIE17]. The behavior is likely due to cache sets which are hit by

the context switching code as the target core transitions between the attacker’s code and the victim’s. These

horizontal lines can be easily filtered out, and have little effect on the final analysis.

The vertical lines correspond to the cache attack being mounted against the wrong victim code. For exam-

ple, when Cachegrab completes the priming and returns from the interrupt, the monitor mode could run

other code instead of transferring control back to the Keymaster TA. Therefore, these time steps contain no

useful information about the ECDSA private key. Empirically, it is easy to identify these time steps by which

BTB sets are activated, and so this source of noise can be filtered out as well.

After removing the noise, our processing script attempts to identify important locations within the traces.
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Figure 1: L1D and BTB capture of a single ECDSA signature. The connection to the multiplication algorithm

is apparent, and it is clear that the majority of the signature generation is spent performing the elliptic curve

point multiplication. A combination of manual and automatic processing is used to highlight the footprint

of ECDSA signing on the caches, and the irrelevant accesses are rendered in light gray. This is simply to

produce a clearer representation of ECDSA behavior; the processing in the attack itself is fully automated.

Since the number of victim instructions executed per time step varies slightly, we cannot simply use an

absolute offset to know which time steps contain key data. We first attempt to identify the 72 table lookups

by searching for the lookup function’s branch signature within the BTB trace. If the script fails to find 72

lookups, the sample is discarded. This gives enough information to confidently know where the first three

and final one nonce bit are processed within the traces.

5.2 Recovering the Final Bit

The leaky control flow involving the last bit of the nonce occurs not long after the final table lookup. This is

shown in Figure 2. It is clear that during this part of the trace, the implementation always uses BTB sets 57,

58, and 59, but only uses set 60 when the final bit is unset. Recovering the final bit is as simple as detecting

when sets 57, 58, and 59 are used and then checking to see if set 60 is used at the same time. Observe that

about 30 time steps after this leakage, both samples use BTB set 60 for a later branch. If not for the temporal

resolution of Cachegrab, the secret-dependent use would be combined with the later unconditional use of

set 60, and we would not be able to leak the final bit.

5.3 Recovering the First Three Bits

The final hurdle in our key-recovery attack is determining the index of the first table lookup. A single iteration

of the loop in the QSEE multiplication algorithm is shown in Figure 3, and the relationship to Algorithm 2

is apparent. Four doubling operations are followed by a lookup operation and an addition. The lookup

operation consists of both branching behavior in the BTB cache to initialize the logical masks and activity in

the L1D cache as all the entries in the precomputed table are accessed. This matches the expected behavior

from analyzing the QSEE binary.

Since we are interested in recovering the index of a particular table lookup, we examine this part of the

traces more closely. Two table lookups from two independent samples are shown in Figure 4. Recall from

Section 3.3 that in order to recover the index, the attacker must detect which entry in the table was accessed

first, and which of the eight logical masks was set. In Sample 1 in the figure, the L1D trace reveals that entry

7 was accessed first, and the BTB trace reveals that the eighth mask was set. From this, we infer that the
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Figure 2: Comparison between BTB traces when the last bit is set verses unset. The circled region highlights

the variation in control flow when setting themask prior to the final addition. Although both samples use set

60, this is about 30 time steps after the nonce-dependent usage, so the nonce bit is easily distinguishable.

Once again, noise that is independent of the multiplication algorithm has been drawn in gray.

Figure 3: Single iteration of the multiplication loop. The BTB reveals the locations of the four doubling

operations, the L1D cache reveals the numerous accesses to the precomputed lookup table, and the BTB

reveals the location of the addition of the retrieved value. Note that the doubling operations are visually

similar, but not identical. This is due to small variations in howmany victim instructions are executedbetween

attacker interrupts.
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Figure 4: Comparison between the L1D andBTB trace behavior of the lookup function under different inputs.

In these examples, the L1D behavior reveals which entry in the precomputed table was accessed first, and

the BTB behavior reveals which mask was set. The arrows indicate the varying data points which correspond

to the particular index retrieved by these executions.

access pattern was 781234567812 . . ., and therefore the sixth entry in the precomputed table was retrieved.
Similarly, Sample 2 shows that entry 8 was accessed first, and the fourth mask was set, so the access pattern

was 8123456 . . .. Thus the secret index of the lookup in this sample was 3.

Note that the presence of horizontal lines means that some of the victim cache behavior is not visible to

Cachegrab. In some situations, it wasn’t possible to uniquely determine both the first entry accessed and

which mask was set, so these samples were simply discarded.

5.4 Analyzing Recovered Bits

The end result of this processing step for a single sample is either a guess of four nonce bits or discarding

the sample. If a guess is made for a given signature sample, it can be combined with the signature values to

create an HNP inequality. The lattice reduction method for solving the HNP is susceptible to erroneous HNP

inequalities, so we employed random subsampling to improve the odds of a successful key recovery [BT11].

This technique still requires that the error rate of nonce-bit recovery is low, so the processing was tuned

to err on the side of not guessing at nonce bits when there was uncertainty. The lattice reduction method

successfully recovered the private key, and thenwe reanalyzed the collection data to determine our accuracy

of recovering nonce bits.

In total, 12000 signature samples were collected against the unknown private key. This took 14 hours for an

average rate of four seconds per sample. It took an additional 25 minutes to analyze these samples in an

attempt to recover HNP inequalities. 3488 samples were discarded because the analysis did not detect the

correct number of table lookups. The last bit was incorrectly recovered from five of these (0.06% error rate).

Of the 8512 samples remaining, the analyzer attempted to recover the index for 70 of the table lookups in

each sample. The analyzer was confident enough to guess at the index value for 7209 of these 8512× 70 =
595840 lookups (1.21%); 7109 were guessed correctly (1.4% error rate). To generate an HNP inequality, the

guessed index must correspond to the first block of the nonce, which occurred 102 times. Two of these

inequalities were inaccurate: one recovered the wrong index, and one recovered the wrong last bit. The

HNP solver used subsamples of 84 inequalities per lattice reduction, giving an approximately 3% chance that

the subsample is completely free of errors. This process found the correct private key after five attempted

reductions and about two minutes of processing time.
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6 Discussion

Through the development of powerful side-channel attacks against ARM TrustZone, we have demonstrated

that it is possible to break the security of Qualcomm’s hardware-backed keystore. However, despite the

significant attack resolution provided by Cachegrab, there are currently some drawbacks to these attacks,

limiting the scenarios in which a practical attack can be performed.

Since every time step of captured victim execution requires executing the attacker’s full Prime+Probe code,

increasing the temporal resolution of the attack increases the total amount of time spent executing attacker

code. This dramatically slows TA operations, as was observed in the four-second-long ECDSA signature

operation during our attack. Practical exploits must balance this cost with the required resolution of the

attack. Additionally, there appears to be a practical limit to temporal resolution. Due to the variability in

the time it takes to execute the monitor mode management code, reducing the time between attacker-

controlled interrupts increases the probability that the interrupt fires before the monitor mode has trans-

ferred control back to the TA. That time step contains no useful information and must be discarded, but it

still incurs the timing cost of the Prime and Probe steps. This makes trace captures unacceptably slow and

so single-instruction time steps are currently impractical.

The interrupt-handling code which executes every time step also introduces a limitation by systematically

polluting certain cache sets after an interrupt fires. Although the contribution of these effects from interrupt-

handling code in the Non-secure OS can be mitigated by mapping uncacheable memory, the same cannot

be done for the interrupt code in the Secure world. This means that we are unable to reliably observe the

TA’s usage of certain cache sets. However, the Secure world interrupt code experimentally has a small cache

footprint, and this may be found in other systems as well, since interrupt code may intentionally include

limited cache accesses as a way to improve system performance.

Our full attack against Qualcomm’s hardware-backed keystore is highly tailored for a particular software

version on an individual device. Although the same effort could be replicated for other devices, many

properties of our chosen system coincidentally aligned with the requirements of the attack. The BTB of the

Cortex-A57 core in theNexus 5X had a line size of 16 bytes, whichwas just barely small enough to distinguish

the secret-dependent branches in the table lookup code. The precomputed table was also reliably aligned

with cache sets which saw little noise from interrupt handling code, reducing the difficulty of identifying table

accesses. Different versions of Qualcomm’s TrustZone code will have different offsets, potentially changing

the rate at which the secret information leaks. However, the goal of our research is not to show aweaponized

exploit against hardware-backed keystores, but rather to demonstrate the ability to compromise sensitive

information using powerful microarchitectural attacks.

We further analyzed firmware version 7.1.0 (NDE63P [Goo16]) of Google’s Pixel XL phone. We found that,

while the same algorithm is used, the implementation does not have the same secret-dependent control

flow. Mask initialization uses non-branching instructions, showing that not every device with this algorithm

is vulnerable to our attack. It is infeasible for us to perform the full analysis for every combination of device

and firmware, but according toQualcomm, 35 chipsets are affected by this vulnerability [Qua19]. Byworking

with Qualcomm on this issue and following their timeline to allow OEMs and vendors to patch, we believe

that the risk of publicly disclosing this issue has been effectively mitigated.
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7 Conclusion

7.1 Countermeasures

A number of countermeasures may be applied to prevent our attacks from succeeding. Since Cachegrab

relies on the monitor mode interrupt handler transferring control from the victim TA to the attacker’s code in

theNon-secureworld, themonitormode could be rewritten to preventmalicious interrupts from suspending

TA execution. However, it may be infeasible to efficiently classify interrupts as legitimate or malicious, and

failing to promptly deliver an interrupt to the Non-secure OS may unacceptably degrade performance.

Another approach is to flush the shared microarchitectural structures when transferring between the Secure

and Non-secure worlds. This would prevent our Prime+Probe attack, since the probing phase would always

indicate that all of the attacker’s entries were evicted regardless of victim behavior. In fact, this flushing

behavior was experimentally observed for the BTB in the most recent firmware4 for the Nexus 5X. This

is presumably a response to the Spectre disclosures [KGG+18] and mitigates the ability of our attack to

target keys via the BTB. Notably, the L1I and L1D caches are not flushed, and Cachegrab is still capable of

performing our Prime+Probe attacks on these caches.

In addition to stymieing the ability to collect side-channel information from TrustZone execution, some

countermeasures can specifically harden the Keymaster TA andother TrustZone software. Secret-dependent

branches can be fully eliminated, replacing themwith constant-time alternatives. This requires a high level of

understanding which information is considered secret, but it is an effective method for blocking the success

of cache attacks, and it can be distributed to affected devices in the form of a software update.

Application developers can also set more restrictive usage policies for hardware-backed keys. Our attack

created 12000 signatures over 14 hours, and rate-limiting the usage of this key, requiring fingerprint authen-

tication, or limiting the number of key uses per boot would have dramatically slowed the attack and reduced

the risk of key exposure.

Long-term countermeasures to this type of microarchitectural attack can be provided by physically sepa-

rating the trusted code from untrusted code, eliminating shared microarchitectural structures. Android 9

introduces support for StrongBox Keymasters [Goo18a] which store keys in dedicated hardware security

modules (HSMs). Such an HSM is present in Google’s Pixel 2 devices [Xin17], which were released in late

2017. Since calculations involving the keys does not use the microarchitectural structures of the main pro-

cessor, microarchitectural attacks within the processor will fail.

7.2 Future Work

Although the microarchitectural attacks proposed in this work are powerful, there is still room for future

research. It may be possible to infer more detailed information about victim execution by targeting other

shared microarchitectural structures, such as the translation lookaside buffer [GRBG18] or last-level cache

(LLC). Since the LLC is organized differently from the L1 caches, two distinct addresses which alias to the

same set in the L1 caches may be distinguishable in the LLC. Additionally, it may be possible to adapt the

techniques in [VBPS18] to TA execution to gain side-channel information at single-instruction granularity.

Further effortsmay also findways tomore efficiently implement our side-channel attacks, acquiring the same

information but without the associated slowdown of victim code.

Our work only considers the applicability of passive cache attacks to ARM TrustZone, but a natural extension

here is demonstrating Spectre-style attacks [KGG+18, KKSAG18]. Cachegrab currently manipulates the

branch predictor while interleaving Secure and Non-secure code execution on the same core, so this plat-

formmay aid in the exploration of the feasibility of performing transient execution attacks against TrustZone.

4Version 8.1.0, OPM7.181205.001 [Goo18b]
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Despite the many open research directions it proposes, this work still represents a significant advance in

the capability of practically targeting ARM TrustZone with microarchitectural attacks. Our attacks have high

temporal precision, high spatial precision, and low noise, and we successfully demonstrated that these

attacks are capable of breaking a real-world cryptographic implementation. These powerful abilities show

that ARM TrustZone is not necessarily any more secure than Intel SGX when it comes to microarchitectural

attacks, and they substantiate decisions to harden sensitive code with side-channel countermeasures or to

execute trusted code in entirely separate hardware. Although these mitigations come with engineering

challenges of their own, our attacks against ARM TrustZone demonstrate that these countermeasures are

imperative to defending a product and improving the security of mobile and embedded devices.
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Appendices

A QSEE Table Lookup Code

TheQSEE table lookup procedure for precomputed elliptic curve points was recovered from the ARMbinary

to roughly equivalent C code. This is shown in Figure 5. The complexity of this implementation, compared to

naively copying a value from a table, indicates that the function was specifically designed to protect against

various side channels, including timing attacks, memory cache attacks, and electromagnetic attacks which

leak the Hamming weight of registers.
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typedef char bignum[0x48 ] ;

typedef s t r u c t {

bignum x ;

bignum y ;

bignum z ; / / Used fo r p ro jec t i ve representa t ion

uint32_t f l ags ;

} ECPoint ;

void lookup ( ECPoint* resu l t , ECPoint TABLE [ 8 ] , i n t index , i n t randval ) {

u in t32_t mask0 = ( index == ( randval + 0) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t mask1 = ( index == ( randval + 1) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t mask2 = ( index == ( randval + 2) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t mask3 = ( index == ( randval + 3) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t mask4 = ( index == ( randval + 4) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t mask5 = ( index == ( randval + 5) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t mask6 = ( index == ( randval + 6) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t mask7 = ( index == ( randval + 7) % 8) ? 0 x f f f f f f f f : 0;

u in t32_t* dest = ( u in t32_t * ) r e su l t ;
u in t32_t* src0 = ( u in t32_t *)&TABLE [ ( randval + 0) % 8 ] ;

u in t32_t* src1 = ( u in t32_t *)&TABLE [ ( randval + 1) % 8 ] ;

u in t32_t* src2 = ( u in t32_t *)&TABLE [ ( randval + 2) % 8 ] ;

u in t32_t* src3 = ( u in t32_t *)&TABLE [ ( randval + 3) % 8 ] ;

u in t32_t* src4 = ( u in t32_t *)&TABLE [ ( randval + 4) % 8 ] ;

u in t32_t* src5 = ( u in t32_t *)&TABLE [ ( randval + 5) % 8 ] ;

u in t32_t* src6 = ( u in t32_t *)&TABLE [ ( randval + 6) % 8 ] ;

u in t32_t* src7 = ( u in t32_t *)&TABLE [ ( randval + 7) % 8 ] ;

/ / Copy X and Y coordinates 4 bytes at a time

fo r ( i n t i = 0; i < 2 * s i zeo f ( bignum ) / s i zeo f ( u in t32_t ) ; i ++) {

u in t32_t newval , o ldva l = dest [ i ] ;

newval = ( src0 [ i ] ^ oldva l ) & mask0 ;

newval |= ( src1 [ i ] ^ oldva l ) & mask1 ;

newval |= ( src2 [ i ] ^ oldva l ) & mask2 ;

newval |= ( src3 [ i ] ^ oldva l ) & mask3 ;

newval |= ( src4 [ i ] ^ oldva l ) & mask4 ;

newval |= ( src5 [ i ] ^ oldva l ) & mask5 ;

newval |= ( src6 [ i ] ^ oldva l ) & mask6 ;

newval |= ( src7 [ i ] ^ oldva l ) & mask7 ;

dest [ i ] = newval ^ oldva l ;

}

resu l t−>f l ags = AFFINE_POINT ;

}

Figure 5: QSEE table lookup for precomputed points.
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