

R1CS Implementation Review

Penumbra Labs

Version 1.0 – August 18, 2023

©2023 – NCC Group

Prepared by NCC Group Security Services, Inc. for Penumbra Labs. Portions of this document and the

templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and

the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of

the information contained herein. Use of NCC Group’s services does not guarantee the security of a

system, or that computer intrusions will not occur.

Prepared By

Gérald Doussot

Kevin Henry

Sam Markelon

Thomas Pornin

Prepared For

The Penumbra Labs Team

1 Executive Summary

Synopsis

In July 2023 Penumbra Labs engaged NCC Group’s Cryptography Services team to perform

an implementation review of their Rank-1 Constraint System (R1CS) code and the

associated zero-knowledge proofs within the Penumbra system. These proofs are built

upon decaf377 and poseidon377, which have been previously audited by NCC Group, with

a corresponding public report. The review was performed remotely with three consultants

contributing 20 person-days over a period of two weeks, along with one additional

consultant shadowing.

A retest was conducted in August 2023 by the original project team. Of the 8 findings

identified in this report, all were found to be ‘Fixed’ at the time of retest. Furthermore,

additional non-security comments and recommendations documented in the section Audit

Notes were reviewed and confirmed to be ‘Fixed’ as well.

Scope

The primary scope consisted of the following:

Penumbra: https://github.com/penumbra-zone/penumbra/tree/v0.56.0

Tagged release v0.56.0 , focused on R1CS-related code and Merkle trees.

Fixed-point arithmetic and proofs for Spend, Output, Swap, Swap Claim, Delegator

Vote, and Undelegate Claim.

Best effort review of Penumbra’s modifications to Zcash Sapling relating to key

hierarchy, asset-specific generators, note format, tiered commitment tree, nullifier

derivation, balance commitment, and usage of payload keys.

decaf377: https://github.com/penumbra-zone/decaf377/tree/0.4.0/src/r1cs

Tagged release 0.4.0 , limited to R1CS gadgets.

poseidon377: https://github.com/penumbra-zone/poseidon377/tree/11afbcd

Commit 11afbcd , R1CS gadgets in poseidon377 and poseidon-permutation.

Documentation: https://protocol.penumbra.zone/main/penumbra.html

Limitations

The engagement was centered on R1CS-related functionality, alongside relevant code in

the components where R1CS support was implemented. Due to the timeboxed nature and

focus of the engagement, a thorough review of each complete component or the codebase

as a whole was not performed. Furthermore, the review was focused on protocol-level

attacks, and did not include information leakage via timing attacks or non-zeroized memory

as part of the considered threat model.

Key Findings

All uncovered issues were promptly fixed by Penumbra. Of those identified, the highest

impact findings included:

Invalid Comparisons on Fixed-Point Values are Accepted by the Circuit Verifier: The

arithmetic circuit that implements a numerical comparison between fixed-point values

accepts many invalid input pairs, thereby rendering such checks ineffective.

Missing Carry Bit in Fixed-Point Arithmetic Circuit for Addition and Invalid

Computations in Fixed-Point Arithmetic Circuit for Multiplication: Some pairs of inputs

for a fixed-point addition or multiplication trigger a panic at proof creation, and cannot

be verified, even if they are legitimate.

Incorrect Support of Zero in Point Decompression: Encoding the decaf377 identity

element triggers a panic during proof construction.

•

◦

◦

◦

•

◦

•

◦

•

•

•

•

2 / 27 – Executive Summary

https://research.nccgroup.com/2022/09/12/public-report-penumbra-labs-decaf377-implementation-and-poseidon-parameter-selection-review/
https://github.com/penumbra-zone/penumbra/tree/v0.56.0
https://github.com/penumbra-zone/decaf377/tree/0.4.0/src/r1cs
https://github.com/penumbra-zone/poseidon377/tree/11afbcd
https://protocol.penumbra.zone/main/penumbra.html

Strategic Recommendations

The reviewed code was found to be of generally high quality, accompanied by thorough,

well-written documentation. On top of maintaining the existing level of quality, the

following are recommended:

While documentation was overall complete and well-written, it was noted that

documentation for the State Commitment Tree (SCT) and Tiered Commitment Tree

(TCT) is currently missing. Completing these documents and maintaining the current

quality of documentation is recommended.

Penumbra’s key hierarchy involves several specialized cryptographic keys derived from

a common seed. With one notable exception, it was observed that memory zeroization

for these keys and related secrets is not currently implemented. Future hardening of the

codebase could make use of the zeroize crate to systematically clear secrets from

memory.

Ensure that dependencies are regularly audited and updated prior to major releases.

•

•

•

3 / 27 – Executive Summary

2 Dashboard

Target Data Engagement Data

Name R1CS Proof Integration Type Implementation Review

Type Blockchain Platform Method Code-assisted

Platforms Rust Dates 2023-07-17 to 2023-07-28

Environment Local Consultants 3

Level of Effort 20

Targets

Penumbra https://github.com/penumbra-zone/penumbra/tree/v0.56.0

Penumbra is a fully shielded zone for the Cosmos ecosystem, allowing

anyone to securely transact, stake, swap, or marketmake without

broadcasting their personal information to the world. The review was limited

to R1CS-related crates and proofs.

decaf377 https://github.com/penumbra-zone/decaf377/tree/b8a80e7

A clean abstraction of BLS12-377 that provides a prime-order group,

complete with hash-to-group functionality, and works the same way inside

and outside of a circuit. The review was limited to R1CS-related crates and

proofs.

poseidon377 https://github.com/penumbra-zone/poseidon377/tree/11afbcd

An instantiation of the Poseidon hash function for decaf377. The review

was limited to R1CS-related crates and proofs.

Finding Breakdown

Critical issues 1

High issues 0

Medium issues 2

Low issues 2

Informational issues 3

Total issues 8

Category Breakdown

Cryptography 7

Patching 1

Component Breakdown

Penumbra 1

decaf377 1

docs 2

4 / 27 – Dashboard

https://github.com/penumbra-zone/penumbra/tree/v0.56.0
https://github.com/penumbra-zone/decaf377/tree/b8a80e7
https://github.com/penumbra-zone/poseidon377/tree/11afbcd

Component Breakdown

fixpoint 4

 Critical High Medium Low Informational

5 / 27 – Dashboard

3 Table of Findings

For each finding, NCC Group uses a composite risk score that takes into account the

severity of the risk, application’s exposure and user population, technical difficulty of

exploitation, and other factors.

Title Status ID Risk

Invalid Comparisons on Fixed-Point Values are

Accepted by the Circuit Verifier

Fixed V7F Critical

Missing Carry Bit in Fixed-Point Arithmetic Circuit for

Addition

Fixed TLN Medium

Invalid Computations in Fixed-Point Arithmetic Circuit

for Multiplication

Fixed 7X2 Medium

Up-Rounding Fixed-Point Values May Overflow and

Wrap to Zero Silently

Fixed MPJ Low

Incorrect Support of Zero in Point Decompression Fixed YCN Low

Incorrect Documentation of Note Commitment Fixed 2BK Info

Incorrect Documentation for Fee Commitment in

Swap Proof

Fixed QXP Info

Outdated Dependencies and Cargo Audit

Vulnerabilities

Fixed 6L2 Info

6 / 27 – Table of Findings

4 Finding Details

Invalid Comparisons on Fixed-Point Values are

Accepted by the Circuit Verifier

Overall Risk Critical

Impact High

Exploitability High

Finding ID NCC-E008695-V7F

Component fixpoint

Category Cryptography

Status Fixed

Impact

The arithmetic circuit that implements a numerical comparison between fixed-point values

accepts many invalid input pairs, so that such a check, e.g. to verify that a spend

transaction does not extract more assets from a source than what the source really

contains, will be ineffective.

Description

The U128x128 type implements fixed-point arithmetics over 256 bits (fractional part is 128

bits). The U128x128Var::enforce_cmp() function implements the “lower than” and “greater

than” comparisons. The two values to compare are first loaded as two sequences of 256

bits in most-to-least significant order, into self_bits and other_bits . The comparison

circuit then proceeds in a bit-by-bit way:

This circuit is intended to detect the first bit index (in most-to-least significant order)

where the inputs are distinct, at which point the comparison of the two bits is enough to

decide which value is the greatest. However, the implemented circuit computes a different

thing: it compares each pair of bits, and simply performs a Boolean AND of all the

comparison results. Practically speaking, this means that the circuit declares that self is

lower than other as long as there is at least one bit index j such that bit j of self is zero

Critical

// Now starting at the most significant side, compare bits.

let mut acc: Boolean<Fq> = Boolean::constant(true);

for (self_bit, other_bit) in zip(self_bits, other_bits) {

match ordering {

std::cmp::Ordering::Equal => unimplemented!("use `EqGadget` instead"),

std::cmp::Ordering::Less => {

// Self must be less than other, so we want to "stop" (hit 0)

// when we hit the most significant bit where other=1, self=0

// self p | other q | desired output = !(!p /\ q)

// 1 | 1 | 1

// 1 | 0 | 1

// 0 | 0 | 1

// 0 | 1 | 0

//

// !(!p /\ q) by De Morgan is equivalent to p \/ !q:

let this_bit_eq = self_bit.or(&other_bit.not())?;

acc = acc.and(&this_bit_eq)?;

}

// <SNIP: Ordering::Greater>

}

}

acc.enforce_equal(&Boolean::constant(false))?;

7 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L419
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L419
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L419
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L428-L462

while bit j of other is one, regardless of all the values of the bits before and after j. For

example, the circuit will return a success if tasked with proving that 354389783742 is

lower than 17, because the least significant bit of 354389783742 is zero, while the least

significant bit of 17 is one. In fact, for most pairs of values a and b, the circuit will happily

“prove” and “verify” that both “a < b” and “a > b” are true, simultaneously.

Compared with the intended algorithm, as described in the code comments above, the

actual circuit indeed compares the bits together, but it does not “stop” at the first bit

discrepancy.

It should be noted that if the inputs are mathematically correct (i.e. if self is indeed lower

than other), then the circuit will report a success; thus, the issue is “silent” (it will not

make anything fail on valid inputs). Similarly, all unit tests that call enforce_cmp() do so on

valid inputs, and thus cannot detect the issue.

Note: the description above is about the “lower than” order (Ordering::Less), but the

implementation of the “greater than” comparison (Ordering::Greater), on lines 446-458,

suffers from the same issue.

Recommendation

Bit-by-bit processing requires a ternary state (for “still equal” / “lower than” / “greater

than”) which cannot fit in the single Boolean variable acc . A solution with two variables

may work as follows:

The two variables gt and lt are initially false .

For each bit pair (p, q) (p is from self , q is from other):

gt <- gt OR (NOT(gt OR lt) AND p AND NOT(q))

lt <- lt OR (NOT(gt OR lt) AND NOT(p) AND q)

After processing all 256 bit pairs:

if gt is true , then self is greater than other ;

if lt is true , then self is lower than other ;

if gt and lt are both false , then self is equal to other ;

it is not possible that gt and lt are both true .

Additionally, a unit test (tagged with #[should_panic]) should verify that the prover

refuses to create a proof for an invalid inequality.

Location

penumbra/crates/core/num/src/fixpoint.rs, lines 428-459

Retest Results

2023-08-03 – Fixed

The issue was fixed in PR #2911 by applying a (slightly simplified) Boolean circuit similar to

the suggested solution.

•

•

◦

◦

•

◦

◦

◦

◦

8 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L428-L459
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L428-L459
https://github.com/penumbra-zone/penumbra/pull/2911

Missing Carry Bit in Fixed-Point Arithmetic

Circuit for Addition

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E008695-TLN

Component fixpoint

Category Cryptography

Status Fixed

Impact

Some pairs of inputs for a fixed-point addition trigger a panic at proof creation, and cannot

be verified, even if they are legitimate.

Description

The U128x128 type implements fixed-point arithmetics over 256 bits (fractional part is 128

bits). The U128x128Var::checked_add() function implements the circuit that is used to

prove that an addition of two such values was computed correctly and did not overflow.

Internally, both operands are split into four 64-bit limbs (x0 to x3 for the first operand, y0

to y3 for the second operand). The limbs are then added together pairwise, and carry

propagation is performed afterwards:

The bit_constrain() call is supposed to verify that the limb z0_raw , which is the sum of

the two least significant limbs of the source operands, fits in 65 bits; as the comment

indicates, it is the sum of two integers which are both lower than 2
64

, so it must be lower

that 2
65

. However, the second parameter to the bit_constrain() call is here 64, not 65.

The consequence is that the proof builder fails if z0_raw is not lower than 2
64

, which may

nonetheless happen with legitimate input values (in practice, a panic is triggered within the

ark-groth16 crate). Similarly, the proof verifier will never accept a proof where the (hidden)

values are such that z0_raw would be 2
64

 or more.

This issue happens with probability about 1/2 for inputs whose fractional parts are

generated randomly and uniformly. It is not detected by the unit tests, because these tests

use only random integral inputs:

Medium

280

281

282

283

284

285

286

287

288

289

290

822

823

824

825

826

// z = x + y

// z = [z0, z1, z2, z3]

let z0_raw = &x0 + &y0;

let z1_raw = &x1 + &y1;

let z2_raw = &x2 + &y2;

let z3_raw = &x3 + &y3;

// z0 < 2^64 + 2^64 < 2^(65) => 65 bits

let z0_bits = bit_constrain(z0_raw, 64)?; // no carry-in

let z0 = UInt64::from_bits_le(&z0_bits[0..64]);

let c1 = Boolean::<Fq>::le_bits_to_fp_var(&z0_bits[64..].to_bits_le()?)?;

proptest! {

#![proptest_config(ProptestConfig::with_cases(1))]

#[test]

fn add(

a_int in any::<u64>(),

9 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L265
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L265
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L265
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L822

For integral inputs, the least significant 64-bit limb is always zero, and the sum z0_raw is

then equal to zero, which is lower than 2
64

.

Recommendation

The second parameter to the bit_constrain() call on line 288 should be 65 instead of 64.

Location

penumbra/crates/core/num/src/fixpoint.rs, line 288

Retest Results

2023-08-03 – Fixed

The issue was fixed in PR #2911 by adjusting the size constraint on z0_raw to 65 bits. The

constraints on the other values (z1_raw , z2_raw and z3_raw) were also adjusted, since

they were larger than necessary, as detailed in section Audit Notes.

827

828

829

830

b_int in any::<u64>(),

) {

let a = U128x128::from(a_int);

let b = U128x128::from(b_int);

10 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L288
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L288
https://github.com/penumbra-zone/penumbra/pull/2911

Invalid Computations in Fixed-Point Arithmetic

Circuit for Multiplication

Overall Risk Medium

Impact Medium

Exploitability Medium

Finding ID NCC-E008695-7X2

Component fixpoint

Category Cryptography

Status Fixed

Impact

Some pairs of inputs for a fixed-point multiplication trigger a panic at proof creation, and

cannot be verified, even if they are legitimate.

Description

The U128x128 type implements fixed-point arithmetics over 256 bits (fractional part is 128

bits). The U128x128Var::checked_mul() function implements the circuit that is used to

prove that a multiplication of two such values was computed correctly and did not

overflow. Internally, both operands are split into four 64-bit limbs (x0 to x3 for the first

operand, y0 to y3 for the second operand). Cross-products are then computed and added

together into large intermediate limbs:

The result is obtained by adding the z values in base 2
64

. The extra bits for each addition

are then propagated into the higher limbs; finally, the 256-bit result is extracted into limbs

w0 to w3 , skipping the lowest 128 bits of the intermediate product result, to follow the

semantics of the fixed-point representation implemented in this function. The computation

of w0 is as follows:

Medium

338

339

340

341

342

343

344

345

346

347

348

359

360

361

362

363

364

365

366

367

368

369

// z = x * y

// z = [z0, z1, z2, z3, z4, z5, z6, z7]

// zi is 128 bits

//let z0 = x0.clone() * y0.clone();

let z0 = &x0 * &y0;

let z1 = &x0 * &y1 + &x1 * &y0;

let z2 = &x0 * &y2 + &x1 * &y1 + &x2 * &y0;

let z3 = &x0 * &y3 + &x1 * &y2 + &x2 * &y1 + &x3 * &y0;

let z4 = &x1 * &y3 + &x2 * &y2 + &x3 * &y1;

let z5 = &x2 * &y3 + &x3 * &y2;

let z6 = &x3 * &y3;

let t0 = z0 + z1 * Fq::from(1u128 << 64);

let t0_bits = bit_constrain(t0, 193)?;

// Constrain: t0 fits in 193 bits

// t1 = (t0 >> 128) + z2

let t1 = z2 + Boolean::<Fq>::le_bits_to_fp_var(&t0_bits[128..193].to_bits_le()?)?;

// Constrain: t1 fits in 129 bits

let t1_bits = bit_constrain(t1, 129)?;

// w0 = t0 & 2^64 - 1

let w0 = UInt64::from_bits_le(&t0_bits[0..64]);

11 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L323
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L323
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L323
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L338
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L338
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L359-L369

There are two issues in this code:

The bit_constrain() call for t1 asserts that the value shall fit on 129 bits. This is not

always true; for some inputs it can require 130 bits. It can be shown that the maximum

value for t1 is 2
129

 + 2
128

 - 2
66

; this value is reached when x0 , x1 , y0 and y1 are all

equal to 2
64

-1. If the input operands are such that t1 does not fit on 129 bits, then a

panic will be triggered at proof creation.

The lowest limb of the result (w0) should correspond to bits 128 to 191 in the

intermediate integer result, i.e. the low bits of t1_bits . However, the code on line 369

extracts w0 from the low bits of t0_bits instead of t1_bits . If the input operands are

such that the low bits of t0_bits are not equal to the low bits of t1_bits , then a panic

will be triggered at proof creation.

These issues reliably happen for inputs whose fractional parts are generated randomly and

uniformly (the issue on bit_constrain() has probability about 1/3, but the mismatch on

w0 is almost always obtained with inputs with non-zero bits in their lowest limbs). It is not

detected by the unit tests, because these tests use only random integral inputs:

For integral inputs, x0 , x1 , y0 and y1 are all equal to zero, which implies that z0 , z1 ,

z2 , t0 and t1 are all zero, which hides both of the issues described above.

Recommendation

Set the second parameter to the bit_constrain() call to 130, instead of 129 (on line

366).

Extract w0 from t1_bits[0..64] instead of t0_bits[0..64] (on line 369).

Location

penumbra/crates/core/num/src/fixpoint.rs, lines 366 and 369

Retest Results

2023-08-03 – Fixed

PR #2911 fixes the issue described above: the size constraint on t1 is modified to 130 bits,

and w0 is now correctly extracted from the 64 low bits of t1_bits . The fix also reduces

the size constraint on t3 from 129 to 128 bits, as can always be enforced for a non-

overflowing operation (see details in section Audit Notes).

•

•

729

730

731

732

733

734

735

736

737

•

•

proptest! {

#![proptest_config(ProptestConfig::with_cases(1))]

#[test]

fn multiply_and_round(

a_int in any::<u64>(),

b_int in any::<u64>(),

) {

let a = U128x128::from(a_int);

let b = U128x128::from(b_int);

12 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L729
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L366-L369
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L366-L369
https://github.com/penumbra-zone/penumbra/pull/2911

Up-Rounding Fixed-Point Values May Overflow

and Wrap to Zero Silently

Overall Risk Low

Impact Undetermined

Exploitability Undetermined

Finding ID NCC-E008695-MPJ

Component fixpoint

Category Cryptography

Status Fixed

Impact

A rounding-up operation on a near-maximal fixed-point value may overflow without

triggering an error, and instead silently wrap around to zero.

Description

The U128x128::round_up() function rounds up a fixed-point value to the nearest integer. For

values greater than 2
128

-1, this process overflows, since 2
128

 cannot be represented in the

range of the U128x128 type. The implementation does not explicitly detect the overflow:

The integral variable is a normal Rust u128 value. Overflows on operations on such a

type are detected in debug mode, and trigger a panic, but they are suppressed in release

mode; in the latter, such operations apply “wrap-around” semantics. In that case, an

overflow would silently set the output to zero.

There is no circuit implementation for round_up() , which means that it is not part of zero-

knowledge proofs; but it is still used from code in the dex component crate, for some

trading-related purposes, and a silent wrap to zero might have deleterious effect for that

functionality.

Recommendation

U128x128::round_up() should use Result<Self, Error> as return type, and yield an

explicit Error when the rounding operation overflows.

Location

penumbra/crates/core/num/src/fixpoint.rs, line 111

Retest Results

2023-08-03 – Fixed

PR #2910 changes the U128x128::round_up() function to make it fallible, and reliably

report an error when the operation overflows; this fixes the issue.

Low

105

106

107

108

109

110

111

112

113

/// Rounds the number up to the nearest integer.

pub fn round_up(&self) -> Self {

let (integral, fractional) = self.0.into_words();

if fractional == 0 {

*self

} else {

Self(U256::from_words(integral + 1, 0u128))

}

}

13 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L105-L113
https://github.com/penumbra-zone/penumbra/tree/v0.56.0/crates/core/component/dex
https://github.com/penumbra-zone/penumbra/tree/v0.56.0/crates/core/component/dex
https://github.com/penumbra-zone/penumbra/tree/v0.56.0/crates/core/component/dex
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L111
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L111
https://github.com/penumbra-zone/penumbra/pull/2910

Incorrect Support of Zero in Point

Decompression

Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E008695-YCN

Component decaf377

Category Cryptography

Status Fixed

Impact

Encoding the decaf377 identity element triggers a panic during proof construction.

Description

The FqVarExtension::isqrt() function implements the arithmetic circuit for the “inverse

square root” function: for an input x (an element of the decaf377 base curve field), the

function returns a Boolean status w and another field element y, such that:

If x is a non-zero square, then w is true, and y is a square root of 1/x.

If x is a non-quadratic residue, then w is false, and y is a square root of ζ/x, with ζ being

a fixed non-square in the field.

If x is zero, then w is false and y is zero.

This function is a specialization of the sqrt_ratio_zeta() function which returns the

square root of a fraction: the isqrt() function systematically uses 1 as numerator. As

such, it is not possible for isqrt() to return w as true along with y set to zero, as

sqrt_ratio_zeta() would do with a zero numerator.

The isqrt() implementation explicitly supports the case of a value x equal to zero, as

seen in lines 42-63

Low

•

•

•

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

// The below is a flattened version of the four cases above, excluding case 2 since

`num` is hardcoded

// to be one.

//

// Case 3: `(false, 0)` if `den` is zero

let was_not_square_var = was_square_var.not();

let x_var_is_zero = self.is_eq(&FqVar::zero())?;

let in_case_3 = was_not_square_var.and(&x_var_is_zero)?;

// Certify the return value y is 0.

y_squared_var.conditional_enforce_equal(&FqVar::zero(), &in_case_3)?;

// Case 1: `(true, sqrt(num/den))` if `num` and `den` are both nonzero and `num/

den` is square

let x_var_inv = self.inverse()?;

let in_case_1 = was_square_var.clone();

// Certify the return value y is sqrt(1/x)

y_squared_var.conditional_enforce_equal(&x_var_inv, &in_case_1)?;

// Case 4: `(false, sqrt(zeta*num/den))` if `num` and `den` are both nonzero and

`num/den` is nonsquare;

let zeta_var = FqVar::new_constant(cs, *ZETA)?;

14 / 27 – Finding Details

https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L30
https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L30
https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L30
https://protocol.penumbra.zone/main/crypto/decaf377/invsqrt.html
https://protocol.penumbra.zone/main/crypto/decaf377/invsqrt.html
https://protocol.penumbra.zone/main/crypto/decaf377/invsqrt.html
https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L42-L63

In the comments, “case 2” is the situation where w is true and x is zero; as explained above,

it cannot happen in valid computations. The flag w is the was_square_var variable

(provided as a Boolean witness), and x is self .

The circuit generated by the code above handles the three supported cases as sub-

circuits, each resulting in a conditional equality check (conditional_enforce_equal() call)

gated by a Boolean value (in_case_1 , in_case_3 …) that is true when the input matches

that case.

A first issue with the code above is that while the output of each sub-circuit is properly

gated, all three sub-circuits are still evaluated by the prover and the verifier, regardless of

the actual input case. In particular, on line 53, input x (self) is inverted; this applies even if

it is zero. Within the Arkworks R1CS library, inversion is implemented by way of a witness

value z, which must be such that xz = 1. When x is zero, the “case 1” and “case 4” sub-

circuits do not apply but are nonetheless evaluated, which forces the prover to find a

proper witness z such that z multiplied by zero yields one. This is a mathematical

impossibility, which triggers a panic in the proof construction engine; similarly, there is no

proof value that will content the verifier.

In practice, this issue can be encountered only when trying to compress the identity

element of decaf377. The isqrt() function is used for point compression, point

decompression, and the Elligator map. There is no valid input to point decompression or

Elligator that can lead to isqrt() being called on an input of value zero. For point

compression, a zero input is possible only for a curve point (x, y) such that either x or y is

zero; x is zero only for points (0,1) and (0,-1), which are the two possible representations of

the decaf377 identity element, while y being zero may happen only for points (1,0) and

(-1,0), which are points of order 4 on the curve and cannot be encountered within decaf377

computations. In total, only “compression of the identity element” leads to the panic at

proof construction.

It is expected that this situation is rare in practice in existing protocols; the Penumbra

protocols itself explicitly checks against zero scalars and identity elements in a few places.

This issue was accordingly deemed to be of low severity. It should nonetheless be fixed, if

only because the intent of the implementation was to support an input of zero, as seen in

the explicit code for handling “case 3”.

A more serious potential issue is present in this code, but it is currently mitigated as a

side-effect of the first issue. As explained above, the original sqrt_ratio_zeta() function

has four sub-cases, but one of them (“case 2”) is not possible with isqrt() since that

function uses a fixed non-zero numerator. However, when verifying a proof, the w flag, and

the inverse of x, are provided as witness values. Nothing prevents a maliciously crafted

proof from providing true for w and zero for the inverse of x at the same time. In the current

implementation, the inverse of x is verified through a multiplication, expecting an output

equal to 1, which cannot happen if x is zero; therefore, such a proof would only induce a

verification failure, as expected. However, if we suppose that the first issue above is fixed

and a pseudo-inverse of zero can now be provided in a way that fulfills the proof, then the

maliciously crafted proof would induce the verifier to run the circuit with in_case_1 ,

in_case_3 and in_case_4 being all false. In that case, none of the conditional_enforce_e

60

61

62

63

let zeta_times_one_over_x_var = zeta_var * x_var_inv;

let in_case_4 = was_not_square_var.and(&x_var_is_zero.not())?;

// Certify the return value y is sqrt(zeta * 1/x)

y_squared_var.conditional_enforce_equal(&zeta_times_one_over_x_var, &in_case_4)?;

15 / 27 – Finding Details

qual() functions induces any verification failure, and the whole isqrt() circuit

successfully returns the mathematically impossible (true, zero) pair.

To sum up, fixing the first issue implies that an attacker can supply malicious witness

values that will make the verifier accept an isqrt() as valid, with output (true, zero),

regardless of the actual input data. What happens afterwards depends on what

functionality isqrt() is part of. During point decompression, such an output leads to the

invalid point (0,0), which is not on the curve.

Recommendation

The first issue (inversion failure when x is zero) can be fixed by replacing x with a non-zero

value in case it is zero, right before computing the inverse, e.g. as follows (in replacement

of the code at line 53):

The replacement value does not match the actual input x, but that does not matter since

the purpose of that new value is only to avoid failures in the evaluation of sub-circuits

whose output is ultimately ignored.

Fixing the first issue makes the second issue possible, and it must then also be fixed, e.g.

by checking that one of cases 1, 3 or 4 was indeed matched:

Location

decaf377/src/r1cs/fqvar_ext.rs, lines 42-63

Retest Results

2023-08-03 – Fixed

The issue was fixed as suggested in PR #54 (decaf377 repository).

let x_var = FqVar::conditionally_select(&x_var_is_zero, &FqVar::one(), &self)?;

let x_var_inv = x_var.inverse()?;

let in_case = in_case_1.or(&in_case_3)?.or(&in_case_4)?;

in_case.enforce_equal(&Boolean::constant(true))?;

16 / 27 – Finding Details

https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L42-L63
https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L42-L63
https://github.com/penumbra-zone/decaf377/pull/54

Incorrect Documentation of Note Commitment

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008695-2BK

Component docs

Category Cryptography

Status Fixed

Impact

Incorrect public documentation may mislead developers and result in non-interoperable

implementations or vulnerable implementations. Discrepancies between the implemented

approach and the documented approach may also be seen as evidence of a potential

vulnerability or incomplete development processes.

Description

Per the documentation for Spend, the zk-SNARK includes a note commitment computed as:

cm = hash
5
(ds, (rcm, v, ID, B

d
, pk

d
)

Note the missing closing parenthesis. The corresponding implementation computes this

value in the function commit() in shielded-pool/src/note/r1cs.rs:

The highlighted lines show where the implementation differs from the documentation (e.g.,

where hash_6() is called in place of the documented hash_5() , because the computed

commitment includes the clue key). The documentation should be updated to reflect the

implemented approach, which appears to be the correct commitment:

cm = hash
6

(ds, (rcm, v, ID, B
d

, pk
d

, ck
d
))

The same issue, including the missing closing parenthesis, is present for other proofs that

include a note commitment, such as Delegator Vote, Output, and Swap Claim.

Recommendation

Revise the documentation to match the implemented approach.

Location

docs/protocol/src/protocol/action_descriptions/delegator_vote.md

docs/protocol/src/protocol/action_descriptions/outputs.md

docs/protocol/src/protocol/action_descriptions/spend.md

docs/protocol/src/protocol/action_descriptions/swap_claim.md

Info

100

101

102

103

104

105

106

107

108

109

110

111

•

•

•

•

let commitment = poseidon377::r1cs::hash_6(

cs,

&domain_sep,

(

self.note_blinding.clone(),

self.value.amount(),

self.value.asset_id(),

compressed_g_d,

self.address.transmission_key().compress_to_field()?,

self.address.clue_key(),

),

)?;

17 / 27 – Finding Details

https://protocol.penumbra.zone/main/protocol/action_descriptions/spend.html#note-commitment-integrity
https://github.com/penumbra-zone/penumbra/blob/116af9b8a70b9a9df5f8e27469e78609b7c985ee/crates/core/component/shielded-pool/src/note/r1cs.rs#L100-L111
https://github.com/penumbra-zone/penumbra/blob/116af9b8a70b9a9df5f8e27469e78609b7c985ee/crates/core/component/shielded-pool/src/note/r1cs.rs#L100-L111
https://github.com/penumbra-zone/penumbra/blob/f052228af37292873544d5bf59087f2a34bb0291/docs/protocol/src/protocol/action_descriptions/delegator_vote.md
https://github.com/penumbra-zone/penumbra/blob/f052228af37292873544d5bf59087f2a34bb0291/docs/protocol/src/protocol/action_descriptions/delegator_vote.md
https://github.com/penumbra-zone/penumbra/blob/f8040aaa5d1763cf8f5d4f13ab7c18cbfc7ee0cc/docs/protocol/src/protocol/action_descriptions/outputs.md
https://github.com/penumbra-zone/penumbra/blob/f8040aaa5d1763cf8f5d4f13ab7c18cbfc7ee0cc/docs/protocol/src/protocol/action_descriptions/outputs.md
https://github.com/penumbra-zone/penumbra/blob/f052228af37292873544d5bf59087f2a34bb0291/docs/protocol/src/protocol/action_descriptions/spend.md
https://github.com/penumbra-zone/penumbra/blob/f052228af37292873544d5bf59087f2a34bb0291/docs/protocol/src/protocol/action_descriptions/spend.md
https://github.com/penumbra-zone/penumbra/blob/33aad3ffd0b9f06a10feb10ca7c6013dee426879/docs/protocol/src/protocol/action_descriptions/swap_claim.md
https://github.com/penumbra-zone/penumbra/blob/33aad3ffd0b9f06a10feb10ca7c6013dee426879/docs/protocol/src/protocol/action_descriptions/swap_claim.md

Retest Results

2023-08-02 – Fixed

As part of PR #2866, the documentation was updated to correctly specify hash
6

 with the

correct closing parenthesis. This PR also fixed two other missing parentheses as identified

in the Audit Notes.

18 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/pull/2866

Incorrect Documentation for Fee Commitment

in Swap Proof

Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E008695-QXP

Component docs

Category Cryptography

Status Fixed

Impact

Incorrect public documentation may mislead developers and result in non-interoperable

implementations or vulnerable implementations. Discrepancies between the implemented

approach and the documented approach may also be seen as evidence of a potential

vulnerability or incomplete development processes.

Description

Per the documentation for Swap, the zk-SNARK includes a fee commitment computed as:

cv
f
=[v

f
]G

v
f

+[ṽ
f
]G

ṽ

where G
ṽ
 is a constant generator and G

v
f

 is an asset-specific generator point

derived as described in Value Commitments.

The implementation performs this computation in the function generate_constraints() in

core/component/dex/src/swap/proof.rs as follows:

The documentation omits to state that v
f
 must be negated. The implementation is correct.

Recommendation

Revise the documentation to match the implemented approach.

Location

docs/protocol/src/protocol/action_descriptions/swap.md

Retest Results

2023-08-02 – Fixed

As part of PR #2856, the missing negation was added to the documentation, thereby

matching the correct implemented approach.

Info

•

fn generate_constraints(self, cs: ConstraintSystemRef<Fq>) -> ark_relations::r1cs::Result<()> {

// snip

// Fee commitment integrity check

let fee_balance = BalanceVar::from_negative_value_var(swap_plaintext_var.claim_fee.clone());

// snip

}

19 / 27 – Finding Details

https://protocol.penumbra.zone/main/protocol/action_descriptions/swap.html#fee-commitment-integrity
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/component/dex/src/swap/proof.rs#L85
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/component/dex/src/swap/proof.rs#L85
https://protocol.penumbra.zone/main/protocol/action_descriptions/swap.html#fee-commitment-integrity
https://protocol.penumbra.zone/main/protocol/action_descriptions/swap.html#fee-commitment-integrity
https://github.com/penumbra-zone/penumbra/pull/2856

Outdated Dependencies and Cargo Audit

Vulnerabilities

Overall Risk Informational

Impact N/A

Exploitability N/A

Finding ID NCC-E008695-6L2

Component Penumbra

Category Patching

Status Fixed

Impact

Outdated or unmaintained dependencies may introduce vulnerabilities and limit the ability

to respond to vulnerabilities. Usage of dependencies with known published vulnerabilities

may also affect the perceived security of the software, even if the vulnerability does not

affect any leveraged functionality.

Description

The Rust ecosystem has several tools to help manage dependencies, such as cargo audit

and cargo outdated . Several outdated dependencies were observed, alongside several

unmaintained crates. Given the complexity of dependency graphs, the continuous

development of many crates, and the fixed target of this review, slightly outdated

dependencies are expected and normal. Nevertheless, careful attention should be given to

security-related dependencies and RustSec vulnerabilities.

One cargo audit vulnerability was observed:

The above vulnerability does not appear to affect any functionality used by Penumbra but

is being highlighted for completeness.

A recently opened GitHub issue (#2873) suggests that the Penumbra team is aware of the

need to audit and update their dependencies. This informational finding echoes the need to

ensure such a task is regularly performed before major releases.

Recommendation

Consider automating dependency management to some degree, either through a GitHub

action or a tool like cargo deny . This can ensure that any RustSec vulnerabilities are

detected, reviewed and explicitly allowed only after careful consideration. Release

ceremonies should include an explicit audit of dependencies.

Location

Cargo.toml

Info

Crate: time

Version: 0.1.43

Title: Potential segfault in the time crate

Date: 2020-11-18

ID: RUSTSEC-2020-0071

URL: https://rustsec.org/advisories/RUSTSEC-2020-0071

Solution: Upgrade to >=0.2.23

Dependency tree:

time 0.1.43

20 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/issues/2873
https://github.com/penumbra-zone/penumbra/blob/v0.56.0/Cargo.toml
https://github.com/penumbra-zone/penumbra/blob/v0.56.0/Cargo.toml

Retest Results

2023-08-02 – Fixed

This finding is informational and does not prescribe a specific testable outcome, nor did it

identify an exploitable vulnerability. As noted above, an open issue to audit existing

dependencies (#2873) was already in place prior to this finding being filed. This issue has

been updated to include references to cargo outdated and cargo deny as potential

candidates for automation as a result of this finding.

Given that this finding consists solely of high-level guidance, and the Penumbra team has

documented tasks to implement this guidance in the future, this finding is being marked as

“Fixed”.

21 / 27 – Finding Details

https://github.com/penumbra-zone/penumbra/issues/2873

5 Finding Field Definitions

The following sections describe the risk rating and category assigned to issues NCC Group

identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk,

application’s exposure and user population, technical difficulty of exploitation, and other

factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.

Every organization has a different risk sensitivity, so to some extent these

recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target

system or systems. It takes into account the impact of the finding, the difficulty of

exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily

accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of

a small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for

application improvement, functional issues with the application, or

conditions that could later lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or

systems. It takes into account potential losses of confidentiality, integrity and availability,

as well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on

the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny

access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly

degrade system performance. May have a negative public perception of

security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into

account the level of access required, availability of exploitation information, requirements

relating to social engineering, race conditions, brute forcing, etc, and other impediments to

exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or

significant roadblocks.

Medium

22 / 27 – Finding Field Definitions

Rating Description

Attackers would need to leverage a third party, gain non-public information,

exploit a race condition, already have privileged access, or otherwise

overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,

guessing difficult-to-guess data, or is otherwise unlikely.

Category

NCC Group categorizes findings based on the security area to which those findings belong.

This can help organizations identify gaps in secure development, deployment, patching,

etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or

software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

23 / 27 – Finding Field Definitions

6 Audit Notes

This section contains various remarks about the audited implementation. None of these

remarks is a security issue; but they were deemed worth reporting, e.g. as suggestions for

optimization.

Fixed-Point Circuit Optimization

The circuits for fixed-point operations, defined in penumbra/crates/core/num/src/

fixpoint.rs, split values into 64-bit limbs, and perform manual carry propagation, with

internal values being represented over a given number of bits, sufficient to hold all possible

values. In a few places, this number is overestimated, leading to some slight inefficiencies,

in that the resulting circuit has more gates than necessary.

Addition: For addition, the input operands are split into 64-bit limbs, which are added

pairwise, leading to intermediate values z0_raw to z3_raw . Carries are then propagated:

As was noted in finding "Missing Carry Bit in Fixed-Point Arithmetic Circuit for Addition",

the first bit_constrain() call (to obtain z0_bits) uses as second parameter the value 64,

which is too low, since z0_raw can be up to 2
65

-2, and needs 65 bits. The three other

bit_constrain() calls (lines 293, 298, and 303), however, use 66 as second parameter,

which is more than necessary. Indeed, the operand limbs can be up to 2
64

-1 each; each

z_raw can therefore have a value up to 2
65

-2 at most. For an input carry c equal to 0 or 1,

the sum of z_raw and c can yield at most 2
65

-1, which fits on 65 bits, and produces a 1-

bit carry. Thus, the bit_constrain() calls in that function only need to use 65 as second

parameter, not 66. The last call (to obtain z3_bits , on line 303) can even be shortened to

64, since the addition is supposed not to overflow; setting the length for that call to 64 bits

would then allow removal of the c4 value, and of the final enforce_equal() verification on

line 308.

Retests Results: The size constraints were adjusted as suggested, in PR #2911.

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

•

// z0 < 2^64 + 2^64 < 2^(65) => 65 bits

let z0_bits = bit_constrain(z0_raw, 64)?; // no carry-in

let z0 = UInt64::from_bits_le(&z0_bits[0..64]);

let c1 = Boolean::<Fq>::le_bits_to_fp_var(&z0_bits[64..].to_bits_le()?)?;

// z1 < 2^64 + 2^64 + 2^64 < 2^(66) => 66 bits

let z1_bits = bit_constrain(z1_raw + c1, 66)?; // carry-in c1

let z1 = UInt64::from_bits_le(&z1_bits[0..64]);

let c2 = Boolean::<Fq>::le_bits_to_fp_var(&z1_bits[64..].to_bits_le()?)?;

// z2 < 2^64 + 2^64 + 2^64 < 2^(66) => 66 bits

let z2_bits = bit_constrain(z2_raw + c2, 66)?; // carry-in c2

let z2 = UInt64::from_bits_le(&z2_bits[0..64]);

let c3 = Boolean::<Fq>::le_bits_to_fp_var(&z2_bits[64..].to_bits_le()?)?;

// z3 < 2^64 + 2^64 + 2^64 < 2^(66) => 66 bits

let z3_bits = bit_constrain(z3_raw + c3, 66)?; // carry-in c3

let z3 = UInt64::from_bits_le(&z3_bits[0..64]);

let c4 = Boolean::<Fq>::le_bits_to_fp_var(&z3_bits[64..].to_bits_le()?)?;

// Constrain c4: No overflow.

c4.enforce_equal(&FqVar::zero())?;

24 / 27 – Audit Notes

https://github.com/penumbra-zone/penumbra/blob/v0.56.0/crates/core/num/src/fixpoint.rs
https://github.com/penumbra-zone/penumbra/blob/v0.56.0/crates/core/num/src/fixpoint.rs
https://github.com/penumbra-zone/penumbra/blob/v0.56.0/crates/core/num/src/fixpoint.rs
https://github.com/penumbra-zone/penumbra/blob/v0.56.0/crates/core/num/src/fixpoint.rs
https://github.com/penumbra-zone/penumbra/pull/2911

Multiplication: In the multiplication circuit, a similar process is used, but intermediate

values are sums of products of operand limbs:

The carry propagation then computes values t0 to t4 ; the final result, following the fixed-

point semantics, consists in the low 64 bits of each of t1 to t4 , in least-to-most

significant order. We list below the maximum values that can be obtained in each value, in

two cases: for arbitrary inputs, and also for inputs that do not lead to an overflow; we also

include the maximum needed bit length for the “no overflow” case, and the actual value

used in the implementation:

Value Max (general) Max (no overflow) bitlen impl

t0 = z0+(z1<<64) 2
193

-2
129

-2
128

+1 2
193

-2
129

-2
128

+1 193 193

t1 = z2+(t0>>128) 2
129

+2
128

-2
66

2
129

+2
128

-2
66

130 129

t2 = z3+(t1>>64) 2
130

-2
66

-2
64

2
129

-3 129 129

t3 = z4+(t2>>64) 2
130

+2
128

-2
65

-5 2
128

-1 128 129

t4 = z5+(t3>>64) 2
129

-2
64

-1 2
64

-1 64 64

The theoretical maximum length for these values (“bitlen” column) differs from the value

used in the implementation (“impl” column) for values t1 and t3 . In the case of t1 , the

value used in the implementation is too short, which means that some legitimate inputs will

trigger a panic at proof creation; this has been reported in finding "Invalid Computations in

Fixed-Point Arithmetic Circuit for Multiplication". For t3 , the implementation uses a 129-bit

constraint (on line 382) but only 128 bits are needed for a computation that does not

overflow, and the circuit could be made slightly more efficient by reducing the value of the

second parameter from 129 to 128.

Retest Results: The size constraints were adjusted as suggested, in PR #2911.

Division: The U128x128Var::checked_div() function implements a circuit that verifies the

division result; at its core, it computes a multiplication (of two 256-bit integers) with an

extra addition of another 256-bit integer. The analysis is similar to that of multiplications,

though the extra addition makes things a bit more complicated. Seven intermediate values

z0_raw to z6_raw are computed. The carry propagation step computes the values z0 to

z6 (each of 64 bits), with z_bits = z_raw + c (c being the value carried from lower

limbs), then z = z_bits mod 2^64 , and the new carried value is c = z_bits >> 64 .

Manual analysis yields the following maximum lengths, assuming no overflow, for the

z_bits values (“bitlen” column), while the actual values in the bit_constrain() calls are

often larger (“impl” column):

Value bitlen impl code link

z0_bits 128 129 line 580

z1_bits 129 130 line 585

z2_bits 130 130 line 590

342

343

344

345

346

347

348

•

let z0 = &x0 * &y0;

let z1 = &x0 * &y1 + &x1 * &y0;

let z2 = &x0 * &y2 + &x1 * &y1 + &x2 * &y0;

let z3 = &x0 * &y3 + &x1 * &y2 + &x2 * &y1 + &x3 * &y0;

let z4 = &x1 * &y3 + &x2 * &y2 + &x3 * &y1;

let z5 = &x2 * &y3 + &x3 * &y2;

let z6 = &x3 * &y3;

25 / 27 – Audit Notes

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L382
https://github.com/penumbra-zone/penumbra/pull/2911
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L466
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L466
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L466
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L580
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L585
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L590

Value bitlen impl code link

z3_bits 130 131 line 595

z4_bits 128 130 line 600

z5_bits 64 130 line 605

z6_bits 0 0 line 625

Five of the bit_constrain() calls use a value larger than necessary (much larger, in the

case of z5_bits), and could be reduced for enhanced performance.

Retest Results: The size constraints were adjusted as suggested, in PR #2911.

Decaf377 Circuit

Field element sign test: In the decaf377 specification, a sign function is defined for

elements of the base field. An element is said to be “negative” if the least significant bit of

its representation as an integer (normalized non-negative integer lower than the modulus)

is equal to one; the element is “non-negative” if that bit is zero. The sign is used as part of

the decaf377 element compression and decompression procedures. Its circuit is

implemented by FqVarExtension::is_nonnegative() (in decaf377/src/r1cs/fqvar_ext.rs,

line 72):

The comment says that the code checks the “first 8 bits”, but this is not what the definition

of the sign function entails (only the least significant bit matters for the sign function), and

also not what the code actually does. Instead, the implementation checks the same bit

(bitvars[0]) eight times, a highly redundant practice whose goal is unclear. The check on

the bit, in the resulting circuit, uses 24 Boolean gates (eight equality gates, and sixteen

AND gates).

The implementation is technically correct (it indeed computes the sign), but it does so in a

way which is hardly optimal.

Retest Results: PR #53 (decaf377 repository) simplified the circuit into a single check

on the least significant bit, as suggested above.

Typos in Documentation

Finding "Incorrect Documentation for Fee Commitment in Swap Proof" documents a

mismatch between the implementation and the documentation, but also noted that the

affected formulas were missing a closing parenthesis. In addition to consistent errors in the

•

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

•

fn is_nonnegative(&self) -> Result<Boolean<Fq>, SynthesisError> {

let bitvars = self.to_bits_le()?;

// bytes[0] & 1 == 0

let true_var = Boolean::<Fq>::TRUE;

let false_var = Boolean::<Fq>::FALSE;

let mut is_nonnegative_var = true_var.clone();

// Check first 8 bits

for _ in 0..8 {

let lhs = bitvars[0].and(&true_var.clone())?;

let this_loop_var = lhs.is_eq(&false_var)?;

is_nonnegative_var = is_nonnegative_var.and(&this_loop_var)?;

}

Ok(is_nonnegative_var)

}

26 / 27 – Audit Notes

https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L595
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L600
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L605
https://github.com/penumbra-zone/penumbra/blob/a43b5944dfac702fd76fee6aab81de05f97de898/crates/core/num/src/fixpoint.rs#L625
https://github.com/penumbra-zone/penumbra/pull/2911
https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L72-L86
https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L72-L86
https://github.com/penumbra-zone/decaf377/blob/db7879daf78cb307f4e77fba1f1d0e3c54a58886/src/r1cs/fqvar_ext.rs#L72-L86
https://github.com/penumbra-zone/decaf377/pull/53

documentation for hash_5 , an additional missing closing parenthesis was observed; see

docs/protocol/src/protocol/action_descriptions/swap_claim.md:

The same issue appears on line 33 of swap.md as well.

Retest Results: The missing parentheses have been corrected as part of PR #2866.

In the documentation for the hash-to-decaf377 operation (encode_to_curve and

hash_to_curve functionalities), the formulas are based on the Elligator map. There is a

typo in the formula in step 5: when u
1
n

1
 is not a square, value x should be replaced with

r
0

x; the documentation incorrectly states that the replacement value is r
0

ζx (a previous

version of the documentation used an “inverse square root” function called isqrt()

instead of sqrt_ratio_zeta() , with a different convention for non-square inputs, and for

which the step 5 formula was correct). The Rust implementation uses the correct formula.

Retest Results: PR #2884 removed the spurious ζ.

47

•

•

$scm = hash_7(ds, (rseed, v_f, G_{v_f}, B_d, pk_d, \mathsf{ck_d}, scm_{inner})$.

27 / 27 – Audit Notes

https://github.com/penumbra-zone/penumbra/blob/33aad3ffd0b9f06a10feb10ca7c6013dee426879/docs/protocol/src/protocol/action_descriptions/swap_claim.md#L47
https://github.com/penumbra-zone/penumbra/blob/33aad3ffd0b9f06a10feb10ca7c6013dee426879/docs/protocol/src/protocol/action_descriptions/swap_claim.md#L47
https://github.com/penumbra-zone/penumbra/blob/33aad3ffd0b9f06a10feb10ca7c6013dee426879/docs/protocol/src/protocol/action_descriptions/swap.md
https://github.com/penumbra-zone/penumbra/blob/33aad3ffd0b9f06a10feb10ca7c6013dee426879/docs/protocol/src/protocol/action_descriptions/swap.md
https://github.com/penumbra-zone/penumbra/pull/2866
https://protocol.penumbra.zone/main/crypto/decaf377/group_hash.html
https://github.com/penumbra-zone/penumbra/pull/2884

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Invalid Comparisons on Fixed-Point Values are Accepted by the Circuit Verifier
	Missing Carry Bit in Fixed-Point Arithmetic Circuit for Addition
	Invalid Computations in Fixed-Point Arithmetic Circuit for Multiplication
	Up-Rounding Fixed-Point Values May Overflow and Wrap to Zero Silently
	Incorrect Support of Zero in Point Decompression
	Incorrect Documentation of Note Commitment
	Incorrect Documentation for Fee Commitment in Swap Proof
	Outdated Dependencies and Cargo Audit Vulnerabilities

	Finding Field Definitions
	Risk Scale
	Category

	Audit Notes
	Fixed-Point Circuit Optimization
	Decaf377 Circuit
	Typos in Documentation

